Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform
Abstract
:1. Introduction
2. Markovian Resource Queueing Systems
3. A Method for Computing the Stationary Distribution
3.1. Computing Convolutions via the Discrete Fourier Transform
3.2. Computing the Truncated Convolutions
3.3. Computing the Stationary Distribution
- Choose a whole number and a discretization step size .
- Choose a step function with jumps of size at , that would approximate CDF .
- Apply FFT and compute the sequences , using formulae (6).
- Define the functions
- Obtain the stationary state probabilities , , of the system with unlimited resources.
- Use distribution , , and the approximations given by Equations (2) and (4) to compute the stationary distribution of the system with limited resources.
4. Numerical Examples
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Naumov, V.; Samouylov, K. Analysis of multi-Resource loss system with state-Dependent arrival and service rates. Probab. Eng. Inf. Sci. 2017, 31, 413–419. [Google Scholar] [CrossRef]
- Lisovskaya, E.Y.; Moiseev, A.N.; Moiseeva, S.P.; Pagano, M. Modeling of Mathematical Processing of Physics Experimental Data in the Form of a Non-Markovian Multi-Resource Queuing System. Russ. Phys. J. 2019, 61, 2188–2196. [Google Scholar] [CrossRef]
- Zeifman, A.; Satin, Y.; Korolev, V.; Shorgin, S. On truncations for weakly ergodic inhomogeneous birth and death processes. Int. J. Appl. Math. Comput. Sci. 2014, 24, 503–518. [Google Scholar] [CrossRef] [Green Version]
- Sztrik, J.; Gál, T. A recursive solution of a queueing model for a multi-Terminal system subject to breakdowns. Perform. Eval. 1990, 11, 1–7. [Google Scholar] [CrossRef]
- Doetsch, G. Handbuch der Laplace-Transformation; Birkhäuser: Basel, Switzerland, 1956; Volumes I-III. [Google Scholar]
- Oberhettinger, F.; Badii, L. Tables of Laplace Transforms; Springer-Verlag: Berlin, Germany, 1973. [Google Scholar]
- Abate, J.; Choudhury, G.L.; Whitt, W. An Introduction to Numerical Transform Inversion and Its Application to Probability Models. In Computational Probability. International Series in Operations Research & Management Science; Grassmann, W.K., Ed.; Springer: Boston, MA, USA, 2000; Volume 24, pp. 257–323. [Google Scholar]
- Cohen, A.M. Numerical Methods for Laplace Transform Inversion; Springer: New York, NY, USA, 2007. [Google Scholar]
- Choudhury, G.L.; Leung, K.K.; Whitt, W. An algorithm to compute blocking probabilities in multi-rate multi-class multi-resource loss models. Adv. Appl. Probab. 1995, 27, 1104–1143. [Google Scholar] [CrossRef]
- Choudhury, G.L.; Leung, K.K.; Whitt, W. Efficiently Providing Multiple Grades of Service with Protection Against Overloads in Shared Resources. Bell Labs Tech. J. 1995, 74, 50–63. [Google Scholar] [CrossRef]
- Choudhury, G.; Leung, K.; Whitt, W. An inversion algorithm to compute blocking probabilities in loss networks with state-dependent rates. IEEE/ACM Trans. Netw. 1995, 3, 585–601. [Google Scholar] [CrossRef]
- Sopin, E.; Samouylov, K.; Vikhrova, O.; Kovalchukov, R.; Moltchanov, D.; Samuylov, A. Evaluating a Case of Downlink Uplink Decoupling Using Queuing System with Random Requirements. In Internet of Things, Smart Spaces, and Next Generation Networks and Systems; Galinina, O., Balandin, S., Koucheryavy, Y., Eds.; Springer: Cham, Switzerland, 2016; pp. 440–450. [Google Scholar] [CrossRef]
- Begishev, V.; Moltchanov, D.; Sopin, E.; Samuylov, A.; Andreev, S.; Koucheryavy, Y.; Samouylov, K. Quantifying the Impact of Guard Capacity on Session Continuity in 3GPP New Radio Systems. IEEE Trans. Veh. Technol. 2019, 68, 12345–12359. [Google Scholar] [CrossRef]
- Zheng, K.; Hu, F.; Wang, W.; Xiang, W.; Dohler, M. Radio resource allocation in LTE-advanced cellular networks with M2M communications. IEEE Commun. Mag. 2012, 50, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Nussbaumer, H.J. Fast Fourier Transform and Convolution Algorithms, 2nd ed.; Springer: Berlin, Germany, 1990. [Google Scholar]
- Ackroyd, M. Computing the Waiting Time Distribution for the G/G/1 Queue by Signal Processing Methods. IEEE Trans. Commun. 1980, 28, 52–58. [Google Scholar] [CrossRef]
- Ackroyd, M.; Kanyangarara, R. Skinner’s Method for Computing Bounds on Distributions and the Numerical Solution of Continuous-Time Queueing Problems. IEEE Trans. Commun. 1982, 30, 1746–1749. [Google Scholar] [CrossRef]
- Grubel, R. Algorithm AS 265: G/G/1 Via Fast Fourier Transform. J. R. Stat. Soc. Ser. C Appl. Stat. 1991, 40, 355. [Google Scholar] [CrossRef]
- Herald of the Bauman Moscow State Technical University. Series Natural Sciences. Her. Bauman Mosc. State Tech. Univ. Ser. Nat. Sci. 2020, 3, 106–119. [Google Scholar] [CrossRef]
- Schaller, P.; Temnov, G. Efficient and Precise Computation of Convolutions: Applying Fft To Heavy Tailed Distributions. Comput. Methods Appl. Math. 2008, 8, 187–200. [Google Scholar] [CrossRef]
- Ruckdeschel, P.; Kohl, M. General Purpose Convolution Algorithm in S 4 Classes by Means of FFT. J. Stat. Softw. 2014, 59, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Broffitt, J.D.; Klugman, S.A.; Panjer, H.H.; Willmot, G.E. Loss Models: From Data to Decisions. J. Am. Stat. Assoc. 1999, 94, 341. [Google Scholar] [CrossRef]
- Bühlmann, H. Numerical evaluation of the compound Poisson distribution: Recursion or Fast Fourier Transform? Scand. Actuar. J. 1984, 1984, 116–126. [Google Scholar] [CrossRef]
- Embrechts, P.; Frei, M. Panjer recursion versus FFT for compound distributions. Math. Methods Oper. Res. 2008, 69, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Grübel, R.; Hermesmeier, R. Computation of Compound Distributions I: Aliasing Errors and Exponential Tilting. ASTIN Bull. 1999, 29, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Grübel, R.; Hermesmeier, R. Computation of Compound Distributions II: Discretization Errors and Richardson Extrapolation. ASTIN Bull. 2000, 30, 309–331. [Google Scholar] [CrossRef] [Green Version]
- Naumov, V.; Samouylov, K. Product-form markovian queueing systems with multiple resources. Probab. Eng. Inf. Sci. 2019, 1–9. [Google Scholar] [CrossRef]
- Samouylov, K.; Sopin, E.; Vikhrova, O.; Shorgin, S. Convolution algorithm for normalization constant evaluation in queuing system with random requirements. AIP Conf. Proc. 2017, 1863, 90004. [Google Scholar] [CrossRef]
- Vikhrova, O.G. About Probability Characteristics Evaluation in Queuing System with Limited Resources and Random Requirements. Rudn. J. Math. Inf. Sci. Phys. 2017, 25, 209–216. [Google Scholar] [CrossRef]
- Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration, 2nd ed.; Academic Press: Orlando, FL, USA, 1984. [Google Scholar]
- Zhang, S. Computation of Special Functions. Am. J. Phys. 1997, 65, 355. [Google Scholar] [CrossRef]
- Engeln-Müllges, G.; Uhlig, F. Numerical Algorithms with Fortran; Springer-Verlag: Berlin, Germany, 1996. [Google Scholar]
m | n = 2 | n = 3 | n = 4 | n = 5 | |
---|---|---|---|---|---|
0.5 | 0.006027 | 0.000468 | 0.000196 | 0.000154 | |
1 | 0.003797 | 0.000234 | 0.000097 | 0.000076 | |
2 | 0.002392 | 0.000117 | 0.000048 | 0.000037 | |
0.5 | 0.004003 | 0.000275 | 0.000165 | 0.000126 | |
1 | 0.002522 | 0.000142 | 0.000084 | 0.000065 | |
2 | 0.001589 | 0.000073 | 0.000043 | 0.000033 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumov, V.A.; Gaidamaka, Y.V.; Samouylov, K.E. Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform. Mathematics 2020, 8, 772. https://doi.org/10.3390/math8050772
Naumov VA, Gaidamaka YV, Samouylov KE. Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform. Mathematics. 2020; 8(5):772. https://doi.org/10.3390/math8050772
Chicago/Turabian StyleNaumov, Valeriy A., Yuliya V. Gaidamaka, and Konstantin E. Samouylov. 2020. "Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform" Mathematics 8, no. 5: 772. https://doi.org/10.3390/math8050772
APA StyleNaumov, V. A., Gaidamaka, Y. V., & Samouylov, K. E. (2020). Computing the Stationary Distribution of Queueing Systems with Random Resource Requirements via Fast Fourier Transform. Mathematics, 8(5), 772. https://doi.org/10.3390/math8050772