Discussion of “Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” by Dejan Brkić and Pavel Praks, Mathematics 2019, 7, 34; doi:10.3390/math7010034
Abstract
:1. Introduction
2. Estimating Darcy–Weisbach Friction Factor
3. Improving the Explicit Equations Proposed by Brkić and Praks
4. Accuracy Evaluation Criteria
5. Results and Discussion
6. Conclusions
Funding
Conflicts of Interest
Appendix A
References
- Brkić, D.; Praks, P. Accurate and efficient explicit approximations of the Colebrook flow friction equation based on the Wright ω-function. Mathematics 2019, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Niazkar, M. Revisiting the Estimation of Colebrook Friction Factor: A Comparison between Artificial Intelligence Models and C-W Based Explicit Equations. KSCE J. Civ. Eng. 2019, 23, 4311–4326. [Google Scholar] [CrossRef]
- Niazkar, M.; Talebbeydokhti, N.; Afzali, S.H. Relationship between Hazen-William coefficient and Colebrook-White friction factor: Application in water network analysis. Eur. Water 2017, 58, 513–520. [Google Scholar]
- Niazkar, M.; Talebbeydokhti, N.; Afzali, S.H. Novel grain and form roughness estimator scheme incorporating artificial intelligence models. Water Resour. Manag. 2019, 33, 757–773. [Google Scholar] [CrossRef]
- Niazkar, M.; Talebbeydokhti, N.; Afzali, S.H. Development of a new flow-dependent scheme for calculating grain and form roughness coefficients. KSCE J. Civ. Eng. 2019, 23, 2108–2116. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Analysis of water distribution networks using MATLAB and Excel spreadsheet: H-based methods. Comput. Appl. Eng. Educ. 2017, 25, 129–141. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Streamline Performance of Excel in Stepwise Implementation of Numerical Solutions. Comput. Appl. Eng. Educ. 2016, 24, 555–566. [Google Scholar] [CrossRef]
- Niazkar, M.; Talebbeydokhti, N. Comparison of explicit relations for calculating Colebrook friction factor in pipe network analysis using h-based methods. Iran. J. Sci. Technol. Trans. Civ. Eng. 2020, 44, 231–249. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Analysis of water distribution networks using MATLAB and Excel spreadsheet: Q-based methods. Comput. Appl. Eng. Educ. 2017, 25, 277–289. [Google Scholar] [CrossRef]
- Brkić, D. W solutions of the CW equation for flow friction. Appl. Math. Lett. 2011, 24, 1379–1383. [Google Scholar] [CrossRef]
- Brkić, D. Review of explicit approximations to the Colebrook relation for flow friction. J. Petrol. Sci. Eng. 2011, 77, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Brkić, D. Solution of the implicit Colebrook equation for flow friction using Excel. EJSIE 2017, 10, 4663. [Google Scholar]
- Praks, P.; Brkić, D. Symbolic regression-based genetic approximations of the Colebrook equation for flow friction. Water 2018, 10, 1175. [Google Scholar] [CrossRef] [Green Version]
- Sobol, I.M.; Turchaninov, V.I.; Levitan, Y.L.; Shukhman, B.V. Quasi-Random Sequence Generators; Distributed by OECD/NEA Data Bank; Keldysh Institute of Applied Mathematics; Russian Academy of Sciences: Moscow, Russia, 1992; Available online: https://ec.europa.eu/jrc/sites/jrcsh/files/LPTAU51.rar (accessed on 3 February 2020).
- Niazkar, M.; Afzali, S.H. Assessment of Modified Honey Bee Mating Optimization for Parameter Estimation of Nonlinear Muskingum Models. J. Hydrol. Eng. 2014, 20, 04014055. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Optimum Design of Lined Channel Sections. Water Resour. Manag. 2015, 29, 1921–1932. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. New Nonlinear Variable-parameter Muskingum Models. KSCE J. Civ. Eng. 2017, 21, 2958–2967. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Application of New Hybrid Optimization Technique for Parameter Estimation of New Improved Version of Muskingum Model. Water Resour. Manag. 2016, 30, 4713–4730. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method. Hydrol. Res. 2017, 48, 1253–1267. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Application of new hybrid method in developing a new semicircular-weir discharge model. Alex. Eng. J. 2017, 57, 1741–1747. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Developing a new accuracy-improved model for estimating scour depth around piers using a hybrid method. IJST Trans. Civ. Eng. 2018, 43, 179–189. [Google Scholar] [CrossRef]
- Niazkar, M.; Rakhshandehroo, G.; Afzali, S.H. Deriving explicit equations for optimum design of a circular channel incorporating a variable roughness. IJST Trans. Civ. Eng. 2018, 42, 133–142. [Google Scholar] [CrossRef]
- Fang, X.; Xu, Y.; Zhou, Z. New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations. Nucl. Eng. Des. 2011, 241, 897–902. [Google Scholar] [CrossRef]
- Haaland, S.E. Simple and explicit formulas for the friction factor in turbulent pipe flow. J. Fluids Eng. 1983, 105, 89–90. [Google Scholar] [CrossRef]
- Eck, B. Technische Stromungslehre; Springer: New York, NY, USA, 1973. [Google Scholar]
- Manadilli, G. Replace implicit equations with signomial functions. Chem. Eng. 1997, 104, 129. [Google Scholar]
Models | maxAE | minAE | maxRE | minRE | maxRE+ | maxRE− |
---|---|---|---|---|---|---|
Model 1 | 1.01 × 10−4 | 1.84 × 10−7 | 0.1405 | 1.33 × 10−3 | 0.1405 | 0.0107 |
Model 3 (this study) | 9.29 × 10−5 | 2.66 × 10−7 | 0.1295 | 5.78 × 10−4 | 0.1295 | 0.0196 |
Improvement (%) | 7.81 | −44.81 | 7.81 | 56.50 | 7.81 | −83.59 |
Model 2 | 9.39 × 10−5 | 1.69 × 10−6 | 0.1309 | 8.40 × 10−3 | 0.1309 | −0.0084 |
Model 4 (this study) | 9.25 × 10−5 | 1.30 × 10−6 | 0.1290 | 6.94 × 10−3 | 0.1290 | −0.0069 |
Improvement (%) | 1.48 | 22.85 | 1.48 | 17.46 | 1.48 | 17.46 |
Models | meanAE | meanRE | MSE | Δav |
---|---|---|---|---|
Model 1 | 4.85 × 10−5 | 0.1030 | 3.12 × 10−9 | 0.1051 |
Model 3 (this study) | 4.37 × 10−5 | 0.0920 | 2.56 × 10−9 | 0.0943 |
Improvement (%) | 9.99 | 10.66 | 18.02 | 10.32 |
Model 2 | 4.68 × 10−5 | 0.0972 | 2.99 × 10−9 | 0.1004 |
Model 4 (this study) | 4.60 × 10−5 | 0.0953 | 2.89 × 10−9 | 0.0986 |
Improvement (%) | 1.74 | 1.98 | 3.13 | 1.81 |
Criteria | The Best Explicit Equations Reported in Niazkar [2] | The Best of the Four Models |
---|---|---|
maxAE | 1.4 × 10−4 (Fang et al.) | 9.25 × 10−5 (Model 4) |
minAE | 1.25 × 10−8 (Haaland) | 1.84 × 10−7 (Model 1) |
maxRE | 0.422 (Fang et al.) | 0.129 (Model 4) |
minRE | 3.72 × 10−5 (Eck) | 5.78 × 10−4 (Model 2) |
maxRE+ | −0.0246 (Manadilli) | 0.129 (Model 4) |
maxRE− | 0.123 (Fang et al.) | −0.0069 (Model 4) |
meanAE | 2.51 × 10−5 (Fang et al.) | 4.37 × 10−5 (Model 2) |
meanRE | 0.0680 (Fang et al.) | 0.0920 (Model 2) |
MSE | 8.35 × 10−10 (Fang et al.) | 2.56 × 10−9 (Model 2) |
Δav | 0.0856 (Fang et al.) | 0.0943 (Model 2) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niazkar, M. Discussion of “Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” by Dejan Brkić and Pavel Praks, Mathematics 2019, 7, 34; doi:10.3390/math7010034. Mathematics 2020, 8, 793. https://doi.org/10.3390/math8050793
Niazkar M. Discussion of “Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” by Dejan Brkić and Pavel Praks, Mathematics 2019, 7, 34; doi:10.3390/math7010034. Mathematics. 2020; 8(5):793. https://doi.org/10.3390/math8050793
Chicago/Turabian StyleNiazkar, Majid. 2020. "Discussion of “Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” by Dejan Brkić and Pavel Praks, Mathematics 2019, 7, 34; doi:10.3390/math7010034" Mathematics 8, no. 5: 793. https://doi.org/10.3390/math8050793
APA StyleNiazkar, M. (2020). Discussion of “Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” by Dejan Brkić and Pavel Praks, Mathematics 2019, 7, 34; doi:10.3390/math7010034. Mathematics, 8(5), 793. https://doi.org/10.3390/math8050793