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Abstract: The present paper deals with estimates for differences of certain positive linear operators
defined on bounded or unbounded intervals. Our approach involves Baskakov type operators,
the kth order Kantorovich modification of the Baskakov operators, the discrete operators associated
with Baskakov operators, Meyer–König and Zeller operators and Bleimann–Butzer–Hahn operators.
Furthermore, the estimates in quantitative form of the differences of Baskakov operators and their
derivatives in terms of first modulus of continuity are obtained.

Keywords: positive linear operators; estimates of differences of operators; Baskakov operators;
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1. Introduction

The studies of the differences of positive linear operators has as starting point the Lupaş problem
proposed in [1] and became an interesting area of research in Approximation Theory. Gonska et al. [2]
gave a solution to Lupaş’ problem for a more general case in terms of moduli of continuity. New results
on this topic were given by Gonska et al. ([3,4]). In [5], new estimates for the differences of positive
linear operators, based on some inequalities involving positive linear functionals, are established.
Aral et al. [6] obtained some estimates of the differences of positive linear operators defined on
unbounded intervals in terms of weighted modulus of continuity. Estimates in terms of Paltanea
modulus of continuity for differences of certain well-known operators were obtained by Gupta et al. [7].
Very recently, estimates of the differences of certain positive linear operators defined on bounded
intervals and their derivatives were obtained in [8]. For more details about this topic, the reader is
referred to [9–11].

The present paper deals with the estimates of the differences of certain positive linear operators
(defined on bounded or unbounded intervals) and their derivatives, in terms of the modulus of
continuity. Our study concerns the Baskakov type operators, the kth order Kantorovich modification
of the Baskakov operators and the discrete operators associated with Baskakov operators. The main
reason to associate a discrete operator to an integral one is its simpler form. Using as measuring tool
a K-functional an estimate of the difference between the kth order Kantorovich modification of the
Baskakov operators and their associated discrete operators will be established.
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Let I ⊆ R be an interval and H a subset of C(I) containing the monomials ei(x) = xi, i = 0, 1, 2.
Let L : H → C(I) be a positive linear operator such that Le0 = e0. Let L be of the form

L f :=
∞

∑
j=0

Aj( f )pj, f ∈ H,

where Aj : H → R are positive linear functionals, Aj(e0) = 1 and pj ∈ C(I), pj ≥ 0,
∞

∑
j=0

pj = e0.

Set bAj := Aj(e1) and µ
Aj
i := Aj(e1 − bAj e0)

i, i = 0, 1, 2; j ≥ 0. The discrete operator associated
with L is defined by

D : H → C(I), D f :=
∞

∑
j=0

f (bAj)pj, f ∈ H. (1)

For more details about this topic, the reader is referred to [12–14].
The k-th order Kantorovich modification of the operators L is defined by

L(k) := Dk ◦ L ◦ Ik,

where Dk denotes the k-th order ordinary differential operator and

Ik f = f , if k = 0 and (Ik f ) (x) =
∫ x

0

(x− t)k−1

(k− 1)!
f (t)dt, if k ∈ N.

The k-th order Kantorovich modification of certain positive linear operators was introduced and
studied in the papers [15–18]. In what follows ‖ · ‖ will stand for the supremum norm.

2. Baskakov Type Operators

Let c ∈ R, n ∈ R, n > c for c ≥ 0 and −n/c ∈ N for c < 0. Furthermore let Ic = [0, ∞) for
c ≥ 0 and Ic = [0,−1/c] for c < 0. Consider f : Ic −→ R given in such a way that the corresponding
integrals and series are convergent.

The Baskakov-type operators are defined as follows (see [19–21])

Bn,c( f ; x) =
∞

∑
j=0

p[c]n,j(x) f
(

j
n

)
,

where

p[c]n,j(x) =


nj

j!
xje−nx , c = 0,

nc,j

j!
xj(1 + cx)−(

n
c +j) , c 6= 0,

(2)

and ac,j := ∏
j−1
l=0(a + cl), ac,0 := 1.

Denote by Vn := Bn,1 the classical Baskakov operators defined as follows:

Vn( f ; x) :=
∞

∑
k=0

f
(

k
n

)
bn,k(x), where bn,k(x) :=

(
n + k− 1

k

)
xk

(1 + x)n+k , x ∈ [0, ∞).

The classical Szász–Mirakjan operators are Baskakov type operators with c = 0 defined by
(see [22–24])

Sn( f ; x) := e−nx
∞

∑
j=0

(nx)j

j!
f
(

j
n

)
, x ∈ [0, ∞). (3)
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Nowdays generalizations of these operators have been studied by several authors. An important
type of generalization of these operators has been considered by López-Moreno in [25] as follows

Ln,s( f ; x) =
∞

∑
k=0

(−1)s f
(

k
n

)
φ
(k+s)
n (x)

ns
(−x)k

k!
, x ∈ [0, ∞), (4)

where f : [0, ∞) → R, n ∈ N, and the sequence (φn) of analytic functions φn : [0, ∞) → R verifies
the conditions

(i) φn(0) = 1, for every n ∈ N;

(ii) (−1)kφ
(k)
n (x) ≥ 0, for every n ∈ N, x ∈ [0, ∞), k ∈ N0.

The derivative of the operator Ln,s has the form (see [25], p. 147)

L(r)
n,s( f ; x) = (−1)r

∞

∑
k=0

(−1)s∆r
1
n

f
(

k
n

)
φ
(k+s+r)
n (x)

ns
(−x)k

k!
. (5)

Some examples of operators of the form (4) are the classical Baskakov operators and Szász–Mirakjan
operators. These operators are obtained by choosing s = 0 and φn(x) = (1 + x)−n, respectively
φn(x) = e−nx.

In the following we give the estimates of the differences of Baskakov and Szász–Mirakjan operators
and their derivatives.

Lemma 1. If t ∈ [0, 1] and r ∈ N, then

(1 + t)(1 + 2t) . . . (1 + (r− 1)t)− 1 ≤ (r!− 1)t.

Proof. For t ∈ [0, 1] and r ∈ N, it follows

(1 + t)(1 + 2t) . . . (1 + (r− 1)t)− 1 = c1t + c2t2 + · · ·+ cr−1tr−1 ≤ (c1 + c2 + · · ·+ cr−1)t.

For t = 1 we get c1 + c2 + · · ·+ cr−1 = r!− 1.

Let ω( f , δ) be the first order modulus of continuity and Cb[0, ∞) the space of all real-valued,
bounded, continuous functions on [0, ∞) endowed with the supremum norm ‖ · ‖. Denote

V[r]
n ( f ; x) :=

∞

∑
k=0

f
(

k
n

)
bn+r,k(x).

Theorem 1. For r ≥ 0 the Baskakov operators verify∥∥∥(Vn f )(r) −V[r]
n

(
f (r)
)∥∥∥ ≤ r!− 1

n
‖ f (r)‖+ ω

(
f (r),

r
n

)
, f (r) ∈ Cb[0, ∞).

Proof. Using relation (5) the rth derivative of Baskakov operators can be written as follows:

V(r)
n ( f ; x) =

∞

∑
k=0

∆r
1
n

f
(

k
n

)
(n + k + r− 1)!

(n− 1)!
(1 + x)−n−k−r xk

k!
.
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For the differences of Baskakov operators and their derivatives we obtain

V(r)
n ( f ; x)−V[r]

n ( f (r); x) =
∞

∑
k=0

{
∆r

1
n

f
(

k
n

)
(n + k + r− 1)!

(n− 1)!
1
k!

xk

(1 + x)n+k+r − f (r)
(

k
n

)
bn+r,k(x)

}

=
∞

∑
k=0

(
(n + r− 1)!
(n− 1)!

∆r
1
n

f
(

k
n

)
− f (r)

(
k
n

))
bn+r,k(x)

=
∞

∑
k=0

(
(n + r− 1)!
(n− 1)!

r!
nr

[
k
n

, . . . ,
k + r

n
; f
]
− f (r)

(
k
n

))
bn+r,k(x)

=
∞

∑
k=0

[
n(n + 1) . . . (n + r− 1)

nr f (r) (ξn,k,r)− f (r)
(

k
n

)]
bn+r,k(x),

with
k
n
≤ ξn,k,r ≤

k + r
n

.
Therefore,∣∣∣V(r)

n ( f ; x)−V[r]
n ( f (r); x)

∣∣∣ ≤ ∞

∑
k=0

[(
1 +

1
n

)(
1 +

2
n

)
· · ·
(

1 +
r− 1

n

)
− 1
]
| f (r)(ξn,k,r)|

+

∣∣∣∣ f (r)(ξn,k,r)− f (r)
(

k
n

)∣∣∣∣] .

Now Lemma 1 shows that

‖V(r)
n f −V[r]

n f (r)‖ ≤ r!− 1
n
‖ f (r)‖+ ω

(
f (r),

r
n

)
.

Theorem 2. For r ≥ 0 the Szász–Mirakjan operators verify∥∥∥(Sn f )(r) − Sn

(
f (r)
)∥∥∥ ≤ ω

(
f (r),

r
n

)
, f (r) ∈ Cb[0, ∞).

Proof. From relation (5) the derivative of Szász–Mirakjan operators can be written as

S(r)
n ( f ; x) =

∞

∑
k=0

nr∆r
1
n

f
(

k
n

)
(xn)k

k!
e−nx.

Therefore, ∣∣∣S(r)
n ( f ; x)− Sn( f (r); x)

∣∣∣ ≤ ∞

∑
k=0

∣∣∣∣nr∆r
1
n

f
(

k
n

)
− f (r)

(
k
n

)∣∣∣∣ (nx)k

k!
e−nx

=
∞

∑
k=0

∣∣∣∣ f (r)(ξn,k,r)− f (r)
(

k
n

)∣∣∣∣ (nx)k

k!
e−nx,

where
k
n
≤ ξn,k,r ≤

k + r
n

. Using the above relation the theorem is proved.

A similar result can be obtained for the operators Ln,s introduced by López-Moreno in [25].

Theorem 3. For r ≥ 0 the positive linear operators Ln,s verify∥∥∥(Ln,s f )(r) − Ln,s+r

(
f (r)
)∥∥∥ ≤ (1 +O(n−1)

)
ω
(

f (r),
r
n

)
, f (r) ∈ Cb[0, ∞).



Mathematics 2020, 8, 798 5 of 12

Proof. We have

|L(r)
n,s( f ; x)− Ln,s+r( f (r); x)| ≤

∞

∑
k=0

(−1)r+s+kφ
(k+s+r)
n (x)

ns+r
xk

k!

∣∣∣∣nr∆r
1
n

f
(

k
n

)
− f (r)

(
k
n

)∣∣∣∣
=

∞

∑
k=0

(−1)r+s+kφ
(k+s+r)
n (x)

ns+r
xk

k!

∣∣∣∣ f (r)(ξn,k,r)− f (r)
(

k
n

)∣∣∣∣
≤ ω

(
f (r);

r
n

) ∞

∑
k=0

(−1)r+s+kφ
(k+s+r)
n (x)

ns+r
xk

k!
,

where
k
n
≤ ξn,k,r ≤

k + r
n

.

Since Ln,s(1; x) = 1 +O(n−1) (see [25], Lemma 2) we get∥∥∥(Ln,s f )(r) − Ln,s+r

(
f (r)
)∥∥∥ ≤ (1 +O(n−1)

)
ω
(

f (r),
r
n

)
, f (r) ∈ Cb[0, ∞), r ≥ 0.

3. The kth Order Kantorovich Modification of the Baskakov Operators

The k-th order Kantorovich modifications of the operators Bn,c are defined by

B(k)n,c := Dk ◦ Bn,c ◦ Ik.

For n > (k + 1)c denote

K(k)
n,c :=

(n− ck)k

(n− ck)c,k
DkBn−ck,cIk.

Let n, c, k ≥ 0, n > (k + 1)c, be fixed. Using the well known representation of B(k)
n,c (see [20]) we

can write

K(k)
n,c ( f ; x) =

∞

∑
j=0

k!p[c]n,j(x)
[

j
n− ck

,
j + 1

n− ck
, . . . ,

j + k
n− ck

; Ik f
]

=
∞

∑
j=0

p[c]n,j(x) f (ξ j),
j

n− ck
< ξ j <

j + k
n− ck

. (6)

The domain of K(k)
n,c is a linear subspace H(k)

n,c of C[0, ∞) if c ≥ 0, or C [0,−1/c] if c < 0, containing the

polynomial functions. For j ≥ 0 and f ∈ H(k)
n,c let

Fj( f ) = k!
[

j
n− ck

,
j + 1

n− ck
, . . . ,

j + k
n− ck

; Ik f
]

,

Gj( f ) = f
(

2j + k
2(n− ck)

)
.

The discrete operators (1) associated with K(k)
n,c are given by

D(k)
n,c ( f ; x) =

∞

∑
j=0

p[c]n,j(x)Gj( f ).

In order to estimate the difference between K(k)
n,c and D(k)

n,c we use as measuring tool the K-functional
(see [26,27])

K2( f ; λ) = inf
{
‖ f − g‖+ λ‖g′′‖; g ∈ X

}
, λ > 0, f ∈ Cb[0, ∞),
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where X := {g ∈ Cb[0, ∞)| there exists g′′ ∈ Cb[0, ∞)}.

Theorem 4. Let f ∈ H(k)
n,c ∩ Cb[0, ∞). Then

‖K(k)
n,c f −D(k)

n,c f ‖ ≤ 2K2

(
f ;

k
48(n− ck)2

)
. (7)

Proof. We have

bFj = Fj(e1) = k!
[

j
n− ck

,
j + 1

n− ck
, . . . ,

j + k
n− ck

;
ek+1

(k + 1)!

]
=

1
k + 1

k

∑
i=0

j + i
n− ck

=
2j + k

2(n− ck)
,

bGj =
2j + k

2(n− ck)
= bFj ,

Fj(e2) = k!
[

j
n− ck

,
j + 1

n− ck
, . . . ,

j + k
n− ck

;
2ek+2
(k + 2)!

]
=

2
(k + 1)(k + 2)(n− ck)2

[
k

∑
i=0

(j + i)2 +
k−1

∑
i=0

k

∑
l=i+1

(j + i)(j + l)

]

=
1

12(n− ck)2 (12j2 + 12jk + 3k2 + k).

From the above relations we get

µ
Fj
2 =

k
12(n− ck)2 , j ≥ 0. (8)

Then ∣∣∣K(k)
n,c ( f ; x)−D(k)

n,c ( f ; x)
∣∣∣ ≤ ∞

∑
j=0

∣∣Fj( f )− Gj( f )
∣∣ p[c]n,j(x) =

∞

∑
j=0

∣∣∣Fj( f )− f (bFj)
∣∣∣ p[c]n,j(x). (9)

For g ∈ X and j ≥ 0 we have by Taylor expansion∣∣∣g(t)− g(bFj)− g′(bFj)(t− bFj)
∣∣∣ ≤ 1

2
‖g′′‖(t− bFj)2, t ≥ 0.

Applying the functional Fj we get

|Fj(g)− g(bFj)| ≤ 1
2
‖g′′‖µFj

2 .

Combined with (8) and (9), this leads to∥∥∥K(k)
n,c g−D(k)

n,c g
∥∥∥ ≤ ‖g′′‖ k

24(n− ck)2 , g ∈ X.

Furthermore,

‖K(k)
n,c f −D(k)

n,c f ‖ ≤ ‖K(k)
n,c f −K(k)

n,c g‖+ ‖K(k)
n,c g−D(k)

n,c g‖+ ‖D(k)
n,c g−D(k)

n,c f ‖

≤ 2‖ f − g‖+ ‖g′′‖ k
24(n− ck)2 .

Taking the infimum over g ∈ X we get (7).
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The estimates of the differences between the Baskakov operators Bn,c and the k-th Kantorovich
modification of Baskakov operators K(k)

n,c , respectively the discrete operators associated with K(k)
n,c ,

in terms of the first order modulus of continuity will be enumerate in the next results.

Proposition 1. Let c = 0 and f ∈ H(k)
n,0 . Then

(i) ‖Sn f −K(k)
n,0 f ‖ ≤ ω

(
f ;

k
n

)
,

(ii) ‖Sn f −D(k)
n,0 f ‖ ≤ ω

(
f ;

k
2n

)
.

Proof. For fixed n, k and c = 0 we have according to (6)

pn,j(x) =
nj

j!
xje−nx,

K(k)
n,0( f ; x) =

∞

∑
j=0

p[0]n,j(x) f (ξ j),
j
n
< ξ j <

j + k
n

,

D(k)
n,0( f ; x) =

∞

∑
j=0

p[0]n,j(x) f
(

2j + k
2n

)
.

Combined with (3), these relations prove Proposition 1.

Proposition 2. Let f ∈ C [0,−1/c] and c < 0. Then

(i) ‖Bn,c f −K(k)
n,c f ‖ ≤ ω

(
f ;

k
n− ck

)
,

(ii) ‖Bn,c f −D(k)
n,c f ‖ ≤ ω

(
f ;

k
2(n− ck)

)
.

Proof. For c < 0 we have c = −n
l

, l ∈ N, and

pn,j(x) =
(

1− n
l

x
)l−j

xj nj

l j

(
l
j

)
,

Bn,c( f ; x) =
l

∑
j=0

p[c]n,j(x) f
(

j
n

)
,

K(k)
n,c ( f ; x) =

l

∑
j=0

p[c]n,j(x) f (ξ j),
j

n− ck
< ξ j <

j + k
n− ck

,

D(k)
n,c ( f ; x) =

l

∑
j=0

p[c]n,j(x) f
(

2j + k
2(n− ck)

)
.

Using the above relations the proposition is proved.

Proposition 3. Let c > 0, f ∈ H(k)
n,c and f ′ ∈ Cb[0, ∞). Then

(i) ‖Bn,c f −K(k)
n,c f ‖ ≤ k(1 + cx)

n− ck
‖ f ′‖,

(ii) ‖Bn,c f −D(k)
n,c f ‖ ≤ k(1 + 2cx)

2(n− ck)
‖ f ′‖.
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Proof. We have K(k)
n,c ( f ; x) =

∞

∑
j=0

p[c]n,j(x) f (ξ j),
j

n− ck
< ξ j <

j + k
n− ck

. Therefore,

∣∣∣K(k)
n,c ( f ; x)−Bn,c( f ; x)

∣∣∣ ≤ ∞

∑
j=0

p[c]n,j(x)
∣∣∣∣ f (ξ j)− f

(
j
n

)∣∣∣∣ ≤ ‖ f ′‖
∞

∑
j=0

p[c]n,j(x)
∣∣∣∣ξ j −

j
n

∣∣∣∣
≤ ‖ f ′‖‖

∞

∑
j=0

p[c]n,j(x)
(

j + k
n− ck

− j
n

)
= ‖ f ′‖

∞

∑
j=0

p[c]n,j(x)
(

k
n− ck

+
ck

n− ck
j
n

)

= ‖ f ′‖
(

k
n− ck

+
ck

n− ck
x
)
= ‖ f ′‖ k(1 + cx)

n− ck
,

and∣∣∣Bn,c( f ; x)−D(k)
n,c ( f ; x)

∣∣∣ ≤ ∞

∑
j=0

p[c]n,j(x)
∣∣∣∣ f ( j

n

)
− f

(
2j + k

2(n− ck)

)∣∣∣∣ ≤ ‖ f ′‖
∞

∑
j=0

p[c]n,j(x)
∣∣∣∣ j
n
− 2j + k

2(n− ck)

∣∣∣∣
= ‖ f ′‖

∞

∑
j=0

p[c]n,j(x)
(

k
2(n− ck)

+
ck

n− ck
j
n

)

= ‖ f ′‖
(

k
2(n− ck)

+
ckx

n− ck

)
= ‖ f ′‖ k(1 + 2cx)

2(n− ck)
.

4. The Meyer–König and Zeller Operators

Meyer–König and Zeller [28] introduced the operators defined for f ∈ C[0, 1] as follows

Mn( f ; x) =


∞

∑
k=0

(
n + k

k

)
xk(1− x)n+1 f

(
k

n + k

)
, x ∈ [0, 1),

f (1), x = 1.

Let M̂n := D ◦ Mn ◦ I1 be the Kantorovich modification of the MKZ-operators ([29]).
Denote In,k :=

[
k

k+n , k+1
k+n+1

]
. For the operator M̂n the following explicit form can be obtained:

M̂n( f ; x) =
∞

∑
k=0

(
n + k− 1

k

)
(1− x)nxk (n + k)(n + k + 1)

n

∫
In,k

f (t)dt.

Indeed,

M̂n( f ; x)=
∞

∑
k=0

k(1−x)n+1xk−1
(

n+k
k

)
(I1 f )

(
k

n + k

)
−

∞

∑
k=0

(n + 1)(1−x)nxk
(

n+k
k

)
(I1 f )

(
k

n + k

)
=

∞

∑
k=1

(n + 1)(1−x)n+1xk−1
(

n+k
k−1

)
(I1 f )

(
k

n + k

)
−

∞

∑
k=0

(n + 1)(1−x)nxk
(

n + k
k

)
(I1 f )

(
k

n + k

)
=

∞

∑
k=0

(n + 1)(1− x)nxk
(

n + k + 1
k

)
(I1 f )

(
k + 1

n + k + 1

)
−

∞

∑
k=0

(n+1)(1−x)nxk+1
(

n+k+1
k

)
(I1 f )

(
k+1

n+k+1

)
−

∞

∑
k=0

(n+1)(1−x)nxk
(

n+k
k

)
(I1 f )

(
k

n+k

)
=

∞

∑
k=0

(n + 1)(1− x)nxk
(

n + k + 1
k

)
(I1 f )

(
k + 1

n + k + 1

)
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−
∞

∑
k=0

(n+1)(1−x)nxk
(

n+k
k− 1

)
(I1 f )

(
k

n+k

)
−

∞

∑
k=0

(n+1)(1−x)nxk
(

n+k
k

)
(I1 f )

(
k

n+k

)
=

∞

∑
k=0

(n + 1)(1− x)nxk
(

n + k + 1
k

)
(I1 f )

(
k + 1

n + k + 1

)
−

∞

∑
k=0

(n + 1)(1− x)nxk
(

n + k + 1
k

)
(I1 f )

(
k

n + k

)
= (n + 1)

∞

∑
k=0

(
k + n + 1

k

)
(1− x)nxk

∫
In,k

f (t)dt

=
∞

∑
k=0

(
n + k− 1

k

)
(1− x)nxk (n + k)(n + k + 1)

n

∫
In,k

f (t)dt.

The discrete operators (1) associated with M̂n are given by

Dn( f ; x) =
∞

∑
k=0

(
n + k− 1

k

)
(1− x)nxk f (un,k), where un,k =

1
2

(
k

k + n
+

k + 1
k + n + 1

)
.

Theorem 5. Let f ∈ C[0, 1]. Then

(i) ‖M̂n f −Mn−1 f ‖ ≤ 2ω

(
f ;

1
n

)
,

(ii) ‖Mn−1 f −Dn f ‖ ≤ ω

(
f ;

1
n

)
,

(iii) ‖M̂n f −Dn f ‖ ≤ ω

(
f ;

1
n

)
.

Proof. (i) Let An−1( f ; x) :=
∞

∑
k=0

f
(

k
n + k

)
(1− x)nxk

(
n + k− 1

k

)
. We have

∣∣M̂n( f ; x)−Mn−1( f ; x)
∣∣ ≤ ∣∣M̂n( f ; x)−An−1( f ; x)

∣∣+ |An−1( f ; x)−Mn−1( f ; x)|

≤
∞

∑
k=0

(
n + k− 1

k

)
(1− x)nxk

∣∣∣∣ f (ξn,k)− f
(

k
n + k

)∣∣∣∣
+

∞

∑
k=0

(
n + k− 1

k

)
(1− x)nxk

∣∣∣∣ f ( k
n + k

)
− f

(
k

n + k− 1

)∣∣∣∣ ,

where
k

k + n
< ξn,k <

k + 1
n + k + 1

. Since

∣∣∣∣ f (ξn,k)− f
(

k
n + k

)∣∣∣∣ ≤ ω

(
f ;

1
n

)
,∣∣∣∣ f ( k

n + k

)
− f

(
k

n + k− 1

)∣∣∣∣ ≤ ω

(
f ;

1
n

)
,

we get ‖M̂n f −Mn−1 f ‖ ≤ 2ω

(
f ;

1
n

)
.
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(ii) Using∣∣∣∣un,k −
k

n + k− 1

∣∣∣∣ = ∣∣∣∣12
(

k
k + n

− k
n + k− 1

)
+

1
2

(
k + 1

k + n + 1
− k

n + k− 1

)∣∣∣∣
≤ 1

2
k

(n + k)(n + k− 1)
+

1
2
|n− 1− k|
(n− 1 + k)

1
n + k + 1

≤ 1
2

(
1

n + k
+

1
n + k + 1

)
≤ 1

n
,

we obtain ‖Mn−1 f −Dn f ‖ ≤ ω

(
f ;

1
n

)
.

In a similar way one can prove (iii).

5. The BBH Operators

Bleimann, Butzer and Hahn [30] introduced the positive linear operator defined as follows:

Ln( f ; x) =
n

∑
k=0

f
(

k
n− k + 1

)(
n
k

)
xk(1 + x)−n, x ∈ [0, ∞), f ∈ C[0, n].

Let L̂n−1 := D ◦ Ln ◦ I1 be the Kantorovich modification of the BBH-operators. For the operator
L̂n−1 the following explicit form can be obtained:

L̂n−1( f ; x) =
n−1

∑
k=0

n
(

n− 1
k

)
xk(1 + x)−n−1

∫ k+1
n−k

k
n−k+1

f (t)dt, f ∈ C[0, n].

Indeed,

L̂n−1( f ; x) =
n

∑
k=0

(
n
k

) [
kxk−1(1 + x)−n − nxk(1 + x)−n−1

]
(I1 f )

(
k

n− k + 1

)
=

n

∑
k=1

n
(

n− 1
k− 1

)
xk−1(1 + x)−n(I1 f )

(
k

n− k + 1

)
−

n

∑
k=0

n
(

n
k

)
xk(1 + x)−n−1(I1 f )

(
k

n− k + 1

)

=
n−1

∑
k=0

n
(

n− 1
k

)
xk(1 + x)−n−1(I1 f )

(
k + 1
n− k

)
+

n−1

∑
k=0

n
(

n− 1
k

)
xk+1(1 + x)−n−1(I1 f )

(
k + 1
n− k

)
−

n

∑
k=1

n
(

n
k

)
xk(1 + x)−n−1(I1 f )

(
k

n− k + 1

)

=
n−1

∑
k=0

n
(

n− 1
k

)
xk(1 + x)−n−1(I1 f )

(
k + 1
n− k

)
+

n−1

∑
k=1

n
(

n− 1
k− 1

)
xk(1 + x)−n−1(I1 f )

(
k

n− k + 1

)

−
n−1

∑
k=1

n
(

n
k

)
xk(1 + x)−n−1(I1 f )

(
k

n− k + 1

)

=
n−1

∑
k=0

n
(

n− 1
k

)
xk(1 + x)−n−1(I1 f )

(
k + 1
n− k

)
−

n−1

∑
k=0

n
(

n− 1
k

)
xk(1 + x)−n−1(I1 f )

(
k

n− k + 1

)

=
n−1

∑
k=0

n
(

n− 1
k

)
xk(1 + x)−n−1

∫ k+1
n−k

k
n−k+1

f (t)dt.

Denote In,k =
[

k
n+2−k , k+1

n+1−k

]
,
∣∣In,k

∣∣ = n + 2
(n + 1− k)(n + 2− k)

. Then,

L̂n( f ; x) =
1

(1 + x)2

n

∑
k=0

(
n + 2

k

)
xk(1 + x)−n ∣∣In,k

∣∣−1
∫

In,k

f (t)dt, f ∈ C[0, n + 1] (10)
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Let
∫

In,k

f = Tn,k( f ) + Rn,k( f ) be the trapezoidal quadrature formula on In,k, based on

m =
⌊√

n|In,k|
⌋
+ 1 knots, where

Tn,k( f ) =
|In,k|
2m

[
f
(

k
n− k + 2

)
+ 2

m−1

∑
i=1

f
(

k
n− k + 2

+ i
|In,k|

m

)
+ f

(
k + 1

n− k + 1

)]
,

∣∣Rn,k( f )
∣∣ ≤ |In,k|3‖ f ′′‖

12
(⌊√

n|In,k|
⌋
+ 1
)2 ≤

|In,k|‖ f ′′‖
12n

,

and bxc is the integer part of x.
If in (10) the integral is replaced by its approximation Tn,k( f ) from the trapezoidal quadrature

formula, we get

An( f ; x) :=
1

(1 + x)2

n

∑
k=0

(
n + 2

k

)
xk(1 + x)−n ∣∣In,k

∣∣−1 Tn,k( f ).

Proposition 4. The BBH operators Ln verify:

|Ln( f ; x)−An( f ; x)| ≤ ‖ f ′′‖
12n

, f ∈ C2[0, n + 1].

Proof. We get

|Ln( f ; x)−An( f ; x)| ≤
n

∑
k=0

(
n + 2

k

)
xk(1 + x)−n−2 ∣∣In,k

∣∣−1 |Rn,k( f )|

≤
n

∑
k=0

(
n + 2

k

)
xk(1 + x)−n−2 ‖ f ′′‖

12n
≤ ‖ f ′′‖

12n
.
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