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Abstract: The present paper deals with estimates for differences of certain positive linear operators
defined on bounded or unbounded intervals. Our approach involves Baskakov type operators,
the kth order Kantorovich modification of the Baskakov operators, the discrete operators associated
with Baskakov operators, Meyer-Konig and Zeller operators and Bleimann-Butzer-Hahn operators.
Furthermore, the estimates in quantitative form of the differences of Baskakov operators and their
derivatives in terms of first modulus of continuity are obtained.
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1. Introduction

The studies of the differences of positive linear operators has as starting point the Lupas problem
proposed in [1] and became an interesting area of research in Approximation Theory. Gonska et al. [2]
gave a solution to Lupas’ problem for a more general case in terms of moduli of continuity. New results
on this topic were given by Gonska et al. ([3,4]). In [5], new estimates for the differences of positive
linear operators, based on some inequalities involving positive linear functionals, are established.
Aral et al. [6] obtained some estimates of the differences of positive linear operators defined on
unbounded intervals in terms of weighted modulus of continuity. Estimates in terms of Paltanea
modulus of continuity for differences of certain well-known operators were obtained by Gupta et al. [7].
Very recently, estimates of the differences of certain positive linear operators defined on bounded
intervals and their derivatives were obtained in [8]. For more details about this topic, the reader is
referred to [9-11].

The present paper deals with the estimates of the differences of certain positive linear operators
(defined on bounded or unbounded intervals) and their derivatives, in terms of the modulus of
continuity. Our study concerns the Baskakov type operators, the kth order Kantorovich modification
of the Baskakov operators and the discrete operators associated with Baskakov operators. The main
reason to associate a discrete operator to an integral one is its simpler form. Using as measuring tool
a K-functional an estimate of the difference between the kth order Kantorovich modification of the
Baskakov operators and their associated discrete operators will be established.
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Let I C R be an interval and H a subset of C(I) containing the monomials e;(x) = x%,i = 0,1,2.
Let L : H — C(I) be a positive linear operator such that Ley = ¢y. Let L be of the form

Lf = i)Af(f)m/ feH,
L

where A; : H — R are positive linear functionals, A;(ep) = 1 and p; € C(I), p; > 0, ;)pj = ¢p.
]:
Set b 1= A]-(el) and y?j = A]-(e1 — bAfeo)i, i=0,1,2;j > 0. The discrete operator associated
with L is defined by

D:H — C(I), Df := if(bAf)pj, feH. 1)
j=0

For more details about this topic, the reader is referred to [12-14].
The k-th order Kantorovich modification of the operators L is defined by

Lk .= DFo L oZy,
where D¥ denotes the k-th order ordinary differential operator and

X (x— k-1
Tif = f, ifk = 0and (Zf) (x):/o ((k_t)l)!f(t)dt, if k € N.

The k-th order Kantorovich modification of certain positive linear operators was introduced and
studied in the papers [15-18]. In what follows || - || will stand for the supremum norm.

2. Baskakov Type Operators

Letce R,n € R,n > cforc > 0and —n/c € N for ¢ < 0. Furthermore let I, = [0, c0) for
c>0and I, = [0,—1/c] for c < 0. Consider f : I, — R given in such a way that the corresponding
integrals and series are convergent.

The Baskakov-type operators are defined as follows (see [19-21])

oy v ] i
Buc(f;x) = ]g) pn,j(x)f (n) ’
where

ey L
pn,j(x) - i . (2)

and a% = H{;é(a +cl), a0:=1.
Denote by V,, := B, 1 the classical Baskakov operators defined as follows:

vilfix) = 127 (1) uats), where )= (")

x € [0,00).

The classical Szasz-Mirakjan operators are Baskakov type operators with ¢ = 0 defined by
(see [22-24])

su(fin) = e 5 U (1), e fo.o) ®

j=0 J! n
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Nowdays generalizations of these operators have been studied by several authors. An important
type of generalization of these operators has been considered by Lépez-Moreno in [25] as follows

0 (k+s) —xk
Lnsfx Z ( >4)n ns( )(k!),xE[0,00), (4)

where f : [0,00) — R, n € N, and the sequence (¢,) of analytic functions ¢, : [0,c0) — R verifies
the conditions

i) ¢.(0 )—1 for everyn € N;
(i) (— )cp )( x) >0, foreveryn € N, x € [0,00), k € Ny.

The derivative of the operator L, s has the form (see [25], p. 147)

0 (k+s+7) _\k
L) =y B g (£) T ®

S
k=0 n

Some examples of operators of the form (4) are the classical Baskakov operators and Szasz-Mirakjan
operators. These operators are obtained by choosing s = 0 and ¢,(x) = (14 x)™", respectively

x) =e "
. in the following we give the estimates of the differences of Baskakov and Szdsz-Mirakjan operators
and their derivatives.
Lemmal. Ift € [0,1] and r € N, then
1+)A+2t)...1+(r—1)t) =1 < (r! =1)t.
Proof. For t € [0,1] and r € N, it follows
A+ +2t) ... 1+ —Dt) —1=cit+ct? +- -+t V< (cr+eo+ -+t
Fort=1wegetci+cy+---+c¢1=rl—-1. O

Let w(f,d) be the first order modulus of continuity and C,[0, c0) the space of all real-valued,
bounded, continuous functions on [0, o) endowed with the supremum norm || - ||. Denote

& k
V= 11 () burra(o)
AN
Theorem 1. For r > 0 the Baskakouv operators verify

|vup) = Vi (5] <

Proof. Using relation (5) the ' derivative of Baskakov operators can be written as follows:

> AT f (n+k+r—1)! g XE
2 1 < > T T

r

Dl +w (0, 2), 7 € Clo,e0).
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For the differences of Baskakov operators and their derivatives we obtain
(1) ¢ 7] I = K\ (m+k+r—111 xk k
KU ? {sz () oo a1 (5) B

T o (5) 1 () e

M%’ [k,...,kH;f] - O (n)) B (%)

(n—1)! n n

T
(e}

I
agk:

I
ngk:

T
o
—

k=0
=y [P0 0 @) - 10 (3) ] B,
k=0
With% < Cnkr < k:l—i"
Therefore,
() (.o _ vyl 0. 3 1 2y =N ]
v =W < L (15 ) (15) -+ (105 ) 1] 17w
=0

Now Lemma 1 shows that

(r) [r] £( (r) n I
IV = VO < R0 o (£, ).

O

Theorem 2. Forr > 0 the Szdsz—Mirakjan operators verify
r
H(Snf)(r) —Sn (f(r)) H <w (f(r), ;) , f(r) € Cp[0, 00).
Proof. From relation (5) the derivative of Szdsz-Mirakjan operators can be written as

(xn)f

Zn’A’ <> x

Therefore,
SO () — a7 < Yo sy f<k> £ (k) 5 o
k=0 !
= £ G -0 ()| L,

k k
where — < &, 1, < % Using the above relation the theorem is proved. [

A similar result can be obtained for the operators L, s introduced by L6pez-Moreno in [25].

Theorem 3. Forr > 0 the positive linear operators Ly, s verify

H(Ln,sf)(” — Lusir (fW)H < (1+O(n’1)) w (f<r>,£), £ € [0, 00).
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Proof. We have

) (_1)r+s+k¢}(1k+s+f) (x)

IN

s () 0

nS-H‘ kl

LYY (F32) = Lus 1 (f7); )]

(_ 1)r+s+k¢£lk+s+7) (x) Xk

o 1 @) = (k) ‘

n

n5+1’

00 (71)r+s+k¢r(lk+5+7) (x) Xk

<w (f(f)l- 1) Z

ns+r 7K

k+r

k
where - < Cnkr <
Since Lys(1;x) = 1+ O(n~1) (see [25], Lemma 2) we get

H(Ln,sj[)(r) — Lustr (f(r)) H < (1 + O(”_l)) w (f(r)r %) ’ f(r) € Gp[0,00), r > 0.
O

3. The kth Order Kantorovich Modification of the Baskakov Operators

The k-th order Kantorovich modifications of the operators B, . are defined by
For n > (k4 1)c denote

Let n,c,k > 0, n > (k+ 1)c, be fixed. Using the well known representation of B,(ch) (see [20]) we
can write

(k j j+1 ]+k
ICnc)fx Zk'pn] n_ck/n_ck/"' ka
_ v, N _ Tk
- an/](x)f(é])’ n—ck < g] < n _Ck' (6)

The domain of K,gkc) is a linear subspace H,(lkc) of C[0,00) if ¢ > 0, 0r C [0, —1/c] if ¢ < 0, containing the
polynomial functions. For j > O and f € H,Skg let

n—ck'n—ck’ "’
_ 2j+k
Gj(f)_f<2(n—ck)>'
k)

The discrete operators (1) associated with ICﬁ,,C are given by

Fj(f)zk!{ j_ ! ]+k/ A

In order to estimate the difference between IC,(qu) and D,(lkc) we use as measuring tool the K-functional
(see [26,27])
Ko(f;A) =inf{||f =gl +Mlg" ;g € X}, A >0, f €Cyl0,00),
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where X := {g € C},[0, )| there exists g’ € C,[0,00)}.

Theorem 4. Let f € H,Skc) N Cy[0,0). Then

IKcir = DA < 2K (i e )

Proof. We have

F_TF — k! / j+1 jtk e j+i 2j+k
b= Fjle) =k [n—ck'n—ck""'n—ck'(k—l—l)! k—i—lzn—ck 2(n—ck)’
G 2j+k g
b]_2(n—ck) =t
. — ! .
Fjlez) k'{n—ck'n—ck'”"n—ck'(k+2)!
_ 2 i PEY Y (GG
(k+1)(k+2)(n—ck)? = =015
1 5 . )
== k).
12(n_ck)2(12] +12jk + 3k“ + k)
From the above relations we get
F, k .
= >
Ha 12(n — ck) 120
Then
k (k
2 (fix) = D (fi0)| < Z:!F Al piy(x Z:\F )| iy (x).
For ¢ € X and j > 0 we have by Taylor expansion
. . , 1 :
8() = g(b) —g' (47 (¢ = b5)| < S Ig" I (E = b)2, ¢ > 0.

Applying the functional F; we get

. 1 L
IFi(g) —g(b'1)| < 5“8"”#2]-

Combined with (8) and (9), this leads to

Ko _pE ol < (1o k
|1ciis = Pds | < 18" g £ € X

Furthermore,
H’Can DanH < HIC f Icncg‘|+”’Cncg DnchJF”Dncg DMf”

k
<2[f gl + \Ig”\lm-

Taking the infimum over g € X we get (7).
O

6 0of 12

@)

®)

)
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The estimates of the differences between the Baskakov operators B, and the k-th Kantorovich

modification of Baskakov operators ICSIIfC), respectively the discrete operators associated with ICgfc),
in terms of the first order modulus of continuity will be enumerate in the next results

Proposition 1. Letc =0and f € H%. Then
. k k
@ s kBl < (7))
i) Sf—DWfl < (f; ).
n0/ 1 = "on

Proof. For fixed n, k and ¢ = 0 we have according to (6)

j=0
= 2j+k
Dy(fix) =) pL?}(x)f (]2) '
j=0

Combined with (3), these relations prove Proposition 1. []

Proposition 2. Let f € C[0,—1/c]and ¢ < 0. Then
: By < .k
(1) ||Bn,cf ICn,cfH S w (f’ n— Ck)l

(i) | Buef — DS < w (fz(nk—ck)>

Proof. For ¢ < 0 we havec = —?, l € N,and

pus) = (1= 22) 75 (1),
Buelfix) = Zp 97 (1),

i ' j+k
n—ck<§]<n—ck'

l
KA (f5) = » P (Of(E),
=
6y = 3l (2 HE
Dn,c(f/ )_Jgopn,]( )f (2(7[—6‘]{))'

Using the above relations the proposition is proved. [

Proposition 3. Letc >0, f € H,Skg and f' € C,[0,00). Then

, 1+
) Buef — k) < E

i) |Bucf ~ DI < ;j”cc,f))nf'n
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Proof. WehavelCnC (fix) = ZP n—]ck <G < n]jfk

IC,(fC)(f,x) Banx’ ZP

;

-£ (D)< r ip,ﬂ(x) -
S G S

, ck 1—|—cx)
= I (nck+n o) = I

alr (1) - (2255) < 171 Zp
= ||f/||];)7";,j(x) <2 (n i ck) t ikck1i>
1 (2(nick) N nckx ) il ((1 +2cx))

and
; _ Ytk
2(n — ck)

Bue(fix) - DI (fi)| < Zp

O

4. The Meyer-Konig and Zeller Operators
Meyer-Konig and Zeller [28] introduced the operators defined for f € C[0, 1] as follows

Ma(f;x) = ké (n:k> (1 X (nik> , x€0,1),

f(1),x=1.
Let M, := Do M, o7 be the Kantorovich modification of the MKZ-operators ([29]).
Denote I,  := {HL”, kf%ﬂ} . For the operator M, the following explicit form can be obtained:
N > k—1 k k+1)
Mn(f;x)—2<n+ )(1 x)n k<n+ )(1’1+ + / f
k=0 k n n k

Indeed,

[e0)

/\?ln(f;x)zzk(l X)L k= 1(n+k>( Tif) <n+k>_é(n+1)(l—x)nxk(n:k> (Ilf)< ik)

k=0 )
=Fo -0 (1) @) () - o a0 (") @ ()
— é(m +1)(1- x)”xk (n +:+ 1) (Taf) (nk++k—1i_1)
ki(nH)(lx)nka (n+11§+1) (T f) (HE;L) Ig(nﬂ)(lx)nxk (n;crk) (T f) (nk+k>

(n+1)(1 - )"k (n +1’§+ 1> /) Qﬂil)

Mgl‘:

»
Il

0
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B ) n()
=k§( +1)(1—x) x"(”“ﬁl) (Tof) (ni:}rl)
—ké( +1)(1 - x) k<n+:+1> (Ilf)<nik>

—~

n+1) i <k—|—z—|—1>(1 —x)”xkfln,kf(t)dt

k=0

_g(;wﬂ;1)(1_x)nxk(n+k)(1:l+k+1) /I kf(t)dt.

The discrete operators (1) associated with M, are given by

> /m+k—1

1 k k+1
. _ . n.k I
Du(f;x) —kgzo( . )(1 X)X f (1, k), where u, i 5 <k+n +k+n+1>’

Theorem 5. Let f € C[0,1]. Then
i) || Muf — M1 f| < 2w (f; i)
@ M -Dufl < (fi)
(i) Wt = Dufl| < ().

Proof. (i) Let A, _1(f;x) := i f (nk) (1—x)"xk (n +II§ B 1). We have
<
<

4
|Mn<f;x) _-Anfl(f;x)’ + |An71(f/'x) _Mnfl(f;x)‘

(a1 (%)

() - ()|

A 1
we get || M, f — M, _1f|| <2w <f2n>~
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(ii) Using

Wk [Pk kN 1( kel k
e i k—1| |2\k+n ntk—1) 2\k+n+tl1 n+tk—1

<1 k 1|n—1—k 1

“2(m+k)(n+k—-1) 2n—-1+k)n+k+1
1 1 1 1

< - + < -,

_2(n+k n—i—k—l—l)_n

we obtain | M, _1f — Duf| < w (f;}lq).

In a similar way one can prove (iii). O

5. The BBH Operators

Bleimann, Butzer and Hahn [30] introduced the positive linear operator defined as follows:

Zf( k+1> (Z)xk(1+x)_”, x €]0,00), f € C[O,n].

Let £,_1 := D o L, o I; be the Kantorovich modification of the BBH-operators. For the operator
L,_1 the following explicit form can be obtained:

n—1 n— %
Lya(f;x) = Zn( ' 1>xk(1+x)”l/ . f(bdt, feClon]

k=0 ket

Indeed
Efi 0 (i) Ealnen 0 ()
SEo(" )@ (P R e @n (55)
_kén(’;)xk(l+x)” 1(Ilf)(n l;+1)
::_:n<”k R R (,’i*i)+§"(2_i)x"<l+x>_"_l(flf)( 1)
;n<z>xk(1+x)_"_l(zlf) (n i—i—l)
(e () - B )o@ ()
SB[ o

Denote I,y = [ﬁ,%]/ Li| = (n+17;<)—:nz+2k)' Then,

n

n+2 1
Z( ) (14 x) 7" | L] /ft)dtfeC[On+1] (10)

0

La(fix) =
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Let / f = Tu(f) + R, k(f) be the trapezoidal quadrature formula on I,;, based on
In,k
m = |v/n|L, k|| + 1 knots, where

gl k m-l k ALkl k+1
Tui(f) = 2m f n—k+2 +ZI;f n—k+2+l m +f n—k+1
Lk P1Lf" ] il
2 ([Valll] +1)* — 120

and | x| is the integer part of x.
If in (10) the integral is replaced by its approximation T, x(f) from the trapezoidal quadrature

’Rn,k(f)’ < 1

formula, we get

An(f;x) == 1+x22( ) (1+x) ”\In’k\_lTn,k(f).

Proposition 4. The BBH operators L, verify:
1
£a(0) — gl < WL g e conal,

Proof. We get

Lu(f3%) — Au(f3 ) 2) (L4 x) "2 |7 Rk ()

<n+2>xk(1+x)nz||f”ll < I

T
o

IN
1=
7\
2

~ +

IN
M:

k 12n — 12n

T
o

O
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