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Abstract: It is well-known that subspace migration is a stable and effective non-iterative imaging
technique in inverse scattering problem. However, for a proper application, a priori information
of the shape of target must be estimated. Without this consideration, one cannot retrieve good
results via subspace migration. In this paper, we identify the mathematical structure of single-
and multi-frequency subspace migration without any a priori of unknown targets and explore its
certain properties. This is based on the fact that elements of so-called multi-static response (MSR)
matrix can be represented as an asymptotic expansion formula. Furthermore, based on the examined
structure, we improve subspace migration and consider the multi-frequency subspace migration.
Various results of numerical simulation with noisy data support our investigation.

Keywords: subspace migration; thin electromagnetic inhomogeneities; Multi-Static Response (MSR)
matrix; numerical simulation

1. Introduction

There exists a considerable amount of interesting inverse scattering problems concerned with the
retrieval of crack-like defects completely embedded in a medium from measurement data (for related
works, see [1–6] and references therein). This problem is considered an interesting and important issue
because it is closely related to human life. However, due to the intrinsic ill-posedness and nonlinearity,
this problem has not yet been successfully resolved.

To solve this problem, various remarkable and effective inversion techniques have been developed.
The famous and general approach for solving this problem is based on the Newton-type iteration
scheme, i.e., estimating the solution (shape, material properties, etc.) that minimizes the discrete
norm between the true measurement data and computed data in the presence of true and man-made
targets [7–15]. For a successful application of iterative based schemes, one need a priori information of
unknown target and must begin iteration procedure with a good initial guess that is close enough to
the unknown target. If not, one will need large computational costs, encounter non-convergence issue,
or obtain a local minimizer instead of true solution. For this reason, generation of a good initial guess
without any a priori information of target must to be considered.

To obtain an outline shape of unknown targets as a good initial guess, various non-iterative
techniques have been developed and successfully applied to various inverse problems. Among them,
MUltiple SIgnal Classification (MUSIC) [16–18], topological derivative [19–21], linear and direct
sampling methods [22–24], and factorization method [25–27] have been applied for identifying
crack-like defects or thin electromagnetic inhomogeneities.

Subspace migration is a recently investigated non-iterative algorithm in inverse scattering problem
for identifying or imaging of arbitrary shaped, unknown electromagnetic inhomogeneities. To our best
knowledge, it was firstly designed and applied to the edge detection of volumetric reflectors by Borcea
et al. [28]. After that, it has been applied to various inverse scattering problems, for example detection
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of a point-like reflector when the array response matrix is obtained in a noisy environment [29] and
localization of a set of perfectly conducting cracks with small length [30]. In these studies, statistical
approaches are used to demonstrate that subspace migration is a very fast, effective, and robust
technique. In other studies, subspace migration has been applied to identify thin electromagnetic
inhomogeneities [31] in full-view inverse scattering problem, completely embedded in a half-space [32],
and arbitrary shaped extended perfectly conducting cracks [33] in the limited-view inverse scattering
problem. Unlike the statistical approach, the feasibility was confirmedbecause the imaging function can
be expressed by the Bessel function of integer order. Based on this fact, some undiscovered properties
of subspace migration have been explored. In [34], the authors considered subspace migration for
obtaining an outline shape of extended electromagnetic inclusions and used the result as an initial
guess to the iterative algorithm. Recently, subspace migration is applied to the microwave imaging
technique for identifying small and extended anomalies from synthetic [35] and real [36] scattering
parameters. It is worth mentioning that subspace migration is closely related to the time-reversal
migration imaging techniques (see [37] and references therein).

Although the subspace migration algorithm has been shown to be feasible for detecting various
types of inhomogeneities, this has only been confirmed when a priori information of the target is
known. However, for a proper application of subspace migration, a priori information of an unknown
target must be known (as shown in Equation (8) below). For this reason, most of research is conducted
on the assumption that information of the number, shape (small, extended, crack-like defects, etc.,
mostly unit outward normal vector), or material properties (penetrable, impenetrable, permittivity of
permeability contrast, etc.) of unknown targets is known. Thus, estimation or identification of a priori
information of the targets seems to be considered in the early stage of the application of subspace
migration. Furthermore, some artifacts also appear in the imaging result; however, there is a specific
method to eliminate them.

The purpose of this paper is to apply subspace migration for imaging of a thin crack-like
electromagnetic inhomogeneity located in the two-dimensional homogeneous space without any
a priori information of inhomogeneity. Based on the structure of left- and right-singular vectors of
multi-static response (MSR) matrix and asymptotic expansion formula for the far-field pattern in
the presence of thin inhomogeneity, we perform an analysis to explain that imaging function of the
subspace migration can be expressed by the combination of the Bessel functions of order 0 and 1,
and unit tangential and normal vectors on the supporting curve of the thin inhomogeneity. This also
leads us to discover certain properties of imaging function and to give an idea of improvement of
imaging performance by filtering small magnitudes or reducing the oscillation pattern of imaging
related to the Bessel functions.

The authors of [29,30,38] confirmed that application of multi-frequency is advantageous not only
to improve the imaging performance but also to crucially enable self-averaging in imaging of objects.
In this paper, to upgrade the imaging quality and eliminate several unexpected artifacts, we consider
the multi-frequency imaging of subspace migration and confirm that application of multiple frequency
successfully guarantees the imaging performance. Contrary to existing results based on statistical
approaches, we confirm the improvement of imaging performance of subspace migration based on the
reduction of artifacts and oscillations in the imaging results.

This paper is organized as follows. In Section 2, we briefly survey the two-dimensional direct
scattering problem in the presence of thin inhomogeneity and introduce the traditional subspace
migration imaging technique. In Section 3, we analyze single- and multi-frequency subspace
migration imaging functions without any a priori information of thin inhomogeneities by establishing
a relationship with Bessel function of integer order of the first kind, discuss certain properties of
subspace migration, and introduce an improved subspace migration. In Section 4, several results
of numerical experiments with noisy data are presented to support our analysis. Finally, a short
conclusion is mentioned in Section 5.
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2. Direct Scattering Problem and Subspace Migration

2.1. Introduction to the Two-Dimensional Direct Scattering Problem

Let Γ be a thin, curve-like homogeneous inhomogeneity located within a two-dimensional
homogeneous space Ω ⊂ R2. Throughout this paper, we assume that Γ is localized in the neighborhood
of a finitely long, smooth curve σ such that

Γ = {x + ηn(x) : x ∈ σ,−h ≤ η ≤ h} , (1)

where n(x) is the unit normal to σ at x and h is a strictly positive constant that specifies the thickness
of the inhomogeneity (small with respect to the wavelength) (see Figure 1). Throughout this paper,
we denote t(x) as the unit tangent vector at x ∈ σ.

Figure 1. Sketch of the thin inhomogeneity Γ in two-dimensional space R2.

Throughout the paper, we assume that Γ is characterized by its dielectric permittivity and magnetic
permeability at a given angular frequency ω. Let 0 < ε0 < +∞ and 0 < µ0 < +∞ denote the
permittivity and permeability of the embedding space Ω, and 0 < ε? < +∞ and 0 < µ? < +∞ those
of the inhomogeneity Γ. Then, we can define the following piecewise constant dielectric permittivity
and magnetic permeability

ε(x) =

{
ε0 for x ∈ Ω\Γ
ε? for x ∈ Γ

and µ(x) =

{
µ0 for x ∈ Ω\Γ
µ? for x ∈ Γ,

respectively. Note that, if there is no inhomogeneity, i.e., in the homogeneous space, µ(x) and ε(x) are
equal to µ0 and ε0, respectively. In this paper, we set ε? > ε0 and µ? > µ0 for convenience but exact
values of ε? and µ? are assumed unknown.

At strictly positive angular frequency ω, we let k be the background wavenumber that satisfies
k2 = ω2ε0µ0 and utot(x; k) be the time-harmonic total field which satisfies the Helmholtz equation

∇ ·
(

1
µ(x)

∇utot(x; k)
)
+ ω2ε(x)utot(x; k) = 0 in Ω (2)

with transmission condition on the boundary ∂Γ. Similarly, the incident field uinc(x; k) satisfies the
homogeneous Helmholtz equation

4uinc(x; k) + k2uinc(x; k) = 0 in Ω.

Throughout this paper, we consider the illumination of plane waves

uinc(x; k) = exp(ikθ · x) for x ∈ Ω,

where θ is a two-dimensional vector, which characterizes the propagation direction, on the
two-dimensional unit circle centered at the origin S1. As is usual, the total field utot(x; k) divides
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itself into the incident field uinc(x; k) and the corresponding scattered field uscat(x; k) that satisfies
utot(x; k) = uinc(x; k) + uscat(x; k) and the following Sommerfeld radiation condition

lim
|x|→∞

√
|x|
(

∂uscat(x; k)
∂|x| − ikuscat(x; k)

)
= 0 uniformly in all directions ϑ =

x
|x| .

The far-field pattern u∞(ϑ, θ; k) of the scattered field uscat(x; k) is defined on the S1 that satisfies

u∞(ϑ, θ; k) =
exp(ik|y|)√

|y|
uscat(x; k) + o

(
1√
|y|

)
as |y| −→ ∞ uniformly on ϑ =

y
|y| .

Note that u∞(ϑ, θ; k) can be represented as the single-layer potential with unknown density
function ϕ(x, θ):

u∞(ϑ, θ; k) =
k2(1 + i)

4
√

kπ

∫
Γ

exp(−ikϑ · x)ϕ(x, θ)dx. (3)

The purpose of this kind of inverse scattering problem is to identify outline shape of Γ from a set
of measured far-field pattern data {u∞(ϑ j, θl ; k) : j, l = 1, 2, · · · , N} with various observation ϑ j and
incident θl directions. Since the structure of density function ϕ(x, θ) of Equation (3) is unknown, it is
very hard to design an algorithm for identifying Γ so that we need an approximation form of ϕ(x, θ).
Following Beretta and Francini [39], u∞(ϑ, θ; k) can be written as an asymptotic expansion formula.

Lemma 1 (Asymptotic expansion formula). For ϑ, θ ∈ S1 and x ∈ Ω\Γ, the far-field pattern u∞(x, θ; k)
can be represented as

u∞(ϑ, θ; k) = h
k2(1 + i)

4
√

kπ

∫
σ

(
ε? − ε0√

ε0µ0
− 2ϑ ·M(y) · θ

)
exp

(
ik(θ− ϑ) · y

)
dy + o(h). (4)

Here, M(y) is a 2× 2 symmetric matrix defined as follows: let t(y) and n(y) denote unit tangent and
normal vectors to σ at y, respectively. Then,

• M(y) has eigenvectors t(y) and n(y).

• The eigenvalues corresponding to t(y) and n(y) are 2
(

1
µ?
− 1

µ0

)
and 2

(
1

µ0
− µ?

µ2
0

)
, respectively.

2.2. Introduction to Subspace Migration for Imaging of Thin Inhomogeneity

Now, we introduce the traditional imaging function of subspace migration for identifying the
shape of Γ. A detailed description can be found in [30,33]. Let K(k) ∈ CN×N be the MSR matrix whose
elements are u∞(ϑ j, θl ; k) at observation direction ϑ j for the incident direction θl , j, l = 1, 2, · · · , N,
such that

K(k) =


u∞(ϑ1, θ1) u∞(ϑ1, θ2) · · · u∞(ϑ1, θN)

u∞(ϑ2, θ1) u∞(ϑ2, θ2) · · · u∞(ϑ2, θN)
...

...
. . .

...
u∞(ϑN , θ1) u∞(ϑN , θ2) · · · u∞(ϑN , θN)

 .

In this paper, we assume that ϑ j = −θj, i.e., we have the same incident and observation directions
configuration. It is worth emphasizing that, for a given wavenumber λ such that k = 2π/λ, based on
the resolution limit, any detail less than one-half of the wavelength cannot be retrieved. Hence, if we
divide thin inhomogeneity Γ into M different segments of size of order λ/2, only one point, say xm,
m = 1, 2, · · · , M, at each segment will affect the imaging (see [40,41]). If total number of incident
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and observation directions N is sufficiently large and N > 3M, the elements of MSR matrix can be
represented as follows:

u∞(ϑ j, θl ; k) = h
k2(1 + i)

4
√

kπ

∫
σ

(
ε? − ε0√

ε0µ0
− 2 (ϑ ·M(y) · θ)

)
exp

(
ik(θ− ϑ) · y

)
dy

≈ h
k2(1 + i)

4
√

kπ

|σ|
M

M

∑
m=1

[
ε? − ε0√

ε0µ0
+

(
1

µ?
− 1

µ0

)(
θj · t(ym)

)(
θl · t(ym)

)
+

(
1

µ0
− µ?

µ2
0

)(
θj · n(ym)

)(
θl · n(ym)

)]
exp

(
ik(θj + θl) · ym

)
,

(5)

where |σ| denotes the length of σ.
Based on the representation in Equation (5), K(k) can be decomposed as follows:

K(k) = H(k)B(k)H(k) =
3M

∑
m=1

τm(k)H(k)H(k), (6)

where B(k) ∈ R3M×3M is a block diagonal matrix with components

h
k2(1 + i)|σ|

4M
√

kπ


ε? − ε0√

ε0µ0
O1×2

O2×1 M(xm)


and H(k) ∈ CN×3M is written as

H(k) =
(
H1(k),H2(k), · · · ,HM(k)

)
.

Here, Op×q denotes the p× q zero matrix and vectors and

Hm(k) =
(

H(1)
m (k), H(2)

m (k), H(3)
m (k)

)

=


exp(ikθ1 · xm),

(
θ1 · t(xm)

)
exp(ikθ1 · xm),

(
θ1 · n(xm)

)
exp(ikθ1 · xm)

exp(ikθ2 · xm),
(
θ2 · t(xm)

)
exp(ikθ2 · xm),

(
θ2 · n(xm)

)
exp(ikθ2 · xm)

...
...

...
exp(ikθN · xm),

(
θN · t(xm)

)
exp(ikθN · xm),

(
θN · n(xm)

)
exp(ikθN · xm)

 .
(7)

Now, let us perform the Singular Value Decomposition (SVD) of K(k)

K(k) = U(k)S(k)V(k)T =
N

∑
m=1

ρm(k)Um(k)Vm(k)T ≈
3M

∑
m=1

ρm(k)Um(k)Vm(k)T ,

where ρm(k), m = 1, 2, · · · , 3M, are nonzero singular values such that

ρ1(k) ≥ ρ2(k) ≥ · · · ≥ ρ3M(k) > 0 and ρm(k) ≈ 0 for m ≥ 3M + 1,

and Um(k) and Vm(k) are left- and right-singular vectors of K(k), respectively. Based on the structure
of Equation (7), define a test vector T(z; k) ∈ CN×1 as

T(z; k) =
(

c1 · (1, θ1) exp(ikθ1 · z), c2 · (1, θ2) exp(ikθ2 · z), · · · , cN · (1, θN) exp(ikθN · z)
)T
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and corresponding unit vector

F(z; k) :=
T(z; k)
|T(z; k)| , (8)

where the selection of cn ∈ R3\ {0}, n = 1, 2, · · · , N, is depending on the t(xm) and n(xm), i.e., shape of
σ (see [41] for a detailed discussion). Then, for a proper choice of cn, we can observe that

Um(k) = exp(iγ(1)
m )F(ym; k) and Vm(k) ≈ exp(−iγ(2)

m )F(ym; k), γ
(1)
m + γ

(2)
m = arg(τm(k)).

Since singular vectors are orthonormal to each others, the first 3M columns of U(k) and V(k) are
orthonormal. Furthermore, since ρm(k) ∈ R, it follows that

〈F(z; k), Um(k)〉〈F(z; k), Vm(k)〉 ≈ 1 if z = ym

〈F(z; k), Um(k)〉〈F(z; k), Vm(k)〉 < 1 if z 6= ym,
(9)

where 〈a, b〉 = a · b for a, b ∈ C.
Hence, we can introduce subspace migration for imaging of thin inhomogeneity at a given

wavenumber k as

fSF(z; k) :=

∣∣∣∣∣ M

∑
m=1
〈F(z; k), Um(k)〉〈F(z; k), Vm(k)〉

∣∣∣∣∣ . (10)

Based on the properties in Equation (9), map of fSF(z; k) should exhibit peaks of magnitude 1 at
z = xm ∈ σ, and of small magnitude at z ∈ Ω\Γ. This is the reason thin inhomogeneity can be imaged
via subspace migration if a priori information of target is known.

3. Analysis of Subspace Migration without a Priori Information of Inhomogeneity

Based on the above, defining a vector T(z; k) in Equation (8) is very important to obtain a good
result. This means that a proper selection of test vectors cn seems to be considered beforehand.
Notice that, based on Equations (5) and (7), cn must be a linear combination of tangential t(xm) and
normal n(xm) vectors at xm ∈ σ. Unfortunately, because we have no a priori information of shape
of Γ, it is very hard to define an optimal vector T(z; k). Thus, cn is chosen as a fixed vector [41,42] or
selected from a set of various directions [33,43].

We now identify the structure of Equation (10) without consideration of shape of Γ. Since we have
no information of t(y) and n(y) for y ∈ σ, we cannot select cn of Equation (8) so that by neglecting cn

such that cn · (1, θn) = 1 for all n, we consider the following test vector

W(z; k) =
1√
N

(
exp(ikθ1 · z), exp(ikθ2 · z), · · · , exp(ikθN · z)

)T

, (11)

and consider the corresponding single-frequency imaging function of subspace migration

fSUB(z; k) :=

∣∣∣∣∣ M

∑
m=1
〈W(z; k), Um(k)〉〈W(z; k), Vm(k)〉

∣∣∣∣∣ . (12)

For starting analysis, we introduce two useful identities derived in [33].

Lemma 2. Let x = |x|(cos φ, sin φ)T , ξ = |ξ|(cos ξ, sin ξ)T ∈ R2, and θn = (cos θn, sin θn)T ∈ S1,
n = 1, 2, · · · , N. Then, the following relations hold uniformly:

1
N

N

∑
n=1

exp(ikθn · x) = J0(k|x|) +
2
π

∞

∑
s=1

is

s
Js(k|x|) cos

s(θN + θ1 − 2φ)

2
sin

s(ϑN − ϑ1)

2
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and

1
N

N

∑
n=1

(θn · ξ) exp(ikθn · x) = i
(

x
|x| · ξ

)
J1(k|x|) +

1
π

J0(k|x|) sin
ϑN − ϑ1

2
cos

θN + θ1 − 2ξ

2

+
i

2π
J1(k|x|) sin(θN − θ1) cos(θN + θ1 − ξ − φ)

+
1
π

∞

∑
s=2

is Js(k|x|)
[

1
1− s

sin
(1− s)(θN − θ1)

2
cos

(1− n)(θN + θ1) + 2sφ− 2ξ

2

+
1

1 + s
sin

(1 + s)(θN − θ1)

2
cos

(1 + s)(θN + θ1)− 2sφ− 2ξ

2

]
,

where Js(·) denotes the Bessel function of integer order s of the first kind.

3.1. Analysis of Single-Frequency Imaging Function

Based on Equation (11) and Lemma 2, we obtain the following main result.

Theorem 1. Let xm − z = |xm − z|(cos φm, sin φm)T , t(xm) = (cos ξ
(1)
m , sin ξ

(1)
m )T , n(xm) =

(cos ξ
(2)
m , sin ξ

(2)
m )T , and θn = (cos θn, sin θn)T ∈ S1. Then, for sufficiently large N > 3M, fSUB(z; k)

can be represented as follows:

fSUB(z; k) =

∣∣∣∣∣ M

∑
m=1

(
J0(k|xm − z|) + Ψ1(z; k)

)2

+
M

∑
m=1

(
√

2i
(

xm − z
|xm − z| ·

(
t(xm) + n(xm)

))
J1(k|xm − z|) + 1

π

2

∑
r=1

Ψ(r)
2 (z; k)

)2
∣∣∣∣∣∣ , (13)

where

Ψ1(z; k) =
2
π

∞

∑
s=1

is

s
Js(k|xm − z|) cos

s(θN + θ1 − 2φm)

2
sin

s(θN − θ1)

2

and

Ψ(r)
2 (z; k) =J0(k|xm − z|) sin

θN − θ1

2
cos

θN + θ1 − 2ξ
(r)
m

2

+
i
2

J1(k|xm − z|) sin(θN − θ1) cos
(
θN + θ1 − ξ

(r)
m − φ

)
+

∞

∑
s=2

is Js(k|xm − z|)
[

1
1− s

sin
(1− s)(θN − θ1)

2
cos

(1− n)(θN + θ1) + 2sφm − 2ξ
(r)
m

2

+
1

1 + s
sin

(1 + s)(θN − θ1)

2
cos

(1 + s)(θN + θ1)− 2sφm − 2ξ
(r)
m

2

]
.

Furthermore, if k −→ +∞, then

fSUB(z; k) = δ(xm − z),

where δ is the Dirac delta function.
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Proof. Since N is large, H(1)
m , H(2)

m and H(3)
m of Equation (7) are orthogonal to each other for all

m = 1, 2, · · · , M (see Appendix A). Then, by applying Equation (11) and Lemma 2, we can examine

fSUB(z; k) =

∣∣∣∣∣ 3M

∑
m=1
〈W(z; k), Um〉

〈
W(z; k), Vm

〉∣∣∣∣∣ ≈
∣∣∣∣∣ M

∑
m=1

3

∑
r=1

〈
W(z; k), Ĥ(r)

m (k)
〉2
∣∣∣∣∣ ,

where

Ĥ(1)
m (k) =

H(1)
m (k)

||H(1)
m (k)||

=
1√
N

H(1)
m (k),

Ĥ(2)
m (k) =

H(2)
m (k)

||H(2)
m (k)||

=

√
2√
N

H(2)
m (k),

Ĥ(3)
m (k) =

H(3)
m (k)

||H(3)
m (k)||

=

√
2√
N

H(3)
m (k).

Then, we can evaluate

〈
W(z; k), Ĥ(1)

m (k)
〉
=

1
N

N

∑
n=1

exp
(
ikθn · (xm − z)

)
= J0(k|xm − z|) + 2

π

∞

∑
s=1

is

s
Js(k|xm − z|) cos

s(θN + θ1 − 2φm)

2
sin

s(θN − θ1)

2
, (14)

〈
W(z; k), Ĥ(2)

m (k)
〉
=

√
2

N

N

∑
n=1

(
θn · t(xm)

)
exp

(
ikθn · (xm − z)

)
=
√

2i
(

xm − z
|xm − z| · t(xm)

)
J1(k|xm − z|) + 1

π
J0(k|xm − z|) sin

θN − θ1

2
cos

θN + θ1 − 2ξ
(1)
m

2

+
i

2π
J1(k|xm − z|) sin(θN − θ1) cos

(
θN + θ1 − ξ

(1)
m − φ

)
+

1
π

∞

∑
s=2

is Js(k|xm − z|)
[

1
1− s

sin
(1− s)(θN − θ1)

2
cos

(1− n)(θN + θ1) + 2sφm − 2ξ
(1)
m

2

+
1

1 + s
sin

(1 + s)(θN − θ1)

2
cos

(1 + s)(θN + θ1)− 2sφm − 2ξ
(1)
m

2

]
,

(15)

and〈
W(z; k), Ĥ(3)

m (k)
〉
=

√
2

N

N

∑
n=1

(
θn · n(xm)

)
exp

(
ikθn · (xm − z)

)
=
√

2i
(

xm − z
|xm − z| · n(xm)

)
J1(k|xm − z|) + 1

π
J0(k|xm − z|) sin

θN − θ1

2
cos

θN + θ1 − 2ξ
(2)
m

2

+
i

2π
J1(k|xm − z|) sin(θN − θ1) cos

(
θN + θ1 − ξ

(2)
m − φ

)
+

1
π

∞

∑
s=2

is Js(k|xm − z|)
[

1
1− s

sin
(1− s)(θN − θ1)

2
cos

(1− n)(θN + θ1) + 2sφm − 2ξ
(2)
m

2

+
1

1 + s
sin

(1 + s)(θN − θ1)

2
cos

(1 + s)(θN + θ1)− 2sφm − 2ξ
(2)
m

2

]
.

(16)

Hence, Equation (13) can be derived by Equations (14)–(16).
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Now, assume that k −→ +∞. Then, it is clear that fSUB(z; k) = 1 when z = xm. If z 6= xm, then the
following asymptotic form of Bessel function holds for k|xm − z| � |s2 − 0.25|,

Js(k|xm − z|) ≈
√

2
kπ|xm − z| cos

{
k|xm − z| − sπ

2
− π

4
+ O

(
1

k|xm − z|

)}
−→ 0,

where s denotes a positive integer. Based on this asymptotic form, we can easily observe that
fSUB(z; k) = 0 when z 6= xm. Hence,

fSUB(z; k) = δ(xm − z).

This completes the proof.

Based on the identified structure in Equation (13), we can examine certain properties of fSUB(z; k):

Property 1. The terms Ψ1(z; k) and Ψ(r)
2 (z; k) cause the generation of unexpected artifacts so that they must

be eliminated to obtain a good result. The simplest method is to apply even, large number N and select the set
of incident directions {θn : n = 1, 2, · · · , N} to satisfy θN − θ1 = 2π. This is the theoretical reason an even,
large number of incident and observation directions is selected and uniformly distributed on S1 in most studies.
If this condition is satisfied, fSUB(z; k) can be written by

fSUB(z; k) =

∣∣∣∣∣ M

∑
m=1

(
J0(k|xm − z|)2 − 2

(
xm − z
|xm − z| ·

(
t(xm) + n(xm)

))2

J1(k|xm − z|)2

∣∣∣∣∣ , (17)

Property 2. Based on recent work [41], the dominant eigenvectors of matrix M(x) are t(x) and n(x) for
µ? < µ0 and µ? > µ0, respectively. Generally (and based on our assumption), since µ? > µ0, fSUB(z; k) of
Equation (17) can be written as

fSUB(z; k) ≈
∣∣∣∣∣ M

∑
m=1

{
J0(k|xm − z|)2 − 2

(
xm − z
|xm − z| · n(xm)

)2
J1(k|xm − z|)2

}∣∣∣∣∣ .

Property 3. Since J0(0) = 1 and Jn(0) = 0 for n = 1, 2, · · · , the terms

J0(k|xm − z|)2 and 2
(

xm − z
|xm − z| · n(xm)

)2
J1(k|xm − z|)2

contribute to and disturb the detection of Γ, respectively.

Property 4. Based on the properties of J0(x) and J1(x), plots of fSUB(z; k) will show peaks of magnitude 1 at
z = xm ∈ Γ and a small one at z /∈ Γ. Note that, since J1(x)2 has its maximum value at two points, say x1 and
x2, symmetric with respect to x = 0, two curves with large (but less than 1) magnitude and many artifacts with
small magnitude will included in the map of fSUB(z; k). This tells us that one can recognize the shape of thin
inhomogeneities via the map of fSUB(z; k) without a priori information of the shape of the thin inhomogeneities.

Property 5. If one can increase the value of k, it will be possible to recognize the shape of thin inhomogeneities
very clearly. This means that application of high frequency will guarantee a good result but due to the oscillating
property of Bessel function, several artifacts will be included in the imaging result also. Note that fSUB(z; k) = 1
at z ∈ Γ for small value of k but due to the spreading effect of oscillation of J0, a result with very low resolution
will be obtained. Figure 2 shows the oscillation pattern of the Bessel function related to the applied frequency.
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Figure 2. Graphs of J0(ks|x|)2 for k1 = 2π/0.2 and k2 = 2π/5.

It is worth mentioning that, based on Property 3, fSUB(z; k) has its maximum value at z = xm ∈ Γ.
Hence, we can immediately examine following result of unique determination.

Corollary 1. Let the applied frequency ω be sufficiently high. If the total number N of incident and observation
directions is sufficiently large, then the shape of supporting curve σ of thin inclusion Γ can be obtained uniquely
via the map of fSUB(z; k).

3.2. Improvement of Imaging Performance Part 1: Filtering

Now, we consider the method of improvement. Based on the structure in Equation (13), we can
examine that good results can be obtained via the map of fSUB(z; k) when k −→ +∞. However, this is
a theoretically ideal situation. Hence, to obtain good results, an alternative method must be considered.

Based on Property 4, one can obtain good results by eliminating two curves with large magnitude
and correspondingly many artifacts with small magnitude. Hence, to design a filtering strategy, let us
consider the maximum value of the following term:

2
(

xm − z
|xm − z| · n(xm)

)2
J1(k|xm − z|)2.

Since J1(x)2 has its maximum at x ≈ 0.147, based on the numerical computation,

max
z∈Ω

J1(k|xm − z|)2 ≈ (0.58186522 . . .)2 ≈ 0.338567 and 2
(

xm − z
|xm − z| · n(xm)

)2
≤ 2,

we can say that

2
(

xm − z
|xm − z| · n(xm)

)2
J1(k|xm − z|)2 ≈ 0.677134268 . . . < 0.678.

This means that the magnitude of two curves in the neighborhood of Γ will be less than 0.678
(see Figure 3). Hence, let us introduce a filtering function FSF

FSF(x) =

{
x if 0.678 ≤ x ≤ 1

0 if 0 ≤ x < 0.678.

Then, better imaging results of thin inhomogeneity can be obtained via the map of FSF( fSUB(z; k)).
Note that this method can be applied in the imaging of single inhomogeneity (see Figure 9).
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Figure 3. Graphs of J0(k|x|)2 and 2J1(k|x|)2 for k = 2π/0.4.

Remark 1. Theoretically, the maximum value of fSUB(z; k) is equal to 1 but, generally, the maximum value
is smaller than 1 in the results of numerical simulations (see Figure 9). There are many reasons for this, e.g.,
the algorithm is based on the asymptotic expansion formula, the influence of random noise, and computational
errors. Thus, instead of FSF( fSUB(z; k)), we introduce the following normalized imaging function

fNSUB(z; k) :=
fSUB(z; k)

max
z∈Ω
| fSUB(z; k)|

and consider the filtered map FSF( fNSUB(z; k)) for identifying shape of inclusions.

3.3. Improvement of Imaging Performance Part 2: Application of Multi-Frequency

The authors of [30,33] confirmed that applying multi-frequency offers better results than
applying single frequency. However this fact holds with an optimal choice of cn in Equation (8).
Now, we consider the multi-frequency subspace migration and examine whether it improves
single-frequency one. Let {k f = 2π/λ f : f = 1, 2, · · · , F} be the set of F−different wavenumbers
such that

k1 < k2 < · · · < kF, i.e., λ1 > λ2 > · · · > λF,

and let K(k f ) be the collected MSR matrix at k f . Then, by performing SVD of K(k f ) as

K(k f ) = U(k f )S(k f )V(k f )
T =

N

∑
m=1

ρm(k f )Um(k f )Vm(k f )
T ≈

3M f

∑
m=1

ρm(k f )Um(k f )Vm(k f )
T ,

we can introduce multi-frequency subspace migration,

fMF(z; F) :=
1
F

∣∣∣∣∣ F

∑
f=1

fSF(z; k)

∣∣∣∣∣ = 1
F

∣∣∣∣∣∣
F

∑
f=1

M f

∑
m=1
〈F(z; k f ), Um(k f )〉〈F(z; k f ), Vm(k f )〉

∣∣∣∣∣∣ , (18)

and the corresponding multi-frequency subspace migration without a priori information,

fMSUB(z; F) :=
1
F

∣∣∣∣∣ F

∑
f=1

fSUB(z; k f )

∣∣∣∣∣ = 1
F

∣∣∣∣∣∣
F

∑
f=1

M f

∑
m=1
〈W(z; k f ), Um(k f )〉〈W(z; k f ), Vm(k f )〉

∣∣∣∣∣∣ , (19)

where F(z; k f ) and W(z; k f ) are defined in Equations (8) and (11), respectively.
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Based on the results in several works [29,30,37,38], Equation (18) is an improved imaging function
compared to Equation (10). Opposite to the statistical approach, we identify the reason of improvement
by establishing a relationship with Bessel functions of integer order as follows.

Theorem 2. For sufficiently large N(> 3M) and k, fMSUB(z; k) can be represented as follows:

fMSUB(z; F) ≈ 1
kF − k1

∣∣∣∣∣ M

∑
m=1

{
Φ(xm − z; kF)−Φ(xm − z; k1)

+

(
1− 2

(
xm − z
|xm − z| · n(xm)

)2
) ∫ kF

k1

J1(k|xm − z|)2dk
}∣∣∣∣∣ , (20)

where

Φ(x; k) := k
(

J0(k|x|)2 + J1(k|x|)2
)

.

Proof. For the sake of simplicity, we assume that M f = M for f = 1, 2, · · · , F, i.e., the difference
λ1−λF is small enough (in the numerical experiments, we set λ1 = 0.6 and λF = 0.3, i.e., λ1−λF = 0.3
is small enough; see Section 3). Then, based on the structure in Equation (13), we can say that

fMSUB(z; F) ≈ 1
F

∣∣∣∣∣ F

∑
f=1

M

∑
m=1

{
J0(k f |xm − z|)2 −

(
xm − z
|xm − z| ·

(
t(xm) + n(xm)

))2
J1(k f |xm − z|)2

}∣∣∣∣∣
≈ 1

kF − k1

∣∣∣∣∣ M

∑
m=1

{ ∫ kF

k1

J0(k|xm − z|)2dk−
(

xm − z
|xm − z| ·

(
t(xm) + n(xm)

))2 ∫ kF

k1

J1(k|xm − z|)2dk
}∣∣∣∣∣ .

Since the following relation holds for x ∈ R,

∫
J0(x)2dx = x

(
J0(x)2 + J1(x)2

)
+
∫

J1(x)2dx,

we can evaluate

∫ kF

k1

J0(k|xm − z|)2dk = kF

(
J0(kF|xm − z|)2 + J1(kF|xm − z|)2

)
− k1

(
J0(k1|xm − z|)2 + J1(k1|xm − z|)2

)
+
∫ kF

k1

J1(k|xm − z|)2dk.

with which we can obtain Equation (20).

Now, let us compare the results in Theorems 1 and 2. Based on the structures in Equations (13)
and (20), imaging functionals are composed with contributing and disturbing terms for imaging.
First, the contributing terms of Equations (13) and (20) are

J0(k|xm − z|) and
1

kF − k1

(
Φ(xm − z; kF)−Φ(xm − z; k1)

)
,

respectively. Since Φ(xm − z; kF) − Φ(xm − z; k1) oscillates less than J0(k|xm − z|) (see [33]),
the identified shape of the supporting curve via the map fMSUB(z; F) will be better than the one
via the map fSUB(z; k). Next, the disturbing terms of Equations (13) and (20) are

2
(

xm − z
|xm − z| · n(xm)

)2
J1(k|xm − z|)2 and

(
1− 2

(
xm − z
|xm − z| · n(xm)

)2
) ∫ kF

k1

J1(k|xm − z|)2dk,
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respectively. Similar to the comparison of contributing terms, we can observe that, since the term

∫ kF

k1

J1(k|xm − z|)2dk

oscillates less than J1(k|xm − z|)2 and the factor

1− 2
(

xm − z
|xm − z| · n(xm)

)2

will reduce magnitude of disturbing term, the disturbing term of Equation (20) will affect imaging
performance less than the one of Equation (13). Thus, we can conclude Corollary 2.

Corollary 2. Maps of multi-frequency subspace migration fMSUB(z; F) yields better imaging results owing
to less oscillation than single-frequency one fSUB(z; k). This means that unexpected artifacts in the map of
fMSUB(z; F) are mitigated when F is sufficiently large.

As in the single-frequency case, we can immediately conclude that the following result of
uniqueness holds.

Corollary 3. Suppose that the values of k f are sufficiently high. If the total number N of incident and observation
directions and total number F of applied frequencies are sufficiently large, then the shape of supporting curve σ

of thin inclusion Γ can be obtained uniquely via the map of fMSUB(z; F).

Remark 2 (Filtering). Similar to the case of single-frequency, let us consider the method of filtering. Since

max
z∈Ω

∣∣∣∣∣1− 2
(

xm − z
|xm − z| · n(xm)

)2
∣∣∣∣∣ = 1,

and
1
F

F

∑
f=1

J1(k f |z− xm|)2 ≈ 1
kF − k1

∫ kF

k1

J1(k|z− xm|)2dk ≤ 0.338567 ≈ 0.340

for multi-frequency imaging, we can define a filtering function such that

F(x) =

{
x if 0.340 ≤ x ≤ 1

0 if 0 ≤ x < 0.340.

Then, F( fMSUB(z; F)) will be an improved version of fMSUB(z; F).

Remark 3. Similar to Remark 1, in this paper, we consider the following normalized multi-frequency
imaging function

fNMSUB(z; F) :=
fMSUB(z; F)

max
z∈Ω
| fMSUB(z; F)|

and consider the filtered map F( fNMSUB(z; F)) instead of fMSUB(z; F).
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4. Results of Numerical Simulations

In this section, we exhibit some results of numerical simulations to support Theorems 1 and 2.
To describe thin inclusions Γj, j = 1, 2, two supporting smooth curves are selected as follows:

σ1 = {(s− 0.2,−0.5s2 + 0.4)T : −0.5 ≤ s ≤ 0.5}
σ2 = {(s + 0.2, s3 + s2 − 0.6)T : −0.5 ≤ s ≤ 0.5}.

The thickness h of thin inclusions Γj is equally set to 0.015 and the imaging domain Ω is selected
as Ω = [−1, 1]× [−1, 1]. We denote ε j and µj as the permittivity and permeability of Γj, respectively,
and set parameters µj, µ0, ε j, and ε0 as 5, 1, 5, and 1, respectively. Since µ0 and ε0 are set to unity,
the applied frequencies reads as k f = 2π/λ f at wavelength λ f for f = 1, 2, · · · , F(= 10), which is
varied in the numerical examples between λ1 = 0.6 and λ10 = 0.3. For single frequency imaging,
k = 2π/0.4 is applied. Total number of incident and observation directions is set to N = 32 and

ϑn = −θn =

(
cos

2(n− 1)π
N

, sin
2(n− 1)π

N

)
, n = 1, 2, · · · , N.

Figure 4 shows an illustration of Γj and ϑn. The far-field pattern data u∞(ϑ j, θl ; k) is generated by
solving a second-kind Fredholm integral equation along the supporting curve, linked to the thinness of
the inclusion [44]. To show robustness, 15 dB Gaussian random noise is added to the unperturbed data.
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Figure 4. Illustration of thin inhomogeneities (black-colored solid lines) and observation directions
(red-colored circles).

Example 1. First, let us examine the effect of the selection cn of Equation (8). Figure 5 shows maps of
fSF(z; k) for cn = (1, 1, 0)T , cn = (1, cos(45◦), sin(45◦))T , and cn = (1, cos(30◦), sin(30◦))T when the thin
inhomogeneity is Γ1. Throughout the result, we can observe that one cannot identify the shape of Γ1 at this
moment. Note that, based on Property 1, the dominant eigenvectors are n(xm), thus cn must be of the form
(1, n(xm)T)T . Hence, from now on, we apply cn = (1, 0, 1)T for fSF(z; k).
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Figure 5. (Example 1) Maps of fSF(z; k) when the thin inhomogeneity is Γ1.

Example 2. Now, let us consider the imaging results of fSF(z; k), fSUB(z; k), and F( fNSUB(z; k)). On the
basis of the results in Figure 6, we can observe that the shape of Γ1 can be recognized via the maps of fSF(z; k)
and fSUB(z; k) but the imaging seems rather coarse for the traditional method fSF(z; k), better for the proposed
one fSUB(z; k). Furthermore, F( fNSUB(z; k)) exhibits very accurate shape of Γ1 so that suggested filtering
method seems very effective.
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(a) Map of fSF(z; k)
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(b) Map of fSUB(z; k)
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(c) Map of F( fNSUB(z; k))

Figure 6. (Example 2) Imaging results when the thin inhomogeneity is Γ1.

Example 3. Here, we examine the effect of total number of incident and observation direction N for imaging of
fSUB(z; k). From the results in Figure 7a, we can see that the shape of Γ1 cannot be recognized when N is even
but small. If one wants to recognize the shape, as discussed for Property 1, N must be increased, but, if N is an
odd, the map of fSUB(z; k) contains some unexpected artifacts (see Figure 7b). To remove the artifacts, a large N
must be applied (see Figure 7c), and this result supports the theoretical result and Property 1.
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(b) N = 17
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Figure 7. (Example 3) Maps of fSUB(z; k) when the thin inhomogeneity is Γ1.

Example 4. Maps of fSF(z; k), fSUB(z; k), and F( fNSUB(z; k)) are shown in Figure 8 when the thin
inhomogeneity is Γ2. Similar to the results in Figure 6, the shape of Γ1 can be recognized but the obtained shape
of Γ1 via fSUB(z; k) looks like an anchor due to the appearance of unexpected artifacts. Although some artifacts
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are still visible, the result via fSUB(z; k) seems better than the one via fSF(z; k). Similar to the previous result,
the filtering method still seems effective.
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(a) Map of fSF(z; k)
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(b) Map of fSUB(z; k)
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(c) Map of F( fNSUB(z; k))

Figure 8. (Example 4) Imaging results when the thin inhomogeneity is Γ2.

Example 5. It is well-known that one of advantage of subspace migration is its straightforward application to
the imaging of multiple inhomogeneities. Figure 9 shows the maps of fSF(z; k), fSUB(z; k), and F( fNSUB(z; k))
for imaging multiple thin inhomogeneities Γ1 ∪ Γ2 with the same permittivity ε1 = ε2 = 5 and permeability
µ1 = µ2 = 5. Similar to the imaging of single inhomogeneity, we can observe that fSUB(z; k) is an effective
method. However, due to the appearance of artifacts, it is hard to identify true shape of inhomogeneities.
Thus, in contrast to the imaging of single inhomogeneity, filtering method is not effective for imaging of
multiple inhomogeneities.
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Figure 9. (Example 5) Imaging results when the thin inhomogeneities are Γ1 ∪ Γ2 with same
permittivities and permeabilities.

Example 6. Figure 10 shows the maps of fSF(z; k), fSUB(z; k), and F( fNSUB(z; k)) under the same
configuration as the previous result in Figure 9, except for different material properties, ε1 = µ1 = 10
and ε2 = µ2 = 5. Then, based on the results in [31,41], the values of fSF(z; k) and fSUB(z; k) for z ∈ Γ2 are
smaller than fSF(z; k) and fSUB(z; k) for z ∈ Γ1, respectively. Furthermore, due to the unexpected artifacts,
the shape of Γ2 cannot be identified, while Γ1 can be identified. Correspondingly, only the shape of Γ1 can be
identified in the map of F( fNSUB(z; k)).

Example 7. From now on, we consider the multi-frequency imaging. Maps of fMF(z; F), fMSUB(z; F),
and F( fNMSUB(z; F)) are exhibited in Figure 11 when the thin inhomogeneity is Γ1. Although the map
of fMSUB(z; F) contains more artifacts than fMF(z; F), the identified shape via the map of fMSUB(z; F) seems
close to the true shape of Γ1. It is interesting to observe that, opposite to Remark 2, the unexpected peak of small
(but cnon-negligible) magnitude remains in the neighborhood of the tip of Γ1 but the result seems very nice.
A similar phenomenon can be examined through the results in Figure 12 when the thin inhomogeneity is Γ2.
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(c) Map of F( fNSUB(z; k))

Figure 10. (Example 6) Imaging results when the thin inhomogeneities are Γ1 ∪ Γ2 with different
permittivities and permeabilities.

x−axis

y
−

a
x
is

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Map of fMF(z; F)
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(c) Map of F( fNMSUB(z; F))

Figure 11. (Example 7) Imaging results when the thin inhomogeneity is Γ1.
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(b) Map of fMSUB(z; F)

x−axis

y
−

a
x
is

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Map of F( fNMSUB(z; F))

Figure 12. (Example 7) Imaging results when the thin inhomogeneity is Γ2.

Example 8. Figure 13 shows the maps of fMF(z; F), fMSUB(z; F), and F( fNMSUB(z; F)) for imaging multiple
thin inhomogeneities Γ1 ∪ Γ2 with same permittivity ε1 = ε2 = 5 and permeability µ1 = µ2 = 5. Similar to the
single-frequency imaging, it seems that fMSUB(z; F) performs better imaging accomplishment than fMF(z; F).
However, due to the appearance of artifacts, it is hard to identify true shape of inhomogeneities. Furthermore,
in contrast to the single-frequency imaging, the filtering method seems very effective for imaging, although some
peaks of small magnitudes remain.

Example 9. Figure 14 shows the maps of fMF(z; F), fMSUB(z; F), and F( fNMSUB(z; F)) under the same
configuration as the previous result in Figure 13, except for different material properties, ε1 = µ1 = 10
and ε2 = µ2 = 5. Similar to the previous example, fMSUB(z; F) can be regarded as an improved version of
fMF(z; F).
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(c) Map of F( fNMSUB(z; F))

Figure 13. (Example 8) Imaging results when the thin inhomogeneities are Γ1 ∪ Γ2 with same
permittivities and permeabilities.
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(c) Map of F( fNMSUB(z; F))

Figure 14. (Example 9) Imaging results when the thin inhomogeneities are Γ1 ∪ Γ2 with different
permittivities and permeabilities.

Example 10. For the final example, let us consider the application of filtering for imaging of multiple
inhomogeneities when their permittivities and permeabilities are different to each other. A simple method
is to divide the search domain into two (or more) disjoint areas and applying the filtering function to each area.
Figure 15 shows corresponding results. By comparing the results in Figures 10 and 12, the identified shapes are
more accurate than the traditional ones.
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Figure 15. (Example 10) Imaging results when the thin inhomogeneities are Γ1 ∪ Γ2.

5. Conclusions

In this paper, we consider the subspace migration imaging functional without any a priori
information of thin inhomogeneities. We derive a relationship between the imaging functional
and the Bessel functions of integer order of the first kind. By comparing with traditional research,
the results obtained are not considered to be better than the ones of previous studies conducted with
a priori information of inhomogeneities. Nevertheless, the derived results indicate that, although
some unexpected artifacts appear, it is possible to identify the outline shape of thin electromagnetic
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inhomogeneities without any a priori information. Furthermore, based on the established theoretical
results, the designed filtering technique will be effective to remove unnecessary artifacts in the imaging
results. For a further improvement, a multi-frequency based imaging algorithm is also suggested and
successfully applied.

Here, we focus on the imaging of thin, curve-like electromagnetic inhomogeneities. In the same
line of thought, the analysis of subspace migration for the imaging of perfectly conducting cracks
in Transverse Magnetic (TM) and Transverse Electric (TE) cases would be an interesting research
topic. In this paper, we consider an imaging of a two-dimensional thin electromagnetic inclusions.
In three-dimensional microwave imaging, the measurement data (scattering parameter) in the presence
of small object Σ can be approximated by

Sscat(m, n) =
ik2

4ωµ0

∫
Ω

(
ε(r)− ε0

ε0
+ i

σ(r)− σ0

ωε0

)
Einc(rn, r) · Etot(r, rm)dr

≈ ik2area(Σ)
4ωµ0

(
ε? − ε0

ε0
+ i

σ? − σ0

ωε0

)
Einc(rn, r?) · Einc(rm, r?),

(21)

where Etot ∈ C3 and Einc ∈ C3 denote the total and incident fields, respectively; rn is the nth signal
transmitter or receiver; and σ? and σ0 are conductivities of Σ and Ω, respectively (see [35,36,45]. As we
can see, Equation (21) has some similarities to Equation (4). Hence, we expect that the analysis could
be extended to a three-dimensional inverse scattering problem and microwave imaging. Following
Park [32], subspace migration is successfully applied to the half-space problem. The application to the
detection of anti-personnel mines buried in the ground or cracks in concrete walls or bridges would be
also an interesting research subject.

Appendix A. Orthogonality of H(s)
m , S = 1, 2, 3, and Their Norms

Assume that N is sufficiently large. Then,

〈
H(1)

m (k), H(2)
m (k)

〉
=

N

∑
n=1

√
2
(
θn · t(xm)

)
=

N√
2π

∫
S1

(
θn · t(xm)

)
dθ =

√
2
∫ 2π

0
cos(θ + ϕm)dθ = 0,

H(1)
m (k) is orthogonal to H(2)

m (k) and similarly orthogonal to H(3)
m (k). Furthermore, if t(xm) =

(cos ϕm, sin ϕm)T , then, since n(xm) = (− sin ϕm, cos ϕm)T ,

〈
H(2)

m (k), H(3)
m (k)

〉
=

N

∑
n=1

√
2
(
θn · t(xm)

)√
2
(
θn · n(xm)

)
=

N
π

∫
S1

(
θn · t(xm)

)(
θ, n(xm)

)
dθ

=
N
π

∫ 2π

0
cos(θ − ϕm) sin(θ − ϕm)dθ =

N
2π

∫ 2π

0
sin(2θ − 2ϕm)dθ = 0.

Hence, H(2)
m (k) is orthogonal to H(3)

m (k).
Based on Equation (7), it is easy to observe that

||H(1)
m (k)||2 =

〈
H(1)

m (k), H(1)
m (k)

〉
= N.

Since N is sufficiently large,

||H(2)
m (k)||2 =

〈
H(2)

m (k), H(2)
m (k)

〉
=

N

∑
n=1

(
θn · t(xm)

)2
=

2N
π

∫
S1

(
θn · t(xm)

)2dθ.
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Performing an elementary calculus yields

∫
S1

(
θn · t(xm)

)2dθ =
∫ 2π

0
cos2(θ − ϕm)dθ =

[
1
4

sin(2θ − 2ϕm) +
1
2
(θ − ϕm)

]2π

0
= π.

Hence,

||H(2)
m (k)||2 =

〈
H(2)

m (k), H(2)
m (k)

〉
=

N
2

and similarly,

||H(3)
m (k)||2 =

〈
H(3)

m (k), H(3)
m (k)

〉
=

N
2

.
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