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Abstract

:

The concepts of b-metric spaces and   ω t  -distance mappings play a key role in solving various kinds of equations through fixed point theory in mathematics and other science. In this article, we study some fixed point results through these concepts. We introduce a new kind of function namely,  H -simulation function which is used in this manuscript together with the notion of   ω t  -distance mappings to furnish for new contractions. Many fixed point results are proved based on these new contractions as well as some examples are introduced. Moreover, we introduce an application on matrix equations to focus on the importance of our work.
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1. Introduction


Let  U  be a non empty set and   f : U → U   be a self mapping. A point    u ′  ∈ U   is called a fixed point of f if   f  u ′  =  u ′   . If d is a metric on  U , then f is said to be contraction if there is   η ∈ [ 0 , 1 )   such that   d  ( f  u 1  , f  u 2  )  ≤ η d  (  u 1  ,  u 2  )   , for each    u 1  ,  u 2  ∈ U .  



The novelty of fixed point theory in distance spaces appeared in 1922 by Banach [1] and known later by Banach contraction principle which asserts that a contraction on a complete metric space has a unique fixed point. Subsequently, several generalizations for this result are investigated, either by modifying the contraction conditions or by changing the setting of the distance spaces, for example see [2,3,4,5,6,7,8,9,10,11,12,13,14].



One well known generalization of metric spaces is b-metric spaces which were introduced by Bakhtin [15] and improved and named by Czerwik [16]. Then, it is used to investigate many fixed point results in the literature. This generalization enriched the fixed point theory in various ways: theorems, applications and many results. On the other hand, some authors generalized the notion of b-metric spaces to some spaces such as extended b-metric spaces, extended quasi b-metric spaces and   ω t  -distance mappings which were introduced by Kamran et al. [17], Nurwahyu [18] and Hussain et al. [19], respectively. For a deeper knowledge concerning distance spaces and fixed point theory and functional analysis, we refer the reader to [20,21,22]



Henceforth, we consider the following notations:  R  the set of reals,  N  the set of naturals,  C  the set of complex numbers,    M n   ( C )    the set of all   n × n   matrices with complex entries and for a self mapping   f : U → U  ,   F f   the set of all fixed points of f in  U .




2. Preliminary


The definition of b-metric spaces is given as following:



Definition 1.

[15] A function   b : U × U → [ 0 , + ∞ )   is said to be b-metric if there is   s ∈ [ 1 , + ∞ )   such that b satisfies:




	(b1) 

	
  b (  u 1  ,  u 2  ) = 0   iff    u 1  =  u 2   ,




	(b2) 

	
  b  (  u 1  ,  u 2  )  = b  (  u 2  ,  u 1  )  ,   for all    u 1  ,  u 2  ∈ U  ,




	(b3) 

	
  b  (  u 1  ,  u 2  )  ≤ s  [ b  (  u 1  ,  u 2  )  + b  (  u 2  ,  u 3  )  ]  ,   for all    u 1  ,  u 2  ,  u 3  ∈ U  .









The pair   ( U , b , s )   is called a b-metric space.





The notion of   ω t  -distance mapping was introduced by Hussain et al. [19] in 2014 and given as following:



Definition 2.

[19] A function   ω : U × U → [ 0 , + ∞ )   is said to be an   ω t  -distance over a b-metric space   ( U , b , s )   if ω satisfies:




	(ω1) 

	
  ω  (  u 1  ,  u 2  )  ≤ s  [ ω  (  u 1  ,  u 2  )  + ω  (  u 2  ,  u 3  )  ]  ,   for all    u 1  ,  u 2  ,  u 3  ∈ U  ,




	(ω2) 

	
  ω  ( . ,  u   ′   )  →  [ 0 , + ∞ )    is s-lower semi-continuous for all    u   ′   ∈ U  ,




	(ω3) 

	
for any   ϵ > 0  , there is   γ > 0   such that


   ω  (  u 1  ,  u 2  )  ≤ γ  and  ω  (  u 1  ,  u 3  )  ≤ γ  i m p l y  b  (  u 2  ,  u 3  )  ≤ ϵ .   



















From now on,   ( U , b , s )   is referred to a b-metric space, and  ω  is referred to an   ω t  -distance mapping over   ( U , b , s )  .



It is obviously that, every b-metric is an   ω t  -distance mapping.



Lemma 1.

[19] On   ( U , b , s )  , suppose we have two sequences   (  u n  )   and   (  v n  )   in  U . Let   (  λ n  )   and (   β n   )    be sequences in   [ 0 , + ∞ )   such that    λ n  → 0   and    β n  → 0  . Then:




	1. 

	
If   ω  (  u n  , u )  ≤  λ n    and   ω  (  u n  , v )  ≤  β n    for all   n ∈ N  , then   u = v  .




	2. 

	
If   ω  (  u n  ,  v n  )  ≤  λ n    and   ω  (  u n  , v )  ≤  β n    for all   n ∈ N  , then   b (  v n  , v ) → 0  .




	3. 

	
If   ω  (  u n  ,  u m  )  ≤  λ n    for all   n , m ∈ N   with   m > n  , then   u n   is a Cauchy sequence.




	4. 

	
If   ω  ( u ,  u n  )  ≤  λ n    for all   n ∈ N  , then   u n   is a Cauchy sequence.











Definition 3.

[23] Let Φ denote the set of all functions   ϕ : [ 1 , + ∞ ) → [ 1 , + ∞ )   that satisfy:




	
  (  Φ 1  )   ϕ is non decreasing and continuous on   [ 1 , + ∞ )  ,



	
  (  Φ 2  )   for all     u ′  > 1  ,     lim  n → + ∞    ϕ n   (  u ′  )  = 1   .










Remark 1.

[23] If   ϕ ∈ Φ  , then   ϕ ( 1 ) = 1   and   ϕ  (  u ′  )  <  u ′    for all    u ′  > 1  .





Definition 4.

[24] Let   Θ *   denotes the set of all functions    θ *  :  ( 0 , + ∞ )  →  ( 1 , + ∞ )    that satisfies:




	
  (  Θ 1 *  )   θ is non decreasing and continuous on   ( 0 , + ∞ )  ,



	
  (  Θ 2 *  )   for each sequence   {  u n   ′   }   in   ( 0 , + ∞ )  ,     lim  n → + ∞    θ *   (  u n   ′   )  = 1    if and only if     lim  n → + ∞    t n  = 0   ,



	
  (  Θ  3  *  )   there exist   α ∈ ( 0 , 1 )   and   γ ∈ ( 0 , + ∞ )   such that     lim  υ →  0 +       θ *   ( u )  − 1   u α   = γ   .










In this manuscript, we consider the class  Θ  to be defined as following:



Definition 5.

Let Θ denote the set of all continuous functions   θ : [ 0 , + ∞ ) → [ 1 , + ∞ )   that satisfy:




	
  (  Θ 1  )   θ is non decreasing on   [ 0 , + ∞ )  ,



	
  (  Θ 2  )   for each sequence   {  u n   ′   }   in   [ 0 , + ∞ )  ,     lim  n → + ∞   θ  (  u n   ′   )  = 1    if and only if     lim  n → + ∞    t n  = 0   .










Remark 2.

If   θ ∈ Θ  , then    θ  − 1    (  { 1 }  )  = 0 .  





In 2015, Khojasteh et al. [25] introduced the concept of simulation functions in which they used it to unify several fixed point results in the literature. Then, significant results in fixed point theory using simulation functions were obtained, for example see [26,27,28,29,30,31,32]



Definition 6.

[25] A function    ζ *  :  [ 0 , + ∞ )  ×  [ 0 , + ∞ )  → R   is called a simulation function if it satisfies the following:




	
   (  ζ 1 *  )       ζ *   ( 0 , 0 )  = 0 ,   



	
  (  ζ 2 *  )     ζ *   (  u 1  ,  u 2  )  <  u 1  −  u 2    for all    u 1  ,  u 2  > 0  ,



	
  (  ζ 3 *  )   If   (  u n  )   and   (  u n ′  )   are sequences in   [ 0 , + ∞ )   such that     lim  n → + ∞    u n  =  lim  n → + ∞    u n ′  > 0   , then     lim sup  n → + ∞    ζ *   (  u n  ,  u n ′  )  <    0.










Seong-Hoon Cho [33] introduced the following class of functions, namely  L -simulation functions and some new type of contractions by using  L -simulation functions:



Definition 7.

A function    ζ   ′   :  [ 1 , + ∞ )  ×  [ 1 , + ∞ )  → R   is called  L -simulation function if it satisfies the following:




	
(  ζ 1   ′   )    ζ   ′    ( 1 , 1 )  = 1  ,



	
(  ζ 2   ′   )    ζ   ′    ( u ,  u ′  )  <   u ′  u   ,



	
(  ζ 3   ′   ) For each sequences    (  u n  )  ,  (  u n ′  )    in   ( 1 , + ∞ )  , with    u n  ≤  u n ′    for all   n ∈ N      lim  n → + ∞    u n  =  lim  n → + ∞    u n ′  > 1    implies     lim sup  n → + ∞    ζ   ′    (  u n  ,  u n ′  )  < 1   .











3. Main Results


We begin our work with the definition of  H -simulation functions and some examples on this notion. Then, we introduce the notion of   ( ω t , θ , ϕ )  -contractions with respect to   μ ∈ H   to derive some results.



Definition 8.

A function   μ : [ 1 , + ∞ ) × [ 1 , + ∞ ) → R   is called  H -simulation if   μ  ( u ,  u ′  )  ≤   u ′  u    for all   u ,  u ′  ∈  [ 1 , + ∞ )  .  





We denote by  H  the set of all  H -simulation functions.



Remark 3.

Let   μ ∈ H  . If    (  u n  )  ,  (  u n ′  )    are sequences in   [ 1 , + ∞ )   with    1 ≤  lim  n → + ∞    u n ′  <  lim  n → + ∞    u n    , then     lim sup  n → + ∞   μ  (  u n  ,  u n ′  )  < 1 .   





Now, we provide some examples on  H -simulation functions.



Example 1.

The following functions belong to  H :




	1. 

	
    μ 1   (  u 1  ,  u 2  )  =   k  u 2 r    u 1     ,   k , r ∈ ( 0 , 1 ] ,  




	2. 

	
    μ 2   (  u 1  ,  u 2  )  =   min {  u 1  ,  u 2  }   max {  u 1  ,  u 2  }     ,




	3. 

	
    μ 3   (  u 1  ,  u 2  )  =   u 2    u 1  +  | ln  (   u 2   u 1   )  |      ,




	4. 

	
    μ 4   (  u 1  ,  u 2  )  =   u 2    u 1  +   u 2       ,




	5. 

	
    μ 5   (  u 1  ,  u 2  )  =   u  2  2   1 +  u 1   u 2      ,




	6. 

	
Let    f 1  ,  f 2  :  ( 0 , + ∞ )  →  ( 0 , + ∞ )    be continuous functions such that    f 1   ( r )  < r ,   and    f 2   ( r )  ≥ r  , for each   r ∈ ( 0 , + ∞ )  . Define     μ 6   (  u 1  ,  u 2  )  =    f 1   (  u 2  )     f 2   (  u 1  )    .   











Note: Every  L -simulation function is  H -simulation while the converse isn’t true in general as we can see in the following example.



Example 2.

Consider the function   μ : [ 1 , + ∞ ) × [ 1 , + ∞ ) → R   which is defined as


   μ  (  u 1  ,  u 2  )  = 1 + ln    u 2   u 1    .   











Then   μ ∈ H   and   μ ∉ L  .



Clearly   μ  (  u 1  ,  u 2  )  ≤   u 2   u 1     for all    u 1  ,  u 2  ∈  [ 1 , + ∞ )    and so,   μ ∈ H .  



To show that   μ ∉ L  , consider the sequences    (  u n  )  ,  (  u n   ′   )    in   ( 1 , + ∞ )   such that    u n  =   2 n + 3   n + 1    , and    u n   ′   =   2 n + 1  n   . Then    u n  ≤  u n   ′     for all   n ∈ N   and     lim  n → + ∞    u n  =  lim  n → + ∞    u n   ′   = 2 ,    while







	     lim sup  n → + ∞   ζ  (  u n  ,  u n   ′   )     
	    =  lim sup  n → + ∞    1 + ln     2 n + 1  n    2 n + 3   n + 1         



	
	



	
	    = 1 + ln   lim sup  n → + ∞      2  n 2  + 3 n + 1   2  n 2  + 3 n        



	
	   = 1 .   










Note:    μ 2  ,  μ 3  ,  μ 4  ,  μ 5    and   μ 6   described in Example 1 are not members of  L .



Definition 9.

Suppose there is ω over   ( U , b , s )   with   s ∈ [ 1 , + ∞ )  . A self mapping



  f : U → U   is said to be   ( ω t , θ , ϕ )  -contraction with respect to μ if there exist   θ ∈ Θ   and   ϕ ∈ Φ   such that


   μ  ( θ  ( s ω  ( f  u 1  , f  u 2  )  )  , ϕ θ ω  (  u 1  ,  u 2  )  )  ≥ 1   f o r  a l l    u 1  ,  u 2  ∈ U .   



(1)









Lemma 2.

If f is   ( ω t , θ , ϕ )  -contraction, then for all    u 1  ,  u 2  ∈ U ,   we have the following:




	1. 

	
  ω (  u 1  ,  u 2  ) > 0   implies that   ω  ( f  u 1  , f  u 2  )  <  1 s  ω  (  u 1  ,  u 2  )  ,  




	2. 

	
  ω (  u 1  ,  u 2  ) = 0   implies that   ω ( f  u 1  , f  u 2  ) = 0 .  











Proof. 

(1) Suppose   ω (  u 1  ,  u 2  ) > 0  . Then Condition 1 implies that







	1
	  ≤ μ ( θ  ( s ω  ( f  u 1  , f  u 2  )  , ϕ θ ω  (  u 1  ,  u 2  )  )   



	
	   ≤   ϕ θ ω (  u 1  ,  u 2  )   θ ( s ω  ( f  u 1  , f  u 2  )  )     



	
	



	
	   <   θ ω (  u 1  ,  u 2  )   θ ( s ω  ( f  u 1  , f  u 2  )  )   .   



	
	








So   θ  ( s ω  ( f  u 1  , f  u 2  )  )  < θ ω  (  u 1  ,  u 2  )  .   Since  θ  is non-decreasing, we have   s ω  ( f  u 1  , f  u 2  )  < ω  (  u 1  ,  u 2  )    and so, we get the result.



(2) Suppose   ω (  u 1  ,  u 2  ) = 0  . By Condition 1, we have


  1 ≤ θ  ( s ω  ( f  u 1  , f  u 2  )  )  ≤ ϕ θ ω  (  u 1  ,  u 2  )  = 1 .  











Hence the result. □





Lemma 3.

Suppose there is ω over   ( U , b , s )   with   s ∈ [ 1 , + ∞ )  . Let   f : U → U   be an   ( ω , θ , ϕ )  -contraction with respect to   μ ∈ H  . Then   F f   contains at most one element.





Proof. 

Assume that there are   u , v ∈  F f   . First, we claim that   ω ( u , v ) = 0  . If   ω ( u , v ) > 0  , then Lemma 2 implies that


  ω  ( u , v )  = ω  ( f u , f v )  <  1 s  ω  ( u , v )  .  








a contradiction and so   ω ( u , v ) = 0  . Similarly, we can get that   ω ( u , u ) = 0  .   b ( u , v ) = 0   and hence   u = v  . □





On  U , let    u 0  ∈ U   and   f : U → U   be a self mapping. Then we call the sequence   (  u n  )  , where    u n  = f  u  n − 1   ,  n ∈ N   the Picard sequence generated by f at    u 0  .  



Lemma 4.

Suppose there is ω over   ( U , b , s )   with   s ∈ [ 1 , + ∞ )  . Let   f : U → U   be an   ( ω , θ , ϕ )  -contraction with respect to   μ ∈ H  . Then


    lim  n → + ∞   ω  (  u n  ,  u  n + 1   )  = 0   a n d    lim  n → + ∞   ω  (  u  n + 1   ,  u n  )  = 0   



(2)







for any initial point    u 0  ∈ U  , where   (  u n  )   is the Picard sequence generated by f at   u 0  .





Proof. 

Let   (  u n  )   be the Picard sequence generated by f at   u 0  . If there is   M ∈ N   such that   ω (  u M  ,  u  M + 1   ) =   0, then by Lemma 2, we get that   ω (  u n  ,  u  n + 1   ) = 0   for all   n ≥ M  .



Assume that   ω (  u n  ,  u  n + 1   ) > 0   for all   n ∈ N  . By Lemma 2, we have


  ω  (  u n  ,  u  n + 1   )  <  1 s  ω  (  u  n − 1   ,  u n  )  .  











Thus   ( ω  (  u n  ,  u  n + 1   )  : n ∈ N )   is a non increasing sequence in   [ 0 , + ∞ )  . There is    c 0  ≥ 0   such that     lim  n → + ∞   ω  (  u n  ,  u  n + 1   )  =  c 0    . Suppose to the contrary; that is,    c 0  > 0  . Let    a n  = θ s ω  (  u n  ,  u  n + 1   )    and    b n  = ϕ θ ω  (  u  n − 1   ,  u n  )  .   Then    1 ≤  lim  n → + ∞    b n  <  lim  n → + ∞    a n    . By (1) and Remark 3, we have


  1 ≤  lim sup  n → + ∞   ζ  ( θ s ω  (  u n  ,  u  n + 1   )  , ϕ θ ω  (  u  n − 1   ,  u n  )  )  < 1 ,  








a contradiction.     lim  n → + ∞   ω  (  u n  ,  u  n + 1   )  = 0   . By the same way we can show that     lim  n → + ∞   ω  (  u  n + 1   ,  u n  )  =    0. □





Lemma 5.

Suppose there is ω over   ( U , b , s )   with   s ∈ [ 1 , + ∞ )  . Let   f : U → U   be an   ( ω , θ , ϕ )  -contraction with respect to   μ ∈ H  . If there is    n 0  ∈ N   with   ω (  u  n 0   ,  u   n 0  + 1   ) = 0 ,   then    u   n 0  + 1   ∈  F f   . In addition, if there is    n 0  ∈ N   with   ω (  u   n 0  + 1   ,  u  n 0   ) = 0  , then    u  n 0   ∈  F f   .





Proof. 

The proof follows from part (a) and part (c) of the definition of  ω . □





Theorem 1.

Suppose   ( U , b , s )   is complete with base   s ∈ [ 1 , + ∞ )  . Suppose that there are   θ ∈ Θ   and   ϕ ∈ Φ   such that   f : U → U   is an   ( ω , θ , ϕ )  -contraction with respect to   μ ∈ H   such that:


   If   ν ∈ X   with   f ν ≠ ν ,   then   inf { ω ( u , ν ) : u ∈ U } > 0 .   



(3)







Then   F f   consists of only one element. Moreover, the sequence   (  u n  )  , where    u  n + 1   = f  u n  ,    n ≥ 0   converges for any    u 0  ∈ U   and     lim  n → + ∞    u n  ∈  F f    .





Proof. 

Let    u 0  ∈ U   and consider the Picard sequence   (  u n  )   in  U  generated by f at   u 0  . According to Lemma 5, if there exists    n 0  ∈ N   such that   ω (  u  n 0   ,  u   n 0  + 1   ) = 0   or   ω (  u   n 0  + 1   ,  u  n 0   ) = 0  , then    u   n 0  + 1   ∈  F f    or    u  n 0   ∈  F f   , respectively. Therefore, we may assume that for each   n ∈ N  ,   ω (  u n  ,  u  n + 1   ) ≠ 0   and   ω (  u  n + 1   ,  u n  ) ≠ 0  . By Lemma 4, we have     lim  n → + ∞   ω  (  u n  ,  u  n + 1   )  = 0    and     lim  n → + ∞   ω  (  u  n + 1   ,  u n  )  = 0 .    Now, we want to show that     lim  n , m → + ∞   ω  (  u n  ,  u m  )  = 0   , i.e.   (  u n  )   is a Cauchy sequence.



Assume the contrary; that is,     lim  n , m → + ∞   ω  (  u n  ,  u m  )  ≠ 0 .    Thus there are   ϵ > 0   and two sub-sequences   (  u  n k   )   and   (  u  m k   )   of   (  u n  )   such that   (  m k  )   is chosen as the smallest index for which


  ω  (  u  n k   ,  u  m k   )  ≥ ϵ ,   m k  >  n k  > k .  



(4)







This implies that


  ω (  u  n k   ,  u   m k  − 1   ) < ϵ .  



(5)







Set    δ k  = ω  (  u   n K  − 1   ,  u  m k   )   . By Lemma 2, Equations (4) and (5) and (  ω 1  ) of the definition of  ω , we get







	  ϵ ≤ ω (  u  n k   ,  u  m k   )  
	  ≤  1 s  ω  (  u   n k  − 1   ,  u   m k  − 1   )   



	
	  ≤ [ ω  (  u   n k  − 1   ,  u  m k   )  + ω  (  u  m k   ,  u   m k  − 1   )  ] .  



	
	








By taking the limit inferior as   k → + ∞   and taking into account Equation (2), we get


  ϵ ≤  lim inf  k → + ∞    δ k  .  



(6)







In addition,







	  ω (  u   n k  − 1   ,  u  m k   )  
	  ≤  1 s  ω  (  u   n k  − 2   ,  u   m k  − 1   )   



	
	  ≤ [ ω  (  u   n k  − 2   ,  u  n k   )  + ω  (  u  n k   ,  u   m k  − 1   )  ]  



	
	  < s [ ω  (  u   n k  − 2   ,  u   n k  − 1   )  + ω  (  u   n k  − 1   ,  u  n k   )  ] + ϵ ] .  



	
	








By taking the limit superior as   k → + ∞   and taking into account (2), we get


   lim sup  k → + ∞    δ k  ≤ ϵ .  



(7)







By Equations (6) and (7), we get


   lim  k → + ∞    δ k  = ϵ .  



(8)







Now, set    γ k  = ω  (  u  n k   ,  u   m k  + 1   )   . By Lemma 2, we get


  ω  (  u  n k   ,  u   m k  + 1   )  ≤  1 s  ω  (  u   n k  − 1   ,  u  m k   )  .  











By taking the limit superior to both sides, we get


   lim sup  k → + ∞    γ k  ≤  ϵ s  .  



(9)







On the other hand, we have







	  ϵ ≤ ω (  u  n k   ,  u  m k   )  
	  ≤ s [ ω  (  u  n k   ,  u   m k  + 1   )  + ω  (  u   m k  + 1   ,  u  m k   )  ]  .



	
	








By taking the limit inferior to both sides, we get


   ϵ s  ≤  lim inf  k → + ∞    γ k  .  



(10)







By Equations (9) and (10), we get


   lim  k → + ∞    γ k  =  ϵ s  .  



(11)







By the properties of  θ  and  ϕ , we get


  ϕ  ( θ  ( ϵ )  )  < θ  ( ϵ )  = θ  ( s  ϵ s  )  .  











Now, by letting    a k  = θ  ( s  γ k  )    and    b k  = ϕ  ( θ  (  δ k  )  )  ,   then     lim  k → + ∞    a k  >  lim  k → + ∞    b k  ≥ 1 .    Remark 3 and Condition (1) yield that


  1 ≤  lim sup  k → + ∞   μ  (  a k  ,  b k  )  < 1 ,  








which is a contradiction. Therefore     lim  n , m → + ∞   ω  (  u n  ,  u m  )  = 0 .    Thus Lemma 1 implies that   (  u n  )   is Cauchy. There is   ν ∈ U   such that     lim  n → + ∞    u n  = ν   .



Since     lim  n , m → + ∞   ω  (  u n  ,  u m  )  = 0   , then for any   r > 0   there is    k 0  ∈ N   such that


  ω  (  u n  ,  u m  )  ≤ r    for  all   m > n ≥  k 0  .  











The lower semi-continuity of  ω  implies that


  ω  (  u n  , ν )  ≤  lim inf  p → + ∞   ω  (  u n  ,  u p  )  ≤ r    for  all   m > n ≥  k 0  .  











Suppose that   f ν ≠ ν  . Then we have







	0
	  < inf { ω ( u , ν ) :  u ∈ U }  



	
	  ≤ inf { ω  (  u n  , ν )  :  n ≥  k 0  }  



	
	  ≤ r  ,





for every   r > 0   which is a contradiction. Therefore   f ν = ν .   The uniqueness of  ν  follows from Lemma 3. □





Corollary 1.

Suppose   ( U , b , s )   is complete with base   s ∈ [ 1 , + ∞ )  , and there is ω over   ( U , b , s )  . Suppose that there are real numbers   a > 1   and   λ ∈ ( 0 , 1 )   such that   f : U → U   satisfies the following condition:



If    u 1  ,  u 2  ∈ U  , then


    a  s ω ( f  u 1  , f  u 2  )   ≤  a  λ ω (  u 1  ,  u 2  )   −  a  − λ ω (  u 1  ,  u 2  )   .   



(12)







In addition, assume that if   ν ∈ X   and   f ν ≠ ν  , then


   inf { ω ( u , ν ) : u ∈ U } > 0 .   



(13)







Then   F f   consists of only one element.





Proof. 

Define   μ : [ 1 , + ∞ ) × [ 1 , + ∞ ) → R  ,   θ : [ 0 , + ∞ ) → [ 1 , + ∞ )   and   ϕ : [ 1 , + ∞ ) → [ 1 , + ∞ )   by   μ  (  u 1  ,  u 2  )  =    u 2 2   1 +  u 1   u 2      ,   θ  ( u )  =  a u    and   ϕ  ( v )  =  v λ   , respectively. Then   μ ∈ H ,  θ ∈ Θ   and   ϕ ∈ Φ  . We now show that f is an   ( ω t , θ , ϕ )  -contraction with respect to  μ . From Condition (12), we have


   a  s ω ( f  u 1  , f  u 2  )   ≤  a  λ ω (  u 1  ,  u 2  )   −  a  − λ ω (  u 1  ,  u 2  )    








iff


   a  2 λ ω (  u 1  ,  u 2  )   −  a  s ω  ( f  u 1  , f  u 2  )  + λ ω  (  u 1  ,  u 2  )    ≥ 1  








iff


    (  a  λ ω (  u 1  ,  u 2  )   )  2  ≥ 1 +  a  s ω ( f  u 1  , f  u 2  )    a  λ ω (  u 1  ,  u 2  )    








iff


      (  a  λ ω (  u 1  ,  u 2  )   )  2   1 +  a  s ω ( f  u 1  , f  u 2  )    a  λ ω (  u 1  ,  u 2  )      ≥ 1  








iff


      ( ϕ θ ω  (  u 1  ,  u 2  )  )  2   1 + θ s ω  ( f  u 1  , f  u 2  )  ϕ θ ω  (  u 1  ,  u 2  )     ≥ 1  








iff


  μ ( θ s ω  ( f  u 1  , f  u 2  )  , ϕ θ ω  (  u 1  ,  u 2  )  ) ≥ 1 .  











Hence the result follows from Theorem 1. □





Corollary 2.

Suppose   ( U , b , s )   is complete with base   s ∈ [ 1 , + ∞ )  , and there is ω over   ( U , b , s )  . Suppose that there is a real number   λ ∈ ( 0 , 1 )   such that   f : U → U   satisfies the following condition:



If    u 1  ,  u 2  ∈ U  , then


    λ ω  (  u 1  ,  u 2  )  − s ω  ( f  u 1  , f  u 2  )   ≤  e  λ ω (  u 1  ,  u 2  )   −  e  s ω ( f  u 1  , f  u 2  )   .   



(14)







In addition, suppose that if   ν ∈ X   if   f ν ≠ ν  , then


   inf { ω ( u , ν ) : u ∈ U } > 0 .   



(15)







Then   F f   consists of only one element.





Proof. 

Define   μ : [ 1 , + ∞ ) × [ 1 , + ∞ ) → R  ,   θ : [ 0 , + ∞ ) → [ 1 , + ∞ )   and   ϕ : [ 1 , + ∞ ) → [ 1 , + ∞ )   by   μ  (  u 1  ,  u 2  )  =    u 2    u 1  +  | ln  (   u 2   u 1   )  |      ,   θ  ( u )  =  e u    and   ϕ  ( v )  =  v λ   , respectively. Then   μ ∈ H ,  θ ∈ Θ   and   ϕ ∈ Φ  . We now show that f is an   ( ω t , θ , ϕ )  -contraction with respect to  μ . From Condition (14), we have


   λ ω  (  u 1  ,  u 2  )  − s ω  ( f  u 1  , f  u 2  )   ≤  e  λ ω (  u 1  ,  u 2  )   −  e  s ω ( f  u 1  , f  u 2  )    








iff


   e  λ ω (  u 1  ,  u 2  )   ≥  e  s ω ( f  u 1  , f  u 2  )   +  λ ω  (  u 1  ,  u 2  )  − s ω  ( f  u 1  , f  u 2  )    








iff


   e  λ ω (  u 1  ,  u 2  )   ≥  e  s ω ( f  u 1  , f  u 2  )   +  ln (  e  λ ω  (  u 1  ,  u 2  )  − s ω  ( f  u 1  , f  u 2  )    )   








iff


   e  λ ω (  u 1  ,  u 2  )   ≥  e  s ω ( f  u 1  , f  u 2  )   +  ln    e  λ ω (  u 1  ,  u 2  )    e  s ω ( f  u 1  , f  u 2  )       








iff


  ϕ θ  ω (  u 1  ,  u 2  )  ≥ θ  s ω ( f  u 1  , f  u 2  )  +  ln    ϕ θ  ω (  u 1  ,  u 2  )    θ  s ω ( f  u 1  , f  u 2  )       








iff


    ϕ θ  ω (  u 1  ,  u 2  )    θ  s ω ( f  u 1  , f  u 2  )  +  ln    ϕ θ  ω (  u 1  ,  u 2  )    θ  s ω ( f  u 1  , f  u 2  )        ≥ 1  








iff


  μ ( θ s ω  ( f  u 1  , f  u 2  )  , ϕ θ ω  (  u 1  ,  u 2  )  ) ≥ 1 .  











Hence the result follows from Theorem 1. □






4. Examples


Next, we illustrate our result by some examples.



Example 3.

Suppose   U = C  . Let f be a self mapping on  U  via   f ( z ) = α z   with α is real number in   [ −  8  ,  8  ]  . To show that   F f   consist of only one element. Define   b : U × U : [ 0 , + ∞ )   via   b  (  z 1  ,  z 2  )  =   |  z 1  −  z 2  |  2    and   ω : U × U : [ 0 , + ∞ )   via   ω  (  z 1  ,  z 2  )  =   |  z 2  |  2   . In addition, define   μ : [ 1 , + ∞ ) × [ 1 , + ∞ ) → R   by   μ  ( u ,  u   ′   )  =     (  u   ′   )   1 2   u    .



Moreover, define   θ : [ 0 , + ∞ ) → [ 1 , + ∞ )   via   θ  (  u ′  )  =  e  u ′     and   ϕ : [ 1 , + ∞ ) → [ 1 , + ∞ )   by   ϕ  (  u ′  )  =   u ′    . Then   ( U , b , s )   is complete b-metric space with   s = 2   and ω is   ω t  -distance mapping over   ( U , b , s )  ,   μ ∈ H  ,   ϕ ∈ Φ   and   θ ∈ Θ  .



Now, we show that f is an   ( ω t , θ , ϕ )  -contraction with respect to μ; i.e.,


   1 ≤    ϕ ( θ ω   (  z 1  ,  z 2  )   1 2     θ 2 ω ( f  z 1  , f  z 2  )     f o r  a l l    z 1  ,  z 2  ∈ U .   



(16)







Now, for all    z 1  ,  z 2  ∈ U  , we have


      2 ω  ( f  z 1  , f  z 2  )      = 2 ω ( α  z 1  , α  z 2  )          = 2  α 2    |  z 2  |  2           ≤   1 4     |  z 2  |  2  =   1 4   ω  (  z 1  ,  z 2  )  .      











Hence


      θ 2 ω  ( f  z 1  , f  z 2  )      ≤   1 4   ω  (  z 1  ,  z 2  )           =  e    1 4   ω  (  z 1  ,  z 2  )             =    (  e  ω (  z 1  ,  z 2  )   )   1 2             = ϕ ( θ ω   (  z 1  ,  z 2  )   1 2   ) .      











Utilizing Theorem 1, we get   F f   consists of only one element.





Example 4.

Let   U = [ 0 , 1 ]  . Define   μ : [ 1 , + ∞ ) × [ 1 , + ∞ ) → R   by   μ  ( u ,  u   ′   )  =    u   ′   u    . Additionally, define   b , ω : U × U → [ 0 , + ∞ )   by   b  (  u 1  ,  u 2  )  =   (  u 1  −  u 2  )  2    and   ω  (  u 1  ,  u 2  )  =   1 4     (  u 1  −  u 2  )  2   . Moreover, define   θ : [ 0 , + ∞ ) → [ 1 , + ∞ )   via   θ  (  u ′  )  =  e  u ′     and   ϕ : [ 1 , + ∞ ) → [ 1 , + ∞ )   by   ϕ  (  u ′  )  =    u ′    9 32    . Then the function   g : U → U   which is defined by   g  ( u )  =    1 −  u 3    4 − 2  u 3       has a unique fixed point in   U .  





Proof. 

It is clearly that




	
  ( U , b , s )   is a complete b-metric space with   s = 2  , and also,  ω  is   ω t  -distance mapping over   ( U , b , s )  .



	
  μ ∈ H   (see Example 2).



	
  ϕ ∈ Φ   and   θ ∈ Θ  .








To show that   F g   consists of only one element, it suffices to show that


  μ ( θ 2 ω  ( f  u 1  , f  u 2  )  , ϕ θ ω  (  u 1  ,  u 2  )  ≥ 1   f o r  a l l    u 1  ,  u 2  ∈ U ;  








i.e., we want to show that


  θ 2 ω  ( g  u 1  , g  u 2  )  ≤ ϕ θ ω  (  u 1  ,  u 2  )    f o r  a l l    u 1  ,  u 2  ∈ U .  











Now,


     2 ω  ( g  u 1  , g  u 2  )      =   1 2        1 −  u  1  3    4 − 2  u  1  3     −    1 −  u  2  3    4 − 2  u  2  3      2           =   1 8         (  u 1  −  u 2  )   (  u 1 2  +  u 1   u 2  +  u 2 2  )      ( 2 −  u 1 3  )  2    ( 2 −  u 2 3  )  2      2           ≤   9 128      u 1  −  u 2   2           =   9 32   ω  (  u 1  ,  u 2  )  .     










  θ 2 ω  ( g  u 1  , g  u 2  )  =  e  2 ω ( g  u 1  , g  u 2  )   ≤  e   9 32  ω  (  u 1  ,  u 2  )    =    e  ω (  u 1  ,  u 2  )     9 32   = ϕ θ ω  (  u 1  ,  u 2  )  .  











Hence, Theorem 1 ensures that   F g   consists of only one element. Using MATLAB, we can find that the fixed point of g is   u ≃ 0.248076921333013 .   □






5. Applications


In this section, we highlight the novelty of our work by introducing some applications by utilizing Theorem 1.



Next, we show that for any real number   n ≥ 2  , the equation


   2  u =    1 +  u n    n +  u n      



(17)




has a unique solution in [0,1].



Theorem 2.

Let   U = [ 0 , 1 ]  . Define   μ : [ 1 , + ∞ ) × [ 1 , + ∞ ) → R   by   μ  ( u ,  u   ′   )  = 1 + ln  (    u   ′   u   )   . Additionally, define   b , ω : U × U → [ 0 , + ∞ )   by   b  (  u 1  ,  u 2  )  =   (  u 1  −  u 2  )  2    and   ω  (  u 1  ,  u 2  )  =   1 4     (  u 1  −  u 2  )  2   . Moreover, define   θ : [ 0 , + ∞ ) → [ 1 , + ∞ )   via   θ  (  u ′  )  =  e  u ′     and   ϕ : [ 1 , + ∞ ) → [ 1 , + ∞ )   by   ϕ  (  u ′  )  =    u ′      ( n − 1 )  2   n 2     . Then for the function   f : U → U   which defined by   f  ( u )  =    1 +  u n    n  2  +  2   u n      , the set   F f   consists of only one element.





Proof. 

It is obviously that:




	
  ( U , b , s )   is a complete b-metric space with   s = 2  . In addition,  ω  is an   ω t  -distance mapping over   ( U , b , s )  .



	
  μ ∈ H   (see Example 2).



	
  ϕ ∈ Φ   and   θ ∈ Θ  .








To show that   F f   consists of only one element, it suffices to prove that


  μ ( θ 2 ω  ( f  u 1  , f  u 2  )  , ϕ θ ω  (  u 1  ,  u 2  )  ≥ 1   f o r  a l l    u 1  ,  u 2  ∈ U ,  



(18)




which is equivalent to prove that


  θ 2 ω  ( f  u 1  , f  u 2  )  ≤ ϕ θ ω  (  u 1  ,  u 2  )    f o r  a l l    u 1  ,  u 2  ∈ U .  



(19)







Now,


     2 ω  ( f  u 1  , f  u 2  )      =   1 2        1 +  u  1  n    n  2  +  2   u  1  n     −    1 +  u  2  n    n  2  +  2   u  2  n      2           =   1  4   ( n +  u  1  n  )  2    ( n +  u  2  n  )  2        ( n − 1 )   (  u  1  n  −  u  2  n  )   2           ≤     ( n − 1 )  2   4  n 4        u  1  n  −  u  2  n   2           ≤     ( n − 1 )  2   4  n 4       n (  u 1  −  u 2  )  2           =     ( n − 1 )  2   4  n 2        u 1  −  u 2   2           =     ( n − 1 )  2   n 2    ω  (  u 1  ,  u 2  )  .     










  θ 2 ω  ( f  u 1  , f  u 2  )  =  e  2 ω ( f  u 1  , f  u 2  )   ≤  e     ( n − 1 )  2   n 2   ω  (  u 1  ,  u 2  )    =    e  ω (  u 1  ,  u 2  )       ( n − 1 )  2   n 2    = ϕ θ ω  (  u 1  ,  u 2  )  .  











Hence, Theorem 1 ensures that   F f   consists of only one element. There is   u ∈ U   such that   f u = u  ; i.e.,   u =    1 +  u n    n  2  +  2   u n      . Hence Equation (17) has a unique solution. □





Now, we use Theorem 1 to confirm that for all   Q ,  A i  ,  B i  ∈  M n   ( C )   , for    i ∈ { 1 , 2 , ⋯ , k }  , the matrix equation


  X = Q +  ∑  i = 1  k   (  A i  X  B i  )  ,  



(20)




where     ∑  i = 1  k   ∥   A i   ∥  ∥   B i   ∥ = λ < 1     has a unique solution.



Let   Y =  M n   ( C )    and consider the spectral norm   ∥ . ∥ : Y → [ 0 , + ∞ )   which known as     | | A | |  =  s 1  ,    where    s 1  ≥  s 2  ≥ ⋯ ≥  s n    are the singular-values of A. Clearly   ( Y , ∥ . ∥ )   is a Banach space since  Y  is a finite dimensional norm space.



Theorem 3.

Let   Q ,  A i  ,  B i  ∈ Y   for   i ∈ { 1 , 2 , ⋯ , k }   be such that     ∑  i = 1  k   ∥   A i   ∥  ∥   B i   ∥ = λ < 1    . Then the matrix in Equation (20) has a unique solution in  Y . Moreover, for any matrix    X 0  ∈ Y  , the sequence     X  n + 1   = Q +  ∑  i = 1  k   (  A i   X n   B i  )     converges to the solution of Equation (20).





Proof. 

Let   b , ω : Y × Y → [ 0 , + ∞ )   be defined as   b ( X , Y ) = ∥ X − Y ∥   and   ω  ( X , Y )  =  1 3   ∥ X − Y ∥  .   Then, clearly b is a b-metric on  Y  with base   s = 1   and  ω  is an   ω t  -distance mapping. Let   μ : [ 1 , + ∞ ) × [ 1 , + ∞ ) → R ,     θ : [ 0 , + ∞ ) → [ 1 , + ∞ )   and   ϕ : [ 1 , + ∞ ) → [ 1 , + ∞ )   be defined as following:   μ  (  u 1  ,  u 2  )  =    u 2   u 1     ,   θ  ( t )  =  e t    and   ϕ  ( t )  =  t λ   . Define   f : Y → Y   by    f X = Q +  ∑  i = 1  k   (  A i  X  B i  )    .



Now, we prove that f is   ( ω t , θ , ϕ )  -contraction with respect to  μ . To see this, let   X , Y ∈ Y  . Then,







	  ω ( f X , f Y )  
	   =  1 3    ∑  i = 1  k   (  A i  X  B i  )  −  ∑  i = 1  k   (  A i  Y  B i  )     



	
	   =  1 3    ∑  i = 1  k   (  (  A i  X  B i  )  −  (  A i  Y  B i  )  )     



	
	   =  1 3    ∑  i = 1  k   (  A i   ( X − Y )   B i  )     



	
	   ≤  1 3   ∑  i = 1  k   ∥  (  A i   ( X − Y )   B i  )  ∥    



	
	   ≤  1 3   ∑  i = 1  k   ∥   A i   ∥  ∥  ( X − Y )  ∥  ∥   B i   ∥    



	
	   =  1 3    ∥  ( X − Y )  ∥    ∑  i = 1  k   ∥   A i   ∥  ∥   B i   ∥    



	
	   = λ  ω ( X , Y ) .   



	
	








   e  ω ( f X , f Y )   ≤  e  λ ω ( X , Y )   =    e  ω ( X , Y )    λ   . Hence,   θ s  ω ( f X , f Y )  ≤ ϕ θ  ω ( X , Y )   . Consequently,   F f   consists of only one element. The matrix in Equation (20) has a unique solution. □





To illumine our application, consider the following example



Example 5.

Let    A 1  ,  A 2  ,  B 1  ,  B 2  , Q ∈  M 4   ( C )    be given as following:



    A 1  =      0    0    0.5     − 0.5      0   0    0.5     0.5      0   1   0   0     1   0   0   0     ,         B 1  =      0.15     0.15    0   0      0.15     0.15    0   0     0   0    0.02    0     0   0    0.02     0.04        



    A 2  =      0.025     0.05    0   0      0.05     0.05    0   0     0   0    0.1     0.1      0   0    0.1     0.1      ,         B 2  =     0   0    0.5     0.5      0   0   0    0.5      0   1   0   0     1   0   0   0     ,  a n d   



   Q =     1    − 1    1    − 3      1   5   3   2     9   1   3   1     1   6   5   2     .   



One can find that     ∑  i = 1  2   ∥   A i   ∥  ∥   B i   ∥ = 0.5 < 1    . Theorem 3 implies that the matrix equation   X = Q +  A 1  X  B 1  +  A 2  X  B 2    has a unique solution, and the sequence    X  n + 1   = Q +  A 1   X n   B 1  +  A 2   X n   B 2   , for   n ≥ 0   converges to the unique solution for any initial matrix   X 0  .



For instance, if we start at initial matrix    X 0  =     1   2   1   3     1    − 2    3   4      − 2    5   4   1     3   8   10   1     ,   we find the solution using MATLAB at the 10th iteration which is   X ≃      1.4681     − 0.3926     1.0598     − 2.7607       2.7171     6.9520     3.2511     2.3746       10.9803     3.3849     3.7461     2.2526       1.6913     7.0959     5.5996     3.0472      .  
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