Convergence of Generalized Lupaş-Durrmeyer Operators
Abstract
:1. Introduction
- be a continuously differentiable function on
- and
2. Basic Results
- (i)
- (ii)
- (iii)
- By writing in terms of factorial polynomials i.e., and by using rising factorial of we obtain
- (iv)
- (v)
- Finally, by using , we have
3. Weighted Estimates
4. Rate of Convergence
- (i)
- (ii)
- , for
- (iii)
5. Pontwise Convergence
6. Local Approximation
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lupaş, A. The approximation by some positive linear operators. In Proceedings of the International Dortmund Meeting on Approximation Theory, Witten, Germany, 13–17 March 1995; pp. 201–229. [Google Scholar]
- Agratini, O. On the rate of convergence of a positive approximation process. Nihonkai Math. J. 2000, 11, 47–56. [Google Scholar]
- Acar, T.; Aral, A.; Rasa, I. Modified Bernstein-Durrmeyer operators. Gen. Math. 2014, 22, 27–41. [Google Scholar]
- Acar, T.; Mohiudine, S.A.; Mursaleen, M. Approximation by (p,q)-Baskakov Durrmeyer Stancu operators. Complex Anal. Oper. Theory 2018, 12, 1453–1468. [Google Scholar] [CrossRef]
- Ansari, K.J.; Mursaleen, M.; Rahman, S. Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2019, 113, 1007–1024. [Google Scholar] [CrossRef]
- Gupta, V.; Yadav, R. On approximation of certain integral operators. Acta Math. Vietnam. 2014, 39, 193–203. [Google Scholar] [CrossRef]
- Mursaleen, M.; Rahman, S.; Ansari, K.J. Approximation by Jakimovski-Leviatan-Stancu-Durrmeyer type operators. Filomat 2019, 33, 1517–1530. [Google Scholar] [CrossRef] [Green Version]
- Mursaleen, M.; Khan, T. On approximation by Stancu type Jakimovski-Leviatan-Durrmeyer operators. Azerbaijan J. Math. 2017, 7, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, M.D.; Garrancho, P.; Rasa, I. Bernstein-type operators which preserve polynomials. Comput. Math. Appl. 2011, 62, 158–163. [Google Scholar]
- Aral, A.; Inoan, D.; Rasa, I. On the generalized Szász-Mirakyan operators. Results Math. 2008, 65, 441–452. [Google Scholar] [CrossRef]
- İlarslan, H.G.I.; Ali, A.; Gülen, B. Generalized Lupaş operators. AIP Conf. Proc. 2018, 1926, 020019. [Google Scholar]
- Gadzhiev, A.D. A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin’s theorem. Dokl. Akad. Nauk SSSR 1974, 218, 1001–1004. (In Russian) [Google Scholar]
- Gadjiev, A.D. Theorems of the type of P. P. Korovkin’s theorems. Math. Zamet 1976, 20, 781–786. [Google Scholar]
- Holhoş, A. Quantitative estimates for positive linear operators in weighted spaces. Gen. Math. 2008, 16, 99–110. [Google Scholar]
- DeVore, R.A.; Lorentz, G.G. Constructive Approximation, Grundlehren Math. Wiss. [Fundamental Principales of Mathematical Sciences]; Springer: Berlin, Germany, 1993. [Google Scholar]
- Khan, K.; Lobiyal, D.K. Bézier curves based on Lupaş (p,q)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 2017, 317, 458–477. [Google Scholar] [CrossRef]
- Khan, K.; Lobiyal, D.K.; Kilicman, A. A de Casteljau Algorithm for Bernstein type Polynomials based on (p,q)-integers. Appl. Appl. Math. 2018, 13, 997–1017. [Google Scholar]
- Khan, K.; Lobiyal, D.K.; Kilicman, A. Bézier curves and surfaces based on modified Bernstein polynomials. Azerbaijan J. Math. 2019, 9, 3–21. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qasim, M.; Mursaleen, M.; Khan, A.; Abbas, Z. Convergence of Generalized Lupaş-Durrmeyer Operators. Mathematics 2020, 8, 852. https://doi.org/10.3390/math8050852
Qasim M, Mursaleen M, Khan A, Abbas Z. Convergence of Generalized Lupaş-Durrmeyer Operators. Mathematics. 2020; 8(5):852. https://doi.org/10.3390/math8050852
Chicago/Turabian StyleQasim, Mohd, Mohammad Mursaleen, Asif Khan, and Zaheer Abbas. 2020. "Convergence of Generalized Lupaş-Durrmeyer Operators" Mathematics 8, no. 5: 852. https://doi.org/10.3390/math8050852
APA StyleQasim, M., Mursaleen, M., Khan, A., & Abbas, Z. (2020). Convergence of Generalized Lupaş-Durrmeyer Operators. Mathematics, 8(5), 852. https://doi.org/10.3390/math8050852