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Abstract: The main aim of this paper is to establish summation-integral type generalized Lupaş
operators with weights of Beta basis functions which depends on µ having some properties. Primarily,
for these new operators, we calculate moments and central moments, weighted approximation is
discussed. Further, Voronovskaya type asymptotic theorem is proved. Finally, quantitative estimates
for the local approximation is taken into consideration.
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1. Introduction

In 1995, A. Lupaş [1] introduced a famous linear positive operators as follows:

Lm(g; y) =
∞

∑
j=1

lm,j(y)g
(

j
m

)
, y ≥ 0, (1)

where g is defined on [0, ∞). and

lm,j(y) = 2−my

(
my + j− 1

j

)
2−j

In order to approximate Lebesgue integrable functions the most important modifications
are Kantorovich and Durrmeyer integral operators. The Kantorovich and Durrmeyer varaint of
operator (1) is introduced by Agratini [2], the Durremyer variant of operator (1) is defined as follows:

Dm(g; y) =
∞

∑
j=1

cm,jlm,j(y)
∫ ∞

0
lm,j(t)g(t)dt, (2)

where lm,j(y) is defined in (1) and

cm,j(t) =
1∫ ∞

0 lm,j(u)du
.

Durrmeyer variant of (2) is not easy to handle. Actually, the first and second order derivatives of
the Lupaş basis functions come in terms of Stirling numbers because of this it is very tedious to obtain
higher order moments. So, keeping this fact in mind various authors define the Durrmeyer variant
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of operator (2) and various other operators have been studied intensively by taking Beta, Szasz or
Baskakov basis functions as in [3–8] and the references there in.

In 2011, Cárdenas et al. [9] defined the Bernstein type operators by Bm(goµ−1)oµ and also presents
a better degree of approximation depending on µ. After, this generalization it becomes interesting to
construct such generalization of other operators. In 2014, a similar modification of Szász-Mirakyan
type operators is introduced by Aral et al. [10] by using a suitable function µ.

Very recently, a new modification of operators (1) is introduced by İlarslan et al. [11] by using
a suitable function µ, which satisfies following properties
(µ1) µ be a continuously differentiable function on [0, ∞),
(µ2) µ(0) = 0 and inf

y∈[0,∞)
µ
′
(y) ≥ 1.

For g ∈ [0, ∞) the new constructed operators are defined as

Lµ
m(g; y) = 2−mµ(y)

∞

∑
j=0

(mµ(y))j

2j j!

(
goµ−1

)( j
m

)
, (3)

for m ≥ 1, y ≥ 0. If µ(y) = y then (3) reduces to operators (1).
Motivated by the above mentoned Durrmeyer type generalizations of Lupaş and some other

operators in this paper we introduce Durrmyer type modification of generalized Lupaş operators (3)
by taking weights of Beta basis function. Actually we have two type of modifications in our mind
which are defined as follows:

Dµ
m(g; y) =

∞

∑
j=1

`
µ
m,j(y)

∫ ∞

0
bm,j−1(ξ)

(
goµ−1

)
(ξ)dξ, (4)

D∗m,µ(g; y) =
∞

∑
j=1

`
µ
m,j(y)

∫ ∞

0
bm,j−1(ξ)

(
goµ−1

)
(ξ)dξ + `

µ
m,0

(
goµ−1

)
(0) (5)

where g is defined on [0, ∞), m ≥ 1, y ≥ 0 and

`
µ
m,j(y) = 2−mµ(y)

(
mµ(y) + j− 1

j

)
2−j, bm,j−1(ξ) =

1
β(j, m + 1)

ξ j−1

(1 + ξ)m+j+1 .

and µ is a function satisfying the conditions (µ1) and (µ2) given above.
Opertaor D∗m,µ is more smoother then Dµ

m, the main difference between them is that D∗m,µ

reproduce every linear function while Dµ
m reproduces only constant ones. So, in this paper we will

work on operators (5). The present work is organized as follows. In the second section, moments and
central moments for D∗m,µ are calculated. In the third section, we study convergence properties of
D∗m,µ in the light of weighted space. In section fourth, we obtain the order of approximation of new
constructed operators associated with the weighted modulus of continuity. In section fifth, we shall
show point-wise convergence by proving Voronovskaya type theorem in quantitative form. Finally,
in last section, we obtain some local approximation results related to K-functional.

2. Basic Results

Here, we shall prove some lemmas for D∗m,µ which are required to prove our main results.
One can prove these lemmas by using this fact

D∗m,µ(µ
r, y) =

r!(m− r)!.mµ(y)
m!

.2F1 (mµ(y) + 1, 1− r; 2;−1) ,
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there are various other methods to prove these lemmas but, we will prove these lemmas by using the
elementary hypergeometric functions 1F0 (a;−; x) and by using the factorial polynomials, defined as

j(n) = j(j− 1)(j− 2) · · · (j− n + 1).

Lemma 1. For D∗m,µ given by (5). we have
(i) D∗m,µ(1; y) = 1,
(ii) D∗m,µ(µ; y) = µ(y),

(iii) D∗m,µ(µ2; y) = mµ2(y)+3µ(y)
m−1 ,

(iv) D∗m,µ(µ3; y) = m2µ3(y)+9mµ2(y)+14µ(y)
(m−1)(m−2) ,

(v) D∗m,µ(µ4; y) = m3µ4(y)+18m2µ3(y)+83mµ2(y)+90µ(y)
(m−1)(m−2)(m−3) .

Proof. By using the identity

∫ ∞

0
bm,j−1(ξ)(ξ

n)dξ =
∫ ∞

0

1
β(j, m + 1)

ξ j−1

(1 + ξ)m+j+1 dξ =
(k + m− 1)!.(m− n)!

m!(j− 1)!

and the fact that

1F0 (a;−; x) =
∞

∑
j=0

(a)j
xj

j!
= (1− x)−a, |x| < 1,

we obtain

(i)

D∗m,µ(1; y) =
∞

∑
j=1

`
µ
m,j(y) + `

µ
m,0(y) =

∞

∑
j=0

`
µ
m,j(y)

= 2−mµ(y)
∞

∑
j=0

(mµ(y))j

2j j!
= 2−mµ(y)

1F0

(
mµ(y);−;

1
2

)

= 2−mµ(y)
(

1− 1
2

)−mµ(y)
= 1.

(ii)

D∗m,µ(µ; y) =
∞

∑
j=1

`
µ
m,j(y)

j
m

=
2−mµ(y)

m

∞

∑
j=1

(mµ(y))j

2j(j− 1)!

=
2−mµ(y)

m

∞

∑
j=0

(mµ(y))j+1

2j+1(j)!
=

2−mµ(y)−1

m

∞

∑
j=0

mµ(y)(mµ(y) + 1)j

2j(j)!

= µ(y)2−mµ(y)−1
1F0

(
mµ(y) + 1;−;

1
2

)
= µ(y)2−mµ(y)−1

(
1− 1

2

)−mµ(y)−1
= µ(y).
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(iii) By writing j(j + 1) in terms of factorial polynomials i.e., j2 + j = j(2) + 2j(1) and by using rising
factorial of (mµ(y))j+2 = (mµ(y))(mµ(y) + 1)(mµ(y) + 2)j we obtain

D∗m,µ(µ2; y) =
∞
∑

j=1
`

µ
m,j(y)

j2+j
m(m−1) =

∞
∑

j=1
`

µ
m,j(y)

j(2)+2j(1)

m(m−1)

= 2−mµ(y)

m(m−1)

[
∞
∑

j=2

(mµ(y))j

2j(j−2)!
+

∞
∑

j=1

2(mµ(y))j

2j(j−1)!

]
= 2−mµ(y)

m(m−1)

[
∞
∑

j=0

(mµ(y))j+2

2j+2(j)!
+

∞
∑

j=0

2(mµ(y))j+1

2j+1(j)!

]
= 2−mµ(y)

m(m−1)

[
∞
∑

j=0

(mµ(y))(mµ(y)+1)(mµ(y)+2)j

2j+2(j)!
+

∞
∑

j=0

2(mµ(y))(mµ(y)+1)j

2j+1(j)!

]
= 2−mµ(y)

m(m−1)

[
∞
∑

j=0

(mµ(y))(mµ(y)+1)(mµ(y)+2)j

2j+2(j)!

]
+ 2−mµ(y)

m(m−1)

[
∞
∑

j=0

2(mµ(y))(mµ(y)+1)j

2j+1(j)!

]
= (mµ(y))(mµ(y)+1)

m(m−1) 2−mµ(y)−2
1F0

(
mµ(y) + 2;−; 1

2

)
+ 2(mµ(y))

m(m−1) 2−mµ(y)−1
1F0

(
mµ(y) + 1;−; 1

2

)
= (mµ(y))(mµ(y)+1)

m(m−1) 2−mµ(y)−2
(

1− 1
2

)−mµ(y)−2

+ 2(mµ(y))
m(m−1) 2−mµ(y)−1

(
1− 1

2

)−mµ(y)−1

= mµ2(y)+3µ(y)
m−1 .

(iv)

D∗m,µ(µ3; y) =
∞
∑

j=1
`

µ
m,j(y)

j2+3j2+2j
m(m−1)(m−2) =

∞
∑

j=1
`

µ
m,j(y)

j(3)+6j(2)+6j(1)

m(m−1)(m−2)

= 2−mµ(y)

m(m−1)(m−2)

[
∞
∑

j=3

(mµ(y))j

2j(j−3)!
+ 6

∞
∑

j=2

(mµ(y))j

2j(j−2)!
+ 6

∞
∑

j=1

(mµ(y))j

2j(j−1)!

]
= 2−mµ(y)

m(m−1)(m−2)

[
∞
∑

j=0

(mµ(y))j+3

2j+3(j)!
+ 6

∞
∑

j=0

(mµ(y))j+2

2j+2(j)!
+ 6

∞
∑

j=0

(mµ(y))j+1

2j+1(j)!

]
= 2−mµ(y)

m(m−1)(m−2)

[
∞
∑

j=0

(mµ(y))(mµ(y)+1)(mµ(y)+2)(mµ(y)+3)j

2j+3(j)!

]
+ 2−mµ(y)

m(m−1)(m−2)

[
6

∞
∑

j=0

(mµ(y))(mµ(y)+1)(mµ(y)+2)j

2j+2(j)!

]
+ 2−mµ(y)

m(m−1)(m−2)

[
6

∞
∑

j=0

(mµ(y))(mµ(y)+1)j

2j+1(j)!

]

(6)
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=
(mµ(y))(mµ(y) + 1)(mµ(y) + 2)

m(m− 1)(m− 2)
2−mµ(y)−3

1F0

(
mµ(y) + 3;−;

1
2

)
+

6(mµ(y))(mµ(y) + 1)
m(m− 1)(m− 2)

2−mµ(y)−2
1F0

(
mµ(y) + 2;−;

1
2

)
+

6(mµ(y))
m(m− 1)(m− 2)

2−mµ(y)−1
1F0

(
mµ(y) + 1;−;

1
2

)
=

(mµ(y))(mµ(y) + 1)(mµ(y) + 2)
m(m− 1)(m− 2)

2−mµ(y)−3
(

1− 1
2

)−mµ(y)−3

+
6(mµ(y))(mµ(y) + 1)

m(m− 1)(m− 2)
2−mµ(y)−2

(
1− 1

2

)−mµ(y)−2

+
6(mµ(y))

m(m− 1)(m− 2)
2−mµ(y)−1

(
1− 1

2

)−mµ(y)−1

=
m2µ3(y) + 9mµ2(y) + 14µ(y)

(m− 1)(m− 2)
.

(v) Finally, by using j4 + 6j3 + 11j2 + 6j = j(4) + 12j(3) + 36j(2) + 18j(1), we have

D∗m,µ(µ4; y) =
∞
∑

j=1
`

µ
m,j(y)

j4+6j3+11j2+6j
m(m−1)(m−2)(m−3) =

∞
∑

j=1
`

µ
m,j(y)

j(4)+12j(3)+36j(2)+18j(1)

m(m−1)(m−2)(m−3)

= 2−mµ(y)

m(m−1)(m−2)(m−3)

[
∞
∑

j=4

(mµ(y))j

2j(j−4)!
+ 12

∞
∑

j=3

(mµ(y))j

2j(j−3)!
+ 36

∞
∑

j=2

(mµ(y))j

2j(j−2)!

+ 18
∞
∑

j=1

(mµ(y))j

2j(j−1)!

]
= 2−mµ(y)

m(m−1)(m−2)(m−3)

[
∞
∑

j=4

(mµ(y))j+4

2j+4(j)!
+ 12

∞
∑

j=3

(mµ(y))j+3

2j+3(j)!

+ 36
∞
∑

j=2

(mµ(y))j+2

2j+2(j)!
+ 18

∞
∑

j=1

(mµ(y))j+1

2j+1(j)!

]
= 2−mµ(y)

m(m−1)(m−2)(m−3)

×
[

∞
∑

j=0

(mµ(y))(mµ(y)+1)(mµ(y)+2)(mµ(y)+3)(mµ(y)+4)j

2j+4(j)!

]
+ 2−mµ(y)

m(m−1)(m−2)(m−3)

[
12

∞
∑

j=0

(mµ(y))(mµ(y)+1)(mµ(y)+2)(mµ(y)+3)j

2j+3(j)!

]
+ 2−mµ(y)

m(m−1)(m−2)(m−3)

[
36

∞
∑

j=0

(mµ(y))(mµ(y)+1)(mµ(y)+2)j

2j+2(j)!

]
+ 2−mµ(y)

m(m−1)(m−2)(m−3)

[
18

∞
∑

j=0

(mµ(y))(mµ(y)+1)j

2j+1(j)!

]

=
(mµ(y))(mµ(y) + 1)(mµ(y) + 2)(mµ(y) + 3)

m(m− 1)(m− 2)(m− 3)
2−mµ(y)−3

1F0

(
mµ(y) + 4;−;

1
2

)
+ 12

(mµ(y))(mµ(y) + 1)(mµ(y) + 2)
m(m− 1)(m− 2)(m− 3)

2−mµ(y)−4
1F0

(
mµ(y) + 3;−;

1
2

)
+ 36

(mµ(y))(mµ(y) + 1)
m(m− 1)(m− 2)(m− 3)

2−mµ(y)−2
1F0

(
mµ(y) + 2;−;

1
2

)
+ 18

(mµ(y))
m(m− 1)(m− 2)(m− 3)

2−mµ(y)−1
1F0

(
mµ(y) + 1;−;

1
2

)
=

(mµ(y))(mµ(y) + 1)(mµ(y) + 2)(mµ(y) + 3)
m(m− 1)(m− 2)(m− 3)

2−mµ(y)−4
(

1− 1
2

)−mµ(y)−4
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+ 12
(mµ(y))(mµ(y) + 1)(mµ(y) + 2)

m(m− 1)(m− 2)(m− 3)
2−mµ(y)−3

(
1− 1

2

)−mµ(y)−3

+ 36
(mµ(y))(mµ(y) + 1)

m(m− 1)(m− 2)(m− 3)
2−mµ(y)−2

(
1− 1

2

)−mµ(y)−2

+
18(mµ(y))

m(m− 1)(m− 2)(m− 3)
2−mµ(y)−1

(
1− 1

2

)−mµ(y)−1

=
m3µ4(y) + 18m2µ3(y) + 83mµ2(y) + 90µ(y)

(m− 1)(m− 2)(m− 3)
.

Hence proved.

Lemma 2. By using linearity of operator D∗m,µ and by Lemma 1 we have the following central moments
(i) D∗m,µ(µ(ξ)− µ(y); y) = 0,

(ii) D∗m,µ((µ(ξ)− µ(y))2; y) = µ2(y)+3µ(y)
m−1 ,

(iii) D∗m,µ((µ(ξ)− µ(y))3; y) = 4µ3(y)+18µ2(y)+14µ(y)
(m−1)(m−2) ,

(iv) D∗m,µ((µ(ξ)− µ(y))4; y) = (3m+18)µ4(y)+(18m+108)µ3(y)+(27m+168)µ2(y)+90µ(y)
(m−1)(m−2)(m−3) .

3. Weighted Estimates

In this section we prove convergence properties of new constructed operators D∗m,µ in the light
of weighted space.

Let Ψ(y) be a function satisfying the conditions (µ1) and (µ2) given above. Also, we take the
weight function Ψ(y) = 1 + µ2(y) and we define the weighted spaces as follows:

BΨ[0, ∞) = {g : [0, ∞)→ R
∣∣|g(y)| ≤ MgΨ(y), y ≥ 0},

whereMg is a constant which depends only on g. BΨ[0, ∞) is a normed linear space equipped with
the norm

‖ g ‖Ψ= sup
y∈[0,∞)

|g(y)|
Ψ(y)

.

Also, the following subspaces of BΨ[0, ∞)

CΨ[0, ∞) = {g ∈ BΨ[0, ∞) : g is continuous on [0, ∞)},

C∗Ψ[0, ∞) =

{
g ∈ CΨ[0, ∞) : lim

y→∞

g(y)
Ψ(y)

=Mg = Constant
}

,

UΨ[0, ∞) = {g ∈ CΨ[0, ∞) :
g(y)
Ψ(y)

is uniformly continuous on [0, ∞)}.

It is Obvious that C∗Ψ[0, ∞) ⊂ UΨ[0, ∞) ⊂ CΨ[0, ∞) ⊂ BΨ[0, ∞).
In [12,13], Gadjiev prove the following results for the weighted Korovkin type theorems.

Lemma 3 ([12]). The positive linear operators Qm, m ≥ 1, acts from CΨ[0, ∞) to BΨ[0, ∞) if and only if
the inequality

|Qm(Ψ; y)| ≤ MmΨ(y), y ≥ 0,

holds, whereMm > 0 is a positive constant.

Theorem 1 ([13]). Let the sequence of positive linear operators Qm, m ≥ 1 acting from CΨ[0, ∞) to BΨ[0, ∞)

and satisfying
lim

m→∞
‖ Qmµr − µr ‖Ψ= 0, r = 0, 1, 2.
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Then for each g ∈ C∗Ψ[0, ∞) we have

lim
m→∞

‖ Qm(g)− g ‖Ψ= 0.

Theorem 2. For each function g ∈ C∗Ψ[0, ∞) we have

lim
m→∞

‖ D∗m,µ(g)− g ‖Ψ= 0.

Proof. From Lemma 1, we have
‖ D∗m,µ(1; y)− 1 ‖Ψ= 0,

and,
‖ D∗m,µ(µ; y)− µ ‖Ψ= 0.

Also,

‖ D∗m,µ(µ
2; y)− µ2 ‖Ψ = sup

y∈[0,∞)

(
µ2(y) + 3µ(y)

(m− 1)(1 + µ2(y))

)
≤ 4

m− 1
. (7)

We deduce
lim

m→∞
‖ D∗m,µ(g)− g ‖Ψ= 0.

by Theorem 1.

4. Rate of Convergence

In this part, we would like to determine the rate of convergence for D∗m,µ by weighted modulus
of continuity ωµ( f ; λ) which was introduced by Holhoş [14] in 2008, as follows:

ωµ(g; λ) = sup
y,ξ∈[0,∞),|µ(ξ)−µ(y)|≤λ

|g(ξ)− g(y)|
Ψ(ξ) + Ψ(y)

, λ > 0, (8)

where g ∈ CΨ[0, ∞), having following properties:

(i) ωµ(g; 0) = 0,

(ii) ωµ(g; λ) ≥ 0, λ ≥ 0 for g ∈ CΨ[0, ∞),

(iii) limλ→0 ωµ(g; λ) = 0, for each g ∈ UΨ[0, ∞).

Theorem 3 ([14]). Let Qm : CΨ[0, ∞)→ BΨ[0, ∞) be a sequence of positive linear operators with

‖ Qm(µ
0)− µ0 ‖Ψ0 = am, (9)

‖ Qm(µ)− µ ‖
Ψ

1
2

= bm, (10)

‖ Qm(µ
2)− µ2 ‖Ψ = cm, (11)

‖ Qm(µ
3)− µ3 ‖

Ψ
3
2

= dm, (12)
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where the sequences am, bm, cm and dm converge to zero as m→ ∞. Then

‖ Qm(g)− g ‖
Ψ

3
2
≤ (7 + 4am + 2cm)ωµ(g; λm)+ ‖ g ‖Ψ am, (13)

for all g ∈ CΨ[0, ∞), where

λm = 2
√
(am + 2bm + cm)(1 + am) + am + 3bm + 3cm + dm.

Theorem 4. For all g ∈ CΨ[0, ∞) we have

‖ D∗m,µ(g)− g ‖
Ψ

3
2
≤
(

7 +
8

m− 1

)
ωµ(g; λm),

where

λm = 2

√
4

m− 1
+

12
m− 1

+
12m + 14

(m− 1)(m− 2)
.

Proof. We should calculate the sequences (am), (bm), (cm) and (dm), in order to apply Theorem 3.
In light of Lemma 1 clearly we have

am =‖ D∗m,µ(µ
0)− µ0 ‖Ψ0= 0,

bm =‖ D∗m,µ(µ)− µ ‖
Ψ

1
2
= 0.

Also,

cm =‖ D∗m,µ(µ
2)− µ2 ‖Ψ≤

4
m− 1

.

Finally,

dm =‖ D∗m,µ(µ
3)− µ3 ‖

Ψ
3
2
≤ 12m + 14

(m− 1)(m− 2)
.

Thus all the conditions Theorem 3 are satisfied, the desired result follows.

Remark 1. For lim
λ→0

ωµ(g; λ) = 0 in Theorem 4, we get

lim
m→∞

‖ D∗m,µ(g)− g ‖
Ψ

3
2
= 0, for g ∈ UΨ[0, ∞).

5. Pontwise Convergence D∗m,µ

In this section, we shall analyze pointwise convergence of D∗m,µ by obtaining the Voronovskaya
theorem in quantitative form by using a same technique in [9].

Theorem 5. Let g ∈ CΨ[0, ∞), y ∈ [0, ∞) and suppose that
(

goµ−1)′ and
(

goµ−1)′′ exist at µ(y). If(
goµ−1)′′ is bounded on [0, ∞), then we have

lim
m→∞

m
[
D∗m,µ(g; y)− g(y)

]
=

1
2

µ2(y)
(

goµ−1
)′′

µ(y) +
3
2

µ(y)
(

goµ−1
)′′

µ(y).
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Proof. By Taylor expansion, we have

g(ξ) =
(

goµ−1
)
(µ(ξ)) =

(
goµ−1

)
(µ(y)) +

(
goµ−1

)′
(µ(y)) (µ(ξ)− µ(y)) (14)

+

(
goµ−1)′′ (µ(y)) (µ(ξ)− µ(y))2

2
+ χy(ξ) (µ(ξ)− µ(y))2 ,

where

χy(ξ) =

(
goµ−1)′′ (µ(ξ))− (goµ−1)′′ (µ(y))

2
. (15)

Therefore, by (15) together with the assumption on g ensures that

|χy(ξ)| ≤ K, for all ξ ∈ [0, ∞)

and is convergent to zero as ξ → y. Now by applying the operators (5) to the equality (14), we get

[
D∗m,µ(g; y)− g(y)

]
=

(
goµ−1

)′
(µ(y))D∗m,µ ((µ(ξ)− µ(y)); y)

+

(
goµ−1)′′ (µ(y))D∗m,µ

(
(µ(ξ)− µ(y))2; y

)
2

(16)

+ D∗m,µ

(
χy(ξ) ((µ(ξ)− µ(y))2 ; y)

)
.

From Lemma 2, we obtain

lim
m→∞

mD∗m,µ ((µ(ξ)− µ(y)); y) = 0, (17)

also,

lim
m→∞

mD∗m,µ

(
(µ(ξ)− µ(y))2; y

)
≤ µ2(y) + 3µ(y). (18)

we will get the proof of the theorem by estimating the last term on the right hand side of equality (16).
From (15), for every ε > 0, lim

ξ→y
χy(ξ) = 0. Let δ > 0 such that |χy(ξ)| < ε for every ξ ≥ 0.

By Cauchy-Schwartz inequality, we get

lim
m→∞

mD∗m,µ

(
|χy(ξ)| (µ(ξ)− µ(y))2 ; y

)
≤ ε lim

m→∞
mD∗m,µ

(
(µ(ξ)− µ(y))2; y

)
+
K
δ2 lim

m→∞
D∗m,µ

(
(µ(ξ)− µ(y))4; y

)
.

Since
lim

m→∞
mD∗m,µ

(
(µ(ξ)− µ(y))4; y

)
= 0, (19)

we obtain
lim

m→∞
mD∗m,µ

(
|χy(ξ)| (µ(ξ)− µ(y))2 ; y

)
= 0. (20)

Thus, by taking into account the Equations (17), (18) and (20) to Equation (16) which completes
the proof.
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6. Local Approximation

In this section, for operator D∗m,µ we shall present local approximation theorems. Let CB[0, ∞),
denote the space of real-valued continuous and bounded functions g defined on the interval [0, ∞).
The norm ‖ · ‖ on the space CB[0, ∞) is defined by

‖ g ‖= sup
0≤y<∞

| g(y) | .

K-functional is defined as:

K2(g, λ) = inf
p∈W2
{‖ g− p ‖ +λ ‖ g′′ ‖},

where λ > 0 and W2 = {p ∈ CB[0, ∞) : p′, p′′ ∈ CB[0, ∞)}. By Devore and Lorentz ([15], p. 177,
Theorem 2.4), there exists an absolute constant C > 0 such that

K(g, λ) ≤ Cω2(g,
√

λ). (21)

also, modulus of smoothness of Second order is given as

ω2(g,
√

λ) = sup
0<h≤

√
λ

sup
y∈[0,∞)

| g(y + 2h)− 2g(y + h) + g(y) |

where g ∈ CB[0, ∞). For g ∈ CB[0, ∞) the usual modulus of continuity is defined as

ω(g, λ) = sup
0<h≤λ

sup
y∈[0,∞)

| g(y + h)− g(y) | .

Theorem 6. Let g ∈ CB[0, ∞). Let µ be a function satisfying the conditions (µ1), (µ2) and ||µ′′|| is finite.
Then, there exists an absolute constant C > 0 such that

∣∣D∗m,µ(g; y)− g(y)
∣∣≤ CK(g,

µ2(y) + 3µ(y)
m− 1

)
Proof. Let p ∈W2 and y, ξ ∈ [0, ∞). By Taylor’s formula we obtain

p(ξ) = p(y) +
(

poµ−1
)′

(µ(y))(µ(ξ)− µ(y)) +
∫ µ(ξ)

µ(y)
(µ(ξ)− v)

(
poµ−1

)′′
(v)dv. (22)

By using the equality

(
poµ−1

)′′
(µ(y)) =

p′′(y)

(µ′(y))2 − p′′(y)
µ′′(y)

(µ′(y))3 . (23)

Now, put v = µ(y) in the last term in equality (22), we get

∫ µ(ξ)

µ(y)
(µ(ξ)− v)

(
poµ−1

)′′
(v)dv =

∫ ξ

y
(µ(ξ)− µ(y))

[
p′′(y)µ′(y)− p′(y)µ′′(v)

(µ′(y))2

]
dy

=
∫ µ(ξ)

µ(y)
(µ(ξ)− v)

p′′(µ−1(v))
(µ′(µ−1(v))2 dv (24)

−
∫ µ(ξ)

µ(y)
(µ(ξ)− v)

p′(µ−1(v))µ′′(µ−1(v))
(µ′(µ−1(v))3 dv.
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By applying operator (5) to the both sides of equality (22), and from Lemma 1 we deduce

D∗m,µ(p; y) = p(y) +D∗m,µ

( ∫ µ(ξ)

µ(y)
(µ(ξ)− v)

p′′(µ−1(v))
(µ′(µ−1(v))2 dv; y

)
− D∗m,µ

( ∫ µ(ξ)

µ(y)
(µ(ξ)− v)

p′(µ−1(v))µ′′(µ−1(v))
(µ′(µ−1(v))3 dv; y

)
.

As we know µ is strictly increasing on [0, ∞) and with condition (µ2), we get∣∣D∗m,µ(p; y)− p(y)
∣∣≤Mµ

m,2(y)
(
‖p′′‖+ ‖p′‖‖µ′′‖

)
,

where

Mµ
m,2(y) = D

∗
m,µ((µ(ξ)− µ(y))2; y).

Also, it is clear that ∣∣D∗m,µ
∣∣ ≤ ‖g‖.

Hence we have∣∣D∗m,µ(g; y)− g(y)
∣∣ ≤ ∣∣D∗m,µ(g− p; y)

∣∣+∣∣D∗m,µ(p; y)− p(y)
∣∣+∣∣p(y)− g(y)

∣∣
≤ 2‖g− p‖+

{
µ2(y) + 3µ(y)

m− 1

}(
‖p′′‖+ ‖p′‖‖µ′′‖

)
,

if C = max{2, ‖µ′′‖}, then

∣∣D∗m,µ(g; y)− g(y)
∣∣ ≤ C

(
2‖g− p‖+

{
µ2(y) + 3µ(y)

m− 1

}
‖p′′‖W2

)
.

Taking infimum over all p ∈W2 we obtain

∣∣D∗m,µ(g; y)− g(y)
∣∣≤ CK(g,

µ2(y) + 3µ(y)
m− 1

)
.

7. Conclusions

Here, to approximate Lebesgue integrable function, Durrmeyer variant of the generalized Lupaş
operators are constructed. We have investigated convergence properties, order of approximation,
Voronovskaja type results and also quantitative estimates for the local approximation. The constructed
operators have better flexibility and rate of convergence which are depending on the selection of the
function µ. Also, the basis of these operators can be used to draw curves and surfaces in Computer
Aided Geometric Design (CAGD) [16–18].
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