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Abstract: There are six different classes of endomorphisms for a graph. The sets of these
endomorphisms always form a chain under the inclusion of sets. For a more systematic treatment of
different endomorphisms, Böttcher and Knauer proposed the concepts of the endomorphism type
and the endomorphism spectrum of a graph in 1992. In this paper, we studied endomorphism types
and endomorphism spectra of double fan graphs.
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1. Introduction

More and more scholars paid attention to monoids of graphs during the last few years and
many important results concerning endomorphism monoids of graphs have been attained ([1–6]).
In order to study six classes of endomorphisms of a graph more systematically, Böttcher and Knauer
proposed the concepts of the endomorphism type and the endomorphism spectrum in [7]. In [8],
Fan explored endomorphism spectra of bipartite graphs with diameter three and girth six. In [9] various
endomorphisms of generalized polygons were explored and endomorphism types of generalized
polygons were provided. In [10] Hou, Luo, and Cheng characterized the endomorphism monoid of Pn.
The endomorphism type and the endomorphism spectrum of Pn were obtained. In [11] Hou, Gu, and
Song explored six classes of endomorphisms of fan graphs. Endomorphism types and endomorphism
spectra of these graphs were given. In this paper, we explore endomorphism types and endomorphisms
spectra of double fan graphs.

2. Preliminary Concepts

Throughout this paper, all graphs are assumed to be finite, undirected, and simple. For a
graph X, denote by V(X) and E(X) the vertex set and edge set of X, respectively. Let v ∈ V(X).
Denote N(v) = {x ∈ V(X)|{x, v} ∈ E(X)}. Let f be a mapping on V(X). If {x1, x2} ∈ E(X)

implies that { f (x1), f (x2)} ∈ E(X), then f is known as an endomorphism of X. If { f (a), f (b)} ∈ E(X)

implies that there exist x1, x2 ∈ V(X) with f (a) = f (x1) and f (b) = f (x2) such that {x1, x2} ∈ E(X),
then f is said to be half-strong. If { f (a), f (b)} ∈ E(X) implies that the subgraph of X induced by
f−1( f (a)) ∪ f−1( f (b)) has no isolated vertex, then f is said to be locally strong. If { f (a), f (b)} ∈ E(X)

implies that there exists x1 ∈ f−1( f (a)) which is adjacent to every vertex of f−1( f (b)) and analogously
for preimage of f (b), then f is said to be quasi-strong. If { f (a), f (b)} ∈ E(X) implies that the subgraph
of X induced by f−1( f (a))∪ f−1( f (b)) is complete bipartite, then f is said to be strong. If f is bijective,
then f is known as an automorphism of X. Denote the set of automorphisms, strong endomorphisms,
quasi-strong endomorphisms, locally strong endomorphisms, half-strong endomorphisms, and
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endomorphisms for a graph X by Aut(X), sEnd(X), qEnd(X), lEnd(X), hEnd(X), and End(X),
respectively. Clearly

End(X) ⊇ hEnd(X) ⊇ lEnd(X) ⊇ qEnd(X) ⊇ sEnd(X) ⊇ Aut(X).

The 6-tuple

(|End(X)|, |hEnd(X)|, |lEnd(X)|, |qEnd(X)|, |sEnd(X)|, |Aut(X)|)

is known as the endomorphism spectrum of X and we denote it by EndospecX. Let si ∈ {0, 1}, i =

1, 2, 3, 4, 5, where si = 0 if and only if the ith element equals to the (i + 1)th element in EndospecX and
si = 1 otherwise. The integer ∑5

i=1 si2i−1 is known as the endomorphism type of X and we denote it by
EndotypeX.

Let f ∈ End(X) and A ⊆ V(X). Denote by f |A the restriction of f on A. The endomorphic image I f
of X under f is a subgraph of X with V(I f ) = f (V(X)) and { f (a), f (b)} ∈ E(I f ) if and only if there
exist s ∈ f−1( f (a)) and t ∈ f−1( f (b)) such that {s, t} ∈ E(X). The endomorphic kernel ρ f induced by f
is an equivalence relation on V(X) such that for a, b ∈ V(X), (a, b) ∈ ρ f if and only if f (a) = f (b).

Example 1. Let DF4 be a double fan graph, as shown in Figure 1. Let

f1 =

(
1 2 3 4 s t
s 1 t 3 2 2

)
, f2 =

(
1 2 3 4 s t
3 2 3 4 s t

)
,

f3 =

(
1 2 3 4 s t
1 2 1 2 s t

)
, f4 =

(
1 2 3 4 s t
1 2 3 4 s s

)
,

Then it is easy to check that f1 ∈ End(DF4) \ hEnd(DF4), f2 ∈ hEnd(DF4) \ lEnd(DF4), f3 ∈
lEnd(DF4) \ qEnd(DF4) and f4 ∈ sEnd(DF4) \ Aut(DF4),

We refer the reader to [12–15] for all the concepts of semigroup theory and graph theory not
defined here.

Figure 1. Graph DF4.

3. Endomorphism Spectra of Double Fan Graphs

Let DFn be a double fan graph as shown in Figure 2 and A = {1, 2, . . . , n}. Denote by B =

{1, 3, 5, . . .} the subset of A containing all the odd numbers and by C = {2, 4, 6 . . .} the subset of A
containing all the even numbers.



Mathematics 2020, 8, 1009 3 of 10

Figure 2. Graph DFn.

Lemma 1. ([16]) Let X be a graph and f ∈ End(X). Then f ∈ hEnd(X) if and only if I f is an induced
subgraph of X.

Lemma 2. Let f ∈ End(DFn). Then f (s), f (t) ∈ {s, t}, or f (s), f (t) /∈ {s, t}.
(1) If f (s), f (t) ∈ {s, t}, then f |A ∈ End(Pn).
(2) If f (s) = f (t) = i for some i ∈ A, then I f

∼= K3, or I f
∼= F3, or I f

∼= DF3.
(3) If f (s) = i and f (t) = j for some i, j ∈ A, then |i− j| = 2, I f

∼= F3 or I f
∼= DF3.

Proof. (1) Let f ∈ End(DFn) and f (s), f (t) ∈ {s, t}. Then f (A) ⊆ A. Since the subgraph of DFn

induced by A is Pn, f |A ∈ End(Pn).
(2) If f (s), f (t) /∈ {s, t}, there are three cases:
Case 1. f (s) = f (t) = i for some i ∈ A. Since s and t are adjacent to all vertices of A, f (s) and

f (t) are adjacent to all vertices of f (A). Note that i is adjacent to at most 4 vertices. If
∣∣∣V(I f )

∣∣∣ = 3, then

I f
∼= K3. If

∣∣∣V(I f )
∣∣∣ = 4, then I f

∼= F3. If
∣∣∣V(I f )

∣∣∣ = 5, then I f
∼= DF3.

Case 2. f (s) = i and f (t) = j for some i, j ∈ A. Since s and t are adjacent to all vertices of A, i and
j are adjacent to all vertices of f (A). Thus |i− j| = 2. If f (A) has two vertices, then I f

∼= F3. If f (A)

has three vertices, then I f
∼= DF3. Thus (3) is proved.

Case 3. f (s) /∈ {s, t} and f (t) ∈ {s, t}. Without loss of generalization, suppose that f (s) = i
for some i ∈ A and f (t) = t. Since t is adjacent to all vertices of A and N(t) = A, f (A) ⊆ A. Now
f (A) has two adjacent vertices f (x) and f (y). As s is adjacent to all vertices of A, i is adjacent to all
vertices of f (A). In particular, i is adjacent to f (x) and f (y). Thus the subgraph of DFn induced by
{ f (x), f (y), i} is isomorphic to K3. This is impossible since the subgraph of DFn induced by A is a
path.

Lemma 3. Let DFn be a double fan graph. Then End(DFn) = hEnd(DFn) if and only if n ≤ 3.

Proof. Necessity. We only need to prove that End(DFn) 6= hEnd(DFn) for any n ≥ 4. Define a
mapping f on V(DFn) by

f (x) =



s, x = 1,
1, x = 2,
t, x ∈ {3, 5, 7, 9, . . .} ,
3, x ∈ {4, 6, 8, 10, . . .} ,
2, x ∈ {s, t} .
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Then f ∈ End(DFn) and {s, 3} ∈ E(DFn). Note that f−1(s) = 1, f−1(3) ∈ {4, 6, 8, 10 . . .} and
{u, v} /∈ E(DFn) for any u ∈ f−1(s) and v ∈ f−1(3). Then f /∈ hEnd(DFn).

Sufficiency. If n = 2, there are only two vertices s and t which are not adjacent in V(DFn). Let
f ∈ End(DFn) \ Aut(DFn). Then f (s) = f (t). Note that N(s) = N(t). Then f ∈ sEnd(DFn). If n = 3,
then there are two pairs of vertices in V(DFn), which are not adjacent. They are 1 and 3, s and t. Let
f ∈ End(DFn). If f (i) = f (j), then i = 1 and j = 3, or i = s and j = t. Note that N(1) = N(3) and
N(s) = N(t). Thus End(DF3) = sEnd(DF3). Therefore End(DFn) = hEnd(DFn) for n = 2, 3.

Lemma 4. Let DFn be a double fan graph with n ≥ 4, as shown in Figure 3. If n is odd, then |End(DFn)| =

4(n + 1)2n−1 − 4(2n − 1)
(

n−1
n−1

2

)
+ 16n − 24 + (10n − 12)(2

n+1
2 + 2

n−1
2 − 4) + 8(n − 2)

(
2

n+1
2 − 2

)
(

2
n−1

2 − 2
)

; If n is even, then |End(DFn)| = 4(n + 1)2n−1 − 4n
(

n
n
2

)
+ 16n − 24 + (16n − 24)(2

n
2 −

2) + 8(n− 2)(2
n
2 − 2)2.

Figure 3. Graph DF5.

Proof. Let f ∈ End(DFn). By Lemma 2, f (s), f (t) ∈ {s, t} or f (s), f (t) /∈ {s, t}.
(1) Suppose that f (s), f (t) ∈ {s, t}. By Lemma 2 (1), f |A ∈ End(Pn). Thus the number of

endomorphisms of DFn such that f (s) = s and f (t) = t is equal to |End(Pn)|. A similar argument will
show that the number of endomorphisms is equal to |End(Pn)| for the case of f (s) = t and f (t) = s,
f (s) = f (t) = s and f (s) = f (t) = t. Hence there are 4 |End(Pn)| endomorphisms in this case. It is
known from [17] that

|End(Pn)| =

 (n + 1)2n−1 − (2n− 1)
(

n−1
n−1

2

)
, i f n is odd,

(n + 1)2n−1 − n
(

n
n
2

)
, i f n is even.

(2) Suppose that f (s), f (t) /∈ {s, t}. By Lemma 2, there are three cases:

Case 1. Assume that I f
∼= K3. Then | f (A)| = 2 and ρ f = {B, C, [s, t]}. There are 2(n − 1)

subgraphs in DFn isomorphic to K3. Select a subgraph X of DFn such that X ∼= K3. Without loss
of generality, let V(X) = {i, j, k}, where i, j ∈ A and k ∈ {s, t}. Since f (s), f (t) /∈ {s, t}, f (s) = i
or f (s) = j. At the same time, f can map {B, C} to V(X)\ { f (s)} in two ways. Therefore there are
8(n− 1) endomorphisms in this case.

Case 2. Assume that I f
∼= F3. Then V(I f ) = {i, j, s, t} for some i, j ∈ A with {i, j} ∈ E(DFn), or

V(I f ) = {i, j, k, m} for some {i, j, k} ∈ A and m ∈ {s, t} with {i, j} ∈ E(DFn) and {j, k} ∈ E(DFn).
There are three cases:
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(i) Assume that f (s) = f (t) and V(I f ) = {i, j, s, t}. If n is odd, then |B| = n+1
2 and |C| = n−1

2 .

Now there are n− 1 subgraphs in DFn which are isomorphic to I f and there are 2
n+1

2 − 2 ways to
divide B into two non-empty subsets B1 and B2. Clearly, there are two ways to map {B1, B2} to {s, t}
and there are two ways to map {C, [s, t]} to {i, j}. Similarly, there are 2

n−1
2 − 2 ways to divide C into

two non-empty subsets C1 and C2. Now there are two ways to map {C1, C2} to {s, t} and there are
two ways to map {B, [s, t]} to {i, j}. Therefore, there are 4(n− 1)(2

n+1
2 + 2

n−1
2 − 4) endomorphisms in

this case. If n is even, a similar argument will show that there are 8(n− 1)(2
n
2 − 2) endomorphisms.

(ii) Assume that f (s) = f (t) = j and V(I f ) = {i, j, k, m}. Then there are 2(n− 2) endomorphism

images. If n is odd, there are 2
n+1

2 − 2 ways to divide B into two non-empty subsets B1 and B2 and
there are 2

n−1
2 − 2 ways to divide C into two non-empty subsets C1 and C2. If f (C) = m, then there

are two ways to map {B1, B2} to {i, k}. If f (B) = m, then there are two ways to map {C1, C2} to {i, k}.
Therefore, there are 2(n − 2)(2

n+1
2 + 2

n−1
2 − 4) endomorphisms in this case. If n is even, a similar

argument will show that there are 4(n− 2)(2
n
2 − 2) endomorphisms.

(iii) Assume that f (s) = i and f (t) = k for some i, j ∈ A and V(I f ) = {i, j, k, m}. Then |i− j| = 2
and there are 2(n− 2) endomorphisms images. Note that f (s) = i and f (t) = k. Now there are two
ways map {B, C} to {m, j}. Analogously for the case of f (s) = k and f (t) = i. Therefore, there are
8(n− 2) endomorphisms in this case.

Therefore, if I f
∼= F3 and n is odd, then there are (6n − 8)(2

n+1
2 + 2

n−1
2 − 4) + 8(n − 2)

endomorphisms. If I f
∼= F3 and n is even, then there are (12n− 16)(2

n
2 − 2)+ 8(n− 2) endomorphisms.

Case 3. Assume that I f
∼= DF3. Then there are n− 2 subgraphs in DFn isomorphic to DF3. Select

a subgraph Z of DFn such that Z ∼= DF3. Then Z has three vertices in A. Suppose V(Z) = {i, j, k, s, t}
for some i, j, k ∈ A such that {i, j} ∈ E(DFn) and {j, k} ∈ E(DFn). Then f (s) = i and f (t) = k, or
f (s) = k and f (t) = i, or f (s) = f (t) = j.

(i) If n is odd, then |B| = n+1
2 and |C| = n−1

2 . Note that there are 2
n+1

2 − 2 ways to divide B into

two non-empty subsets B1 and B2 and there are 2
n−1

2 − 2 ways to divide C into two non-empty subsets
C1 and C2.

If f (s) = f (t) = j, then there are 2
n+1

2 − 2 ways to map the vertices in B to {i, k} and there
are 2

n−1
2 − 2 ways to map vertices in C to {s, t}, or there are 2

n+1
2 − 2 ways to map the vertices

in B to {s, t} and there are 2
n−1

2 − 2 ways to map the vertices in C to {i, j}. Therefore, there are
8(n− 2)(2

n+1
2 − 2)(2

n−1
2 − 2) endomorphisms in this case.

If f (s) = i, f (t) = k and f (C) = j, then there are 2
n+1

2 − 2 ways to map the vertices in B to {s, t}.
If f (s) = i, f (t) = k and f (B) = j, then there are 2

n−1
2 − 2 ways to map vertices in C to {s, t}. It is

also analogous for the case of f (s) = k and f (t) = i. Therefore, there are 2(n− 2)(2
n+1

2 + 2
n−1

2 − 4)
endomorphisms in this case.

(ii) If n is even, then |B| = |C| = n
2 . Thus, there are 2

n
2 − 2 ways to divide B into two non-empty

subsets B1 and B2 and there are 2
n
2 − 2 ways to divide C into two non-empty subsets C1 and C2.

If f (s) = f (t) = j, then there are 8(n− 2)(2
n
2 − 2)2 endomorphisms. If f (s) = i and f (t) = k,

then there are 2(n− 2)(2
n
2 − 2) endomorphisms. Analogously for the case of f (s) = k and f (t) = i.

Then there are 4(n− 2)(2
n
2 − 2) endomorphisms.

Therefore, if I f
∼= DF3 and n is odd, then there are 8(n− 2)(2

n+1
2 − 2)(2

n−1
2 − 2) + 2(n− 2)(2

n+1
2 +

2
n−1

2 − 4) endomorphisms. If I f
∼= DF3 and n is even, then there are 8(n− 2)(2

n
2 − 2)2 + 4(n− 2)(2

n
2 −

2) endomorphisms.
From the above discussion, we finish our proof.

Lemma 5. Let DFn be a double fan graph with n ≥ 4. Then |hEnd(DF4)| = |End(DF4)| − 16. If n is odd,

then |hEnd(DFn)| = |End(DFn)| − 8 (n− 2)

(
1 +

n−5
2
∑

i=1
ai

)
; If n is even and n ≥ 6, then |hEnd(DFn)| =
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|End(DFn)| − 8 (n− 2)

(
1 +

n−6
2
∑

i=1
ai + b n−4

2 +1

)
, where am = b12m−1 + b22m−2 + · · ·+ bm−222 + 5bm−1 +

2bm−2 (m ≥ 3) and bm = 1√
5

[(
1+
√

5
2

)m
−
(

1−
√

5
2

)m]
is the Fibonacci sequence.

Proof. Let f ∈ End(DFn). By Lemma 2, f (s), f (t) ∈ {s, t}, or f (s), f (t) /∈ {s, t}. If f (s), f (t) ∈ {s, t},
then f |A ∈ End(Pn). It is easy to check that f ∈ hEnd(X). If f (s), f (t) /∈ {s, t}, then I f

∼= K3, or
I f
∼= F3, or I f

∼= DF3. If I f
∼= K3 or I f

∼= F3, then I f is an induced subgraph, and so f ∈ hEnd(X).
In the following, we assume that I f

∼= DF3. Clearly, there are n− 2 subgraphs in DFn isomorphic
to DF3. Select a subgraph Y of DFn such that Y ∼= DF3. Without loss of generality, suppose V(Y) =
{i, j, k, s, t} for some i, j, k ∈ A such that {i, j} ∈ E(DFn) and {j, k} ∈ E(DFn). Let A1 ⊂ B such that
1 ∈ A1, A2 = {k|k ∈ C and |k− j| = 1 f or some j ∈ A1}, A3 = B\A1 and A4 = C\A2. Now f is not
half-strong if and only if f maps {A1, A3} to {s, t} and maps {A2, A4} to {i, k}, or f maps {A2, A4} to
{s, t} and maps {A1, A3} to {i, k}. There are three cases:

Case 1. Assume that n = 4. Then there are only one way to divide A into four non-empty subsets
A1, A2, A3, A4. It is easy to see that there are 2 ways to map {A1, A3} to {s, t} and there are 2 ways to
map {A2, A4} to {i, k}. Similarly, there are 2 ways to map {A2, A4} to {s, t} and there are 2 ways to
map {A1, A3} to {i, k}. Note that there are two subgraphs in DF4 isomorphic to DF3. Thus there are
16 endomorphisms of DF4 which are not half-strong.

Case 2. Assume that n is odd. Then |A1| = 1 +

n−5
2
∑

i=1
ai, where am = b12m−1 + b22m−2 + · · · +

bm−222 + 5bm−1 + 2bm−2 (m ≥ 3) and bm = 1√
5

[(
1+
√

5
2

)m
−
(

1−
√

5
2

)m]
is the Fibonacci sequence. It is

easy to see that there are 2 ways to map {A1, A3} to {s, t} and there are 2 ways to map {A2, A4} to {i, k}.
Similarly, there are 2 ways to map {A2, A4} to {s, t} and there are 2 ways to map {A1, A3} to {i, k}.

Note that there are n− 2 subgraphs in DFn isomorphic to DF3. Thus, there are 8 (n− 2)

(
1 +

n−5
2
∑

i=1
ai

)
endomorphisms of DF3 which are not half-strong in this case.

Case 3. Assume that n is even and n ≥ 6. Then |A1| = 1 +

n−6
2
∑

i=1
ai + b n−4

2 +1. Thus, there are

8 (n− 2)

(
1 +

n−6
2
∑

i=1
ai + b n−4

2 +1

)
endomorphisms of DF3, which are not half-strong.

From the above discussion, we get the results of Lemma 5 to finish our proof.

Lemma 6. Let DFn be a double fan graph. Then hEnd(DFn) = lEnd(DFn) if and only if n ≤ 3.

Proof. Necessity. We only need to prove that hEnd(DFn) 6= lEnd(DFn) for any n ≥ 4. Define a
mapping f on V(DFn) by

f (x) =

{
3, x = 1,
x, otherwise.

Then f ∈ hEnd(DFn). It is not hard to show that {3, 4} = { f (3), f (4)} ∈ E(I f ), f−1(3) = {1, 3}
and f−1(4) = {4}. Note that {1, 4} /∈ E(DFn). Then f /∈ lEnd(DFn). Therefore, hEnd(DFn) 6=
lEnd(DFn).

Sufficiency. If n = 2, 3, then End(DFn) = sEnd(DFn) by the proof of Lemma 3. Therefore,
hEnd(DFn) = lEnd(DFn) for n = 2, 3.

Lemma 7. Let f ∈ End(DFn) be such that f (s), f (t) ∈ {s, t}. Then f ∈ lEnd(DFn) if and only if
f |A ∈ lEnd(Pn).
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Proof. Necessity. Let f ∈ lEnd(DFn) be such that f (s), f (t) ∈ {s, t}. Then f |A ∈ End(Pn). Let
i, j ∈ V(I f |A) be such that {i, j} ∈ E(I f |A). Since f is locally-strong, for every i′ ∈ f−1(i) there exists
j′ ∈ f−1(j) such that {i′, j′} ∈ E(Pn) and analogously for preimage of j. Note that f |−1

A (i) = f−1(i) ⊆
A and f |−1

A (j) = f−1(j) ⊆ A. Then f |A ∈ lEnd(Pn).
Sufficiency. Let i, j ∈ V(I f ) be such that {i, j} ∈ E(I f ). If i ∈ {s, t}, then f−1(i) ∈ {s, t}. Clearly, s

and t are adjacent to all vertices of f−1(j). If i, j /∈ {s, t}, then i, j ∈ A. Now we have {i, j} ∈ E(I f |A).
Since f |A ∈ lEnd(Pn), for every preimage i′ ∈ f |−1

A (i) there exists a preimage j′ ∈ f |−1
A (j) such

that {i′, j′} ∈ E(Pn) and analogously for preimage of j. Note that f |A−1(i) = f−1(i) ⊆ A and
f |A−1(j) = f−1(j) ⊆ A. Then f ∈ lEnd(DFn).

Lemma 8.

|lEnd(DFn)| =
{

8 ∑l|(n−1) (n− l) + 24n− 36 , i f n is odd and n ≥ 4,
8 ∑l|(n−1) (n− l) + 16n− 24 , i f n is even and n ≥ 4.

Proof. Let f ∈ End(DFn). Firstly, suppose that f (s), f (t) ∈ {s, t}. By Lemma 7, f ∈ lEnd(DFn) if
and only if f |A ∈ lEnd(Pn). It is known from [18] that |lEnd(Pn)| = 2 ∑l|(n−1) (n− l). Now we have
f (s) = s and f (t) = t, or f (s) = t and f (t) = s, or f (s) = f (t) = s, or f (s) = f (t) = t. Thus, we have
|lEnd(DFn)| = 8 ∑l|(n−1) (n− l) endomorphisms in this case.

Next, suppose that f (s) = f (t) = i for some i ∈ A. By Lemma 2, I f
∼= K3, or I f

∼= F3, or I f
∼= DF3.

There are three cases.
Case 1. Assume that I f

∼= K3. Then | f (A)| = 2 and ρ f = {B, C, [s, t]}. The subgraphs of DFn

induced by B ∪ C, B ∪ {s, t}, C ∪ {s, t} have no isolated vertices. Then f ∈ lEnd(DFn). There are
8(n− 1) endomorphisms of DFn by Lemma 4.

Case 2. Assume that I f
∼= F3. Denote B1 = {4m + 1 ∈ B|where m = 0, 1, 2, · · ·} and B2 =

{4m + 3 ∈ B|where m = 0, 1, 2, · · ·}. Then it is easy to see that f ∈ lEnd(DFn) if and only if n is odd
and ρ f = {B1, B2, C, [s, t]}. Now V(I f ) = {i, j, s, t} for some i, j ∈ A such that {i, j} ∈ E(DFn), or
V(I f ) = {i, j, k, m} for some i, j, k ∈ A and m ∈ {s, t} such that {i, j} ∈ E(DFn) and {j, k} ∈ E(DFn). If
V(I f ) = {i, j, s, t}, then there are n− 1 endomorphism images. Note that there are two ways to map
{B1, B2} to {s, t} and there are two ways to map {C, {s, t}} to {i, j}. Thus there are 4(n− 1) locally
strong endomorphisms. If V(I f ) = {i, j, k, m}, then there are 2(n− 2) endomorphism images. Now
f (s) = f (t) = j and f (C) = m. Note that there are two ways to map {B1, B2} to {i, k}. Thus, there are
4(n− 2) locally strong endomorphisms. Therefore, there are 8n− 12 locally strong endomorphisms in
this case.

Case 3. Assume that I f
∼= DF3. Then f is not locally strong.

Finally, suppose that f (s) = i and f (t) = j for some i, j ∈ A. By Lemma 2, |i− j| = 2, I f
∼= F3 or

I f
∼= DF3.

(1) If I f
∼= F3, it is easy to check that ρ f = {B, C, s, t}. Note that the subgraphs of DFn induced by

B ∪ C, B ∪ {s}, C ∪ {s}, B ∪ {t}, C ∪ {t} have no isolated vertices. Then f ∈ lEnd(DFn). By Lemma 4,
There are 8(n− 2) endomorphisms in this case.

(2) If I f
∼= DF3, then f /∈ lEnd(DF3) for any n ≥ 4. Hence there are no locally endomorphisms in

this case.
From the discussion above, we deduce Lemma 8 to finish our proof.

Lemma 9. lEnd(DFn) = qEnd(DFn) if and only if n = 2, 3, 4.

Proof. Necessity. We only need to show that lEnd(DFn) 6= qEnd(DFn) for any n ≥ 5. Define a
mapping f on V(DFn) by
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f (x) =


1, x ∈ B,
2, x ∈ C,
x, otherwise.

It is not difficult to show that f ∈ lEnd(DFn) \ qEnd(DFn). Therefore, lEnd(DFn) 6= qEnd(DFn).
Sufficiency. If n = 2, 3, then lEnd(DFn) = qEnd(DFn) by the proof of Lemma 3. If n = 4,

then there exist only two positive integers 1 and 3 such that 1|n − 1, 3|n − 1. Let f ∈ lEnd(DF4),
then ρ f = {[1] , [2] , [3] , [4] , [s] , [t]}, or ρ f = {[1] , [2] , [3] , [4] , [s, t]}, or ρ f = {[1, 3] , [2, 4] , [s] , [t]}
or ρ f = {[1, 3] , [2, 4] , [s, t]}. If ρ f = {[1] , [2] , [3] , [4] , [s] , [t]}, then f ∈ Aut(DF4). If ρ f =

{[1] , [2] , [3] , [4] , [s, t]}, then I f
∼= F4. It is easy to check that f ∈ qEnd(DF4). If ρ f = {[1, 3] , [2, 4] , [s, t]}

or ρ f = {[1, 3] , [2, 4] , [s] , [t]}, it is a routine matter to check that f ∈ qEnd(DF4). Therefore, we have
lEnd(DFn) = qEnd(DFn).

Lemma 10. qEnd(DFn) = sEnd(DFn) if and only if n 6= 4.

Proof. Necessity. We show that qEnd(DF4) 6= sEnd(DF4). Define a mapping f on V(DF4) by

f (x) =


1, x ∈ {1, 3} ,
2, x ∈ {2, 4} ,
x, x ∈ {s, t} .

It is easy to check that f ∈ qEnd(DF4), f−1(1) ∈ {1, 3} , f−1(2) ∈ {2, 4} and {1, 4} /∈ E(DF4).
Then f /∈ sEnd(DF4).

Sufficiency. If n = 2, 3, then End(DFn) = sEnd(DFn) by the proof of Lemma 3. In the following,
we suppose that n ≥ 5. Let f ∈ DFn.

(1) If I f
∼= K3, then ρ f = {B, C, [s, t]}. Since n ≥ 5, |B| ≥ 3. Note that f ∈ qEnd(DFn) and

{ f (B), f (C)} ∈ E(I f ). Then there exists d ∈ C adjacent to every vertex of B. This is impossible since
each vertex of A is adjacent to at most two vertices of A.

(2) If I f is not isomorphic to K3. Then f (A) contains at least 3 vertices. Since f /∈ Aut(DFn), there
exist i, j ∈ A such that f (i) = f (j). Suppose there exist f (a), f (b) ∈ f (A) such that { f (i), f (a)} ∈ E(I f )

and { f (i), f (b)} ∈ E(I f ). Then there exists a preimage a′ of f (a) such that a′ is adjacent to both i and j.
Similarly, there exists b′ ∈ f−1( f (b)) such that b′ is adjacent to both i and j. Thus {i, j, a′, b′} forms a
cycle C4. This is impossible since the subgraph of DFn induced by A is a path. Suppose there exists
only one vertex f (c) ∈ f (A) such that { f (i), f (c)} ∈ E(I f ). Then there exists f (d) ∈ f (A) such that
{ f (c), f (d)} ∈ E(I f ) since | f (A)| ≥ 3. Now there exists c′ ∈ f−1( f (c)) such that c′ is adjacent to both
i and j, and there exists d′ ∈ f−1( f (d)) such that d′ is adjacent to c′. Thus c′ is adjacent to 3 vertices of
A. This is a contradiction since each vertex of A is adjacent to at most 2 vertices in A. Consequently,
qEnd(DFn) = sEnd(DFn) for n ≥ 5.

Lemma 11. sEnd(DFn) 6= Aut(DFn) for any n ≥ 2.

Proof. Define a mapping f on V(DFn) by

f (x) =

{
t, x = s,
x, otherwise.

It is not hard to check that f ∈ sEnd(DFn), but f /∈ Aut(DFn). Therefore, sEnd(DFn) 6=
Aut(DFn).
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Lemma 12.

|Aut(DFn)| =


4 , n = 2,
8, n = 3,
4, n ≥ 4.

Proof. Let f ∈ Aut(DFn). If n = 2, then f (1), f (2) ∈ {1, 2} and f (s), f (t) ∈ {s, t}. So |Aut(DF2)| = 4.
If n = 3, then f (2) = 2. Denote by Y the subgraph of DF3 induced by {1, 3, x, y}. Then f |Y ∈ Aut(Y).
Thus |Aut(DF3)| = 8. If n ≥ 4, then f (x), f (y) ∈ {x, y}. If f (x) = x and f (y) = y, then the number of
automorphisms of DFn is equal to the number of automorphisms of Pn. It is 2. And analogously for
f (x) = y and f (y) = x. Therefore |Aut(DFn)| = 4.

Lemma 13. If n ≥ 4, then |sEnd(DFn)| = 8.

Proof. Assume n ≥ 4. Let f ∈ sEnd(DFn)\Aut(DFn). Then there exist x, y ∈ V(DFn) such that
f (x) = f (y). Then N(x) = N(y). Thus x, y ∈ {s, t}, f (x) = f (y) = x or f (x) = f (y) = y. If
f (x) = f (y) = x, then |sEnd(DFn)| = |Aut(Fn)| = 2 . Analogously for f (x) = f (y) = y. Hence,
the number of strong endomorphisms of DFn which are not automorphism is 4. By Lemma 12,
|Aut(DF4)| = 4. Therefore, |sEnd(DFn)| = 8.

Now we obtain the main result in this paper.

Theorem 1. Let DFn be a double fan graph. Then

Endospec(DFn) =



(16, 16, 16, 16, 16, 4), n = 2,
(64, 64, 64, 64, 64, 8), n = 3,
(284, 232, 72, 72, 8, 4), n = 4,
(A1(n), A2(n), B1(n), 8, 8, 4), n ≥ 5, and n is odd,
(C1(n), C2(n), B2(n), 8, 8, 4), n ≥ 5, and n is even.

where

A1(n) = 4(n + 1)2n−1 − 4(2n− 1)
(

n−1
n−1

2

)
+ 16n− 24 + (10n− 12)(2

n+1
2 + 2

n−1
2 − 4)

+8(n− 2)
[(

2
n+1

2 − 2
) (

2
n−1

2 − 2
)]

,

A2 (n) = 4 (n + 1) 2n−1 − 4 (2n− 1)
(

n−1
n−1

2

)
+ 16n− 24 + (10n− 12)

(
2

n+1
2 + 2

n−1
2 − 4

)
+8(n− 2)

[(
2

n+1
2 − 2

) (
2

n−1
2 − 2

)]
− 8 (n− 2)

(
1 +

n−5
2
∑

i=1
ai

)
,

C1(n) = 4(n + 1)2n−1 − 4n
(

n
n
2

)
+ 16n− 24 + (16n− 24)(2

n
2 − 2) + 8(n− 2)(2

n
2 − 2)2,

C2 (n) = 4 (n + 1) 2n−1 − 4n
(

n
n
2

)
+ 16n− 24 + (16n− 12)

(
2

n
2 − 2

)
+ 8 (n− 2)

(
2

n
2 − 2

)2

−8 (n− 2)

(
1 +

n−6
2
∑

i=1
ai + b n−4

2 +1

)
,

B1(n) = 8 ∑l|(n−1) (n− l) + 24n− 36, B2(n) = 8 ∑l|(n−1) (n− l) + 16n− 24,
am = b12m−1 + b22m−2 + · · ·+ bm−222 + 5bm−1 + 2bm−2 (m ≥ 3),

bm = 1√
5

[(
1+
√

5
2

)m
−
(

1−
√

5
2

)m]
is the Fibonacci sequence.

Proof. This follows immediately from Lemmas 4, 5, 7–12.
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Theorem 2. Let DFn be a double fan graph. Then

Endotype(DFn) =


16, n = 2,
16, n = 3,
27, n = 4,
23, n ≥ 5.

Proof. This follows directly from Lemmas 3, 5, 8–10.
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