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Abstract: In this article we study the asymptotic behaviour of the expected population structure of a
Markov system that lives in a general state space (MSGS) and its rate of convergence. We continue
with the study of the asymptotic periodicity of the expected population structure. We conclude
with the study of total variability from the invariant measure in the periodic case for the expected
population structure of an MSGS.
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1. Introductory Notes

Ref [1] introduced the stochastic process non-homogeneous Markov system (NHMS) with
countable state space. Ref [2] introduced the stochastic process non-homogeneous semi-Markov system
(NHSMS) in countable spaces. The theory and applications of both processes have seen the realization
of an interesting growth and have found many applications in fields with great diversity. The latest
reviews on the theory are given in [3,4]. The motives of this theory go back in the homogeneous Markov
chain models for manpower systems in [5,6] and the evolution of which, in a variety of populations, are
well described in [7]. The stochastic process of an NHMS represents a general frame work for a large
variety of applied probability models to be accommodated in. However, real motives were the works
on non-homogeneous Markov models for manpower systems such as [8-10]. We could selectively
only supply some applications of the theory due to their large numbers. We start with the evolution
of the HIV virus within the human body of T-cells in [11-13]; asthma was studied in [14]; reliability
applications exist in [15] for example; examples of biomedical studies exist in [16,17]; applications in
gene sequences ([18]); in DNA and web navigation ([19]); in manpower systems in [20-25]; in Physical
Chemistry ([26]); examples from ecological modelling ([27]). Finally, there is the work of the research
school of Prof McClean in the health systems (see, for example, [28-32]). Note that health systems are
large manpower systems and each member has many parameters that are used to categorize him/her
into the different groups. This characteristic of the health systems is what makes it an area of potential
application of the present results (see [33]).

The rigorous foundation of Markov systems in general spaces (MSGS) was introduced in [33].
Also, the problem of asymptotic behaviour or ergodicity of Markov systems was studied. Important
theorems were proved on the ergodicity of the distribution of expected population structure of a
Markov system, which lives in the general space (X, B (X)). In addition, the total variability from the
invariant measure was studied given that the Markov system is ergodic. It is shown that the total
variation is finite.

Markov chains in general spaces have very important applications in the areas of Markov models
in time series, models in control and systems theory, Markov models with regenerations times, Moran
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dams, Markov chains Monte Carlo simulation algorithms, etc. For more details, see [34] Chapter
2. There is a belief that the introduction in the presence of a population which is modulated as a
Markov chain with general state space will increase the dynamics for new applications considerably,
as it was described above in the countable case. Hence, although the results in the present are purely
theoretical, the prospects for interesting applications are present and promising.

In Sections 2 and 2.1, we start with the formal definition of a Markov system in a general state
space, as it was introduced in [33]. In Section 2.2, we provide an abstract image for an MSGS in an
attempt to help the reader in understanding the present paper. In Section 2.3, we introduce some
known concepts and results useful in the foundation of the novel results that follow from this point
to the end. In Section 3, we study the rate of convergence of the expected population structure in an
MSGS. Two theorems are provided where in the first we provide conditions under which the MSGS is
uniformly ergodic, and in the second we provide conditions under which the MSGS is V-uniformly
ergodic. In Section 4, we proceed to study the asymptotic periodicity of the expected population
structure, for a population that lives in a general state space. A basic theorem is proved, where it is
shown that if d is the period of the inherent Markov chain, then the sequence of the expected population
structures splits into d converging subsequences. The asymptotic periodicity of non-homogeneous
Markov systems in countable spaces was studied by [35,36]. In the present study, the basic tools and
methodology are different since, among other reasons, the equations are of completely different nature.
That is, we move from difference equations to integral equations for the expected population structure.
In Section 5, we study the total variability from the invariant measure in the periodic case for the
expected population structure of an MSGS. In the form of two theorems, we provide conditions under
which the total variability in the periodic case is finite.

2. The Markov System in a General State Space

We will start with a formal definition of a Markov system in a general state space ([33]) and then
we provide an explanatory example. The reader could choose his own suitable order of reading the two
subsections.

2.1. The Foundation of an MSGS

Let (X, B (X)) be the state space where X is a general set and B (X) denote a countably generated
o-field on X. Assume that small letters are elements of X and A, B, C elements of B (X). Let us denote
by T (t) the population of the system at time ¢, which lives in (X, B (X)). We assume that {T (t)};-, is
a known stochastic process with state space Z" and in discrete time.

Let that A : X — R™ be a positive o-finite measure A : X — R™, that is,

A(A) >0,A(A) < oo forevery A € B(X),

for which we have that A (X) = 1. We assume that A (.) represents the initial distribution of a member
of the population in the space (X, B (X)). We also assume that there is a set W € B (X) for which
A (W) = 0. We will refer to W as the “gate” of the space (X, B (X)).

In the space (X, B (X)) where the population lives, it is assumed that each member has a
membership, and that the leavers are leaving their memberships at the “gate”. Therefore, at any
time t at the “gate” W, the number of memberships are those left by leavers, and the necessary
AT (t) =T (t) — T (t — 1) memberships to complete the desired population T (¢). We will only work
the cases for which AT (t) > 0. New members of the population take their memberships at the gate
“gate” W from which they then make a transition to any A € B (X). Now let

{P(x,A), xe X, Aec B(X)}, (1)
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be the transition probability kernel from x € X to the set A € B (X) in one time step for a member of

the population. Denote by @, = {@;,n)} . the Markov chain with state space (X, B (X)), which is
ne

defined uniquely by the probability kernel (2.1). We now make the following:

Assumption 1. For the Markov chain ®, = {Cbén)} - the set W is an atom.
ne

That is, there exists a measure y (.) on B (X) such that

P(x,A) =u(A) foreveryx € Wand A € B (X), )
with u (X) = 1.
Now, define by
Q(x,A)=P(x,A)+P(x, W)u(A), foreveryx € X, Ac B(X), x¢ W, 3)
Q(x,A) =P(x,A) =u(A), foreveryx €¢ W, A € B(X). 4)

The transition probability kernel Q (x, A) in (3) is the probability of a membership to make a
transition from point x into the set A in one time step, either by direct transition of the member holding
the membership with probability P (x, A), or by the member leaving the system through the gate
W with probability P (x, W) and the entrance of a new member, who gets the membership of the
member from gate W, into set A with probability y (A). The transition probability kernel Q (x, A) in
(4) is the probability of new memberships entering the space (X, B (X)) at each time interval (t — 1, ¢].
From the gate of the atom, W is then distributed according to the o-finite probability measure y (.) :
B(X)—[0,1].

We will use the notation by @ = {CD(QH) }nd\” for the Markov chain with state space (X, B (X))
defined uniquely by Q (x, A) in (3) and (4). We also use the notation Q" (x, A) for probability that a
membership in x will move in # time steps to the set A € B (X).

Now, define:

N (x,t, A) : the number of memberships of the population that are in set A € B (X) at time ¢
given that were initially at x € X.

Assume, as it is usual in many applications, a natural partition of the space (X, B (X)), that is,

{Al}fill , with A; € B(X) and A; N Aj = @ for i # j and such that (5)
U§<:+11 A; = X and with no loss of generality A;,q = W. (6)

It is of interest the expected population structure defined as:
Ep [N (t, X)] = [Ep [N (x, t, Al)] ,Ep [N (x, t, Az)} S Ep [N (x, t, Ak)]] , (7)

where N (¢, X) is a non-negative measurable function on X. We are intersted also for the relative expected
population structure defined by

Epq(t X)] = Ep [N (£, X) /T ()] ®)
It could be easily seen that g : X — R is a positive o-finite probability measure since

N (x,t, Aj)

Q(xlt/Ai) = T(t)

>0; q(x,t,A;) <ooVie Ntandgq(x,t X)=1. ©)
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Of central importance is the evolution of the expected population structure Ep [N (¢, X)| or the
relative expected population structure Ep [q (¢, X)] in the study of Markov systems in general state
space. From Vassiliou (2014) we get that

Ep [N (x,t, A)] = T (0) / A (dx) Q' (x, A) + t_zl AT (n) / 1 (dx) Q' (x, A). (10)
X n=1

X

Note that
T(0) [A(dx)Q (x,4),
X

is the expected number of memberships from the initial population T (0) that survived up to time ¢
and are in set A. The part

t—1
Y AT(n) [ (dx) Q" (x,4),
n=1 X

is the expected number of memberships that entered the system in the interval [0, {] and survived up
to time t and are in set A.
We call the random process described above with state space (X, B (X)) a Markov system in a
ol

general state space. In addition, we will call the Markov chain ®g = { EQ } . the inherent Markov

. neN
chain of the Markov system.

2.2. An Abstract Image for MSGS

In the present subsection, in order to understand the various concepts and results, we will use the
analogy of the example of the frog who jumps on lilies in a pond. This example of an abstract image
was firstly used in[33] and the reader is referred to that study for a more extensive description and an
explanation of the various concepts. In summary, imagine a lily pond that is covered by the leaves of
the lilies. A population of frogs is living on the pond and a number of them are in every lily at each
point in time and hence we have an expected population of frogs in the lilies. There are also leavers
and newcomers in the pond at every point in time due to the antagonistic mating situation that exists
between the males.

2.3. Introducing Some Important Concepts and Known Results

Throughout the paper, we will assume that the Markov chain @, is ip-irreducible. That is, there
is a o-finite measure ¢ on (X, B (X)) such that, for any A € B (X) with ¢ (A) > 0,and any x € X,

Q" (x,A) > 0, for all n sufficiently large. (11)

Assume that ¢ is maximal with respect to 1. We will also assume that the Markov chain is aperiodic,
apart from the last section, where we will study periodicity. The concept of {p—irreducibility for Markov
chains on general state spaces was introduced by [37,38], and followed by many authors [39-44].

We will adopt the term ergodicity for the Markov chains for which the limit, lim, . Q" (x, A)
exists and is equal with 77 (A), where 77 is the invariant measure or stationary distribution of ®,. As a
mode of convergence in the space (X, B (X)), the total variation norm will be used. For a a signed
measure y on (X, B (X)), the total variation norm ||y|| is given by

‘= su (f)| = su (A)— inf u(A). (12)
el f:m};lu il Jup )= o dnf 1 (A)
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The key limit of interest in the present paper will be of the form

Jim 0" (x,) = 7 ()] =2 Jim sup Q" (x,) = 7 ()] (13)

For more on the spectral theory and rates of convergence for Markov chains in general spaces,

see [34]. Research is motivated by elegant mathematics as well as a range of applications. Note that,

for countable inhomogeneous Markov systems it was proved that the space of all possible expected

population structures is a Hilbert space ([45]). Now, for a —irreducible Markov chain who lives in
(X, B (X)), denoted by

BT (X)={AeB(X):¢¥(A) >0}. (14)

Let Q7 and Q> be transition kernels for Markov chains, then for a positive functionco > V > 1,
define the V-norm distance between Q1 and Q» as

191 (x,) = Q2 (x,)lly.

Q1 — Q|lly :==su (15)

| | | | | |V xeg vV (x)

We define the outer product of the function 1 and the invariant measure 7r the kernel
lenr(x,A)=n(A), xeX, AcB(X). (16)

In many applications, we consider the distance |||Q" — 1 ® |||}, for large n. We provide the
following definition from [34]:

Definition 1. (V-uniform ergodicity). An ergodic chain ® with transition kernel Q is called V-uniformly
ergodic if
[11Q" —1® |||y, = 0,a5 n — o0. (17)

Of great interest is the special case when V = 1. In this case, we provide the following definition:

Definition 2. (Uniform ergodicity). A chain ® with transition kernel Q is called uniformly ergodic if it is
V-uniformly ergodic with V =1, that is, if

sup [|Q" (x,.) — || = 0, as n — oo. (18)
xeX

The concept of a small set is very useful in order to have a finite break up into cyclic sets for
y-irreducible chains.

Definition 3. For C € B (X) we say that it is a small set if there exists an m > 0, and a non-trivial measure
vy on B (X), such that for all x € C, B € B (X)

P"™(x,B) > vy (B). (19)
In such a case we say that C is vy-small.
From [34] p. 105 we get the following Theorem:

Theorem 1. If ® is -irreducible, then for every A € BT (X), there exists m > 1 and a vy-small set C C A
such that C € BT (X) and vy, (C) > 0.

Given the existence of just one small set from the previous Theorem, the Proposition in [34] p. 106
states that it is further possible for set X to be covered by small sets in the ¢-irreducible case.
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Assume that C is any vj-small set, and vy (C) > 0, without loss of generality. With the use of the
set C vy we define a cycle for a general irreducible Markov chain. We will suppress the subscript of v
for simplicity.
We have that
PM(x,.) >v(),x€Candv(C) >0,

hence, when the chain starts in C, there is a positive probability that the chain will return to C at time
M. Let
Ec ={n>1:thesetCisv, = §,v small for some 5, > 0}.

Then the “period” for the set C, is given by the greatest common divisor of Ec. The following
Theorem ([34] p. 113) will be useful in what follows:

Theorem 2. Assume that @ is a p-irreducible Markov chain on X.

If C € BT (X) is vpg-small and d the greatest common divisor of the set Ec. Then there exist disjoint sets
Dy, ..., Dg_1 € B(X) (a "d-cycle) such that

(i) for x € D;, P (x,Di1) = 1,i =0,...,d — 1(modd).

(ii) the set N = {U?zl Dl} “is P-null.

The d-cycle {D;} is maximal in the sense that for any collection
{d.Dk=0,.,d -1}

satisfying (i)-(if), we have d dividing d; whilst if d = d , then, by reordering the indices if necessary D; = D;
ae. .

It is obvious from the above that any small set must be essentially contained inside one specific
member of the d-cycle {D;} cyclic class. From [34] p. 115, we need the following Proposition:

Proposition 1. Suppose @ is a p-irreducible chain with period d and a D-cycle {D;,i =0,...,d —1}.
Then each of the sets D; is an absorbing -irreducible set for the chain ®; corresponding to the transition
kernel P?, and @ on each D; is aperiodic.

For any set A € B (X), we denote by oc (A) the number of visits by ® to A after time zero and it
is given by

oc(A) = i 1 {cp<"> € A} . (20)

=1

3

We define the kernel

U(x,A):= i Q" (x,A) =Epocy (A)]. (21)

n=1

The chain @ is called recurrent if it is -irreducible and U (x, A) = oo for every x € X and every
A € B* (X). If the chain @ is irreducible and admits an atom a € B* (X) then if a is recurrent, then
every setin BT (X) is recurrent.

Definition 4. The set A € BT (X) is called Harris recurrent if
Plocy (A) = o0] =1. (22)

A chain ® is called Harris recurrent if it is y-irreducible and every set in B (X) is Harris recurrent.
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Definition 5. A o-finite measure 7t on B (X) with the property
n(A):/rc(dx)P(x,A),AEB(X). 23)
X
will be called invariant.

Suppose that ® is irreducible, and admits an invariant probability measure 7t. Then @ is called a
positive chain. If ® is Harris recurrent and positive, then ® is called a positive Harris chain. From [34] p.
328 and p. 204, we get the following two results:

Theorem 3. If ® is positive Harris and aperiodic, then for any initial distribution A
/)\(dx)P”(x,.)—n — 0asn — oo. (24)
X

For any Harris recurrent set H, we write H* = {y : L (y, H) = 1}, where L (y, H) is the probability
of @ of ever entering H from y, so that H C H* and H® is absorbing. We will call H a maximal
absorbing set if H = H®.

Theorem 4. If ® is recurrent, then we can write
X=HUN
where H is a non-empty maximal Harris set and N is transient.

3. Rate of Convergence of MSGS

In the present section, we will study the rate of convergence of Markov systems in general spaces.
We will provide conditions under which the rate of convergence of the expected population structure
of an ergodic Markov system is uniformly ergodic and V-uniformly ergodic. From [34] p. 393, we get
the following two Theorems:

Theorem 5. Suppose that ® is p-irreducible and aperiodic with transition kernel Q. Then the following are
equivalent for V. > 1 :

(i) @ is V-uniformly ergodic.

(ii) There exists r > 1 and R < oo such that for alln € N*

Q" —1&nllly < Rr ™.

(iii) There exists some n > 0 such that |||Q" —1® nt|||,, < oo fori < nand

i H’ 1.
[jo'-1@n|]], <

Theorem 6. For any Markov chain ® with transition kernel Q, the following are equivalent:
(i) ® is uniformly ergodic.
(ii) There exists v > 1 and R < oo such that for all x

1Q" (x,.) = () < R (25)

that is, the convergence takes place at a uniform geometric rate.
(iii) For somen € N*
sup [|Q" (x,.) = ()] < 1.

xeX
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(iv) The chain is aperiodic and Doeblin condition holds: that is, there is a probability measure ¢ on B (X)
ande < 1,8 > 0,n € N such that when ¢ (A) > ¢

inf Q" (x, A) > 4.
QA=

(v) The set X for some m is Vy-small.
(vi) For every set A € BT (X) and an aperiodic Markov chain there is a petit set C with

sup Ey [1c] < oo,
xeX

and in this case sup, .y Eyx [T4] < co.
(vii) For every set A € BT (X) and an aperiodic Markov chain there is a petite set C and k > 1 with

sup Ey [£7¢] < oo,
xeX

and we have for some k4 > 1,

supE, [k < o
xeX

(viii) For an aperiodic Markov chain there is a bounded solution V > 1 to
AV (x) < =BV (x) + bl¢c (x), x € X.

for some B > 0,b < oo, and some petit set C,
Under (v) , we get that for any x,

1Q" (x,) =7 ()] < 20/,
where p =1 — vy, (X).
Now, from [46], we will borrow the following theorem adapted for an MSGS:

Theorem 7. Let a Markov system in a general state space (X,B (X)), which is expanding
(AT (t) =T(t) — T (t —1) > 0). The following two statements are equivalent

(i) The sequence {T (t)};-, converges, that is, lim;_,o T (t) = T geometrically.

(if) The non-negative sequence { AT (t)}7-, tends to zero geometrically.

We will start by studying Uniform ergodicity for an MSGS for simplicity reasons and then proceed
to study V-uniform ergodicity.

Definition 6. (Uniform ergodicity for an MSGS). Let a Markov system in a general state space (X, B (X)) .
Also let {T (t)};2, be the total population of memberships with limy_,eo T (t) = T; Q (x, A) with x € X and
A € B(X) the transition kernel of the inherent Markov chain of memberships and Eq [N (x, A)] the expected
population structure. We say that the MSGS is uniformly ergodic if and only if there exists a C < oo and an
0 < a < 1such that

|Eq [N (x,t,A)] — Tr (A)]|| < Ca' for every x € X, A € B(X). (26)
We now provide the following theorem concerning uniform ergodicity for an MSGS.
Theorem 8. Let a Markov system that lives in (X, B (X)). Assume in addition that

tlim T (t) = T at a geometric rate, AT (t) > 0 for every t € N,
—00
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and that the inherent Markov chain with transition kernel Q (x, A) is uniformly ergodic. Then the MSGS is
uniformly ergodic.

Proof. We have that

[Bq [N (x,t, A)] = Tre (A)]|| = [[Eq [N (x,t, A)] = T (0) 7 (A) = (T = T (0) 7 (A))]
(From Equation (10) )

=I7(0) L{A(dx)@f(aw)n( >} L AT (0) [y (@) Q" (14) = £ AT (1) m(4) |
<IT) L{A(dX)Qt(x,A)—ﬂ( )] E AT () [y (d) Q" (x,4) = 7(4)] = E AT (1) (4) |
o .M () Q' (x,4) = 7 (4) |
HIE BT (0) [y (@) Q" (5, 4) = ()] | + || E 6T ()7 (4) |

From (27) and since lim; o T (t) = T is geometrically fast and AT (¢) > O for every t € N, from
Theorem 6 we get that there existac > 0and a1l > b > 0 such that

| ZAT A) < Iz (A)] Y AT (n) < e(1-b)7 10" (28)
n=t

Also from (27), since [y A (dx) = 1 and since the inherent Markov chain with kernel Q (x, A) is
uniformly ergodic, from Theorem 6 (ii) there exists R < oo and r > 1 such that

0) ){A(dx) Q' (x,4) =7 (A) [[=T(0) || ){A(dx) [Q" (x, A) = (A)] ]

0) [ A(dx)||Q" (x,A) = (A)|| < T(0) [ A (dx)Ra' < T (0) Ra, @9)
X X
witha=r"1,0<a< 1.

Now, again since lim;_, T (t) = T is geometrically fast and AT (t) > 0 for every t € N from
Theorem 6 there existac > 0andal > b > 0 with AT (t) < cb'; in addition since the inherent Markov
chain with kernel Q (x, A) is uniformly ergodic, from Theorem 6 (ii) there exists R < oo and r > 1, that
is,0 < a = r~1 < 1 such that

I Z AT (n) [[x 1 (dx) Q" (x, A) — 7w (A)] ||

=1
- Eﬁw i e () Q7 (x, 4) — 7 (4)]

i1 i1 (30)
< ngl AT (n) [y p (dx) [|Q" (x, A) —  (A)]| < ngl AT (n) [y p (dx) Ra'~"
< til cb'Rat~" < cR(1—b/a)"" (1 — (b/a)t) at = R*a'.
n=1
Now, from (27)-(30) we have that
|Eq [N (x,t,A)] — Trt (A)]|| < T(0) Ra* + R*a' +¢(1—b) " b'. (31)

Leta; = max{a,b} then0 < a; < 1and

|EQ [N (x,t,A)] — T (A)]|| < T(0)Ral+R*a} +c(1—b)"'a}
< [TOR+R +c(1-b)7"]d
< c*d,

which concludes the proof that MSGS is uniformly ergodic. [
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Generalizing the above results to V —iniform ergodicity is now straight forward. We start with
the definition

Definition 7. (V-Uniform ergodicity for an MSGS). Let a Markov system in a general state space
(X,B(X)). Alsolet {T (t)};-, be the total population of memberships with lim;_eo T (t) = T; Q (x, A) with
x € Xand A € B(X) the transition kernel of the inherent Markov chain of memberships and Eg [N (x, A)]
the expected population structure. We say that the MSGS is V — uniformly ergodic if and only if there exists a
C <ooandan 0 < a < 1such that

|| Eg [N (x,t, A)] — Tr (A)] |||v< Ca' for every x € X, A € B(X). (32)
Following exactly the proof of Theorem 8, we arrive at the following result:
Theorem 9. Let a Markov system that leaves in (X, B (X)). Assume in addition that

tlim T (t) = T at a geometric rate, AT (t) > 0 for every t € N,

—00

and that the inherent Markov chain with transition kernel Q (x, A) is V —uniformly ergodic. Then the MSGS is
V —uniformly ergodic.

4. Asymptotic Periodicity of an MSGS

The study of the asymptotic behaviour of Markov chains has been very important for finite or
countable spaces from the start of their history. The general state space results are due to [40,41,47].
In the non-homogeneous Markov chains when the state space is countable, the initial important results
on asymptotic behaviour were achieved by [48-52]. For the semi Markov process analogue, a wealth
of results exist in the books by [53,54] . For NHMS and NHSMS on countable spaces the asymptotic
behaviour has also been a problem of central importance see for example [1,36,55-57]. In the present
section, we will assume that the Markov chain is periodic and study the asymptotic behaviour of
the expected population structure, which apparently is an important problem for a population that
lives in (X, B (X)). Let it be that the inherent Markov chain of the MSGS with kernel Q is positive
Harris with period d > 1, and let the d-cycle described in Theorem 2 be the set {Dy, D1, ..., Dy_1},
where D; € B(X) fori =0,1,...,d — 1. We have assumed that A (x) is the initial distribution on X.
Then the distribution on the set D; is

_ Ax)
() = A (Dy)

where x € D;. (33)

From Theorem 2, we have that if x € Dy then Q (x,D;) = 1 and consequently Q? (x,D;) =
fD (x,dy) Q (y,Dy). However, for y € D; we have Q(y,D;) = 1, hence Q?(x,D;) =
f D, (x,dy) = Q (x, Dq) = 1. Similarly, since the period is 4 we have

If x € D; then Q" (x,D;) =1, Q™ (x,D;) = 0fori # j. (34)
Now, in general for x € D; and for d > i + v we have

Qndﬂj (%, Dity) = f Qnd (x,dy) Q" (y, Diyo)

= (fory € D; andd>z+v Q’(y,Djyy) =1) (35)
= Jp, Q" (x,dy) = 1.
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It is apparent from (35) that
If x € D; and for d > i + v we have Q" *? (x,Dj) =0forj#i+v. (36)

If x € D; and for d < i+ v we have

QU (x,Dyyo-a) = [ Q" (xdy) Q" (4 Diso-a)
D;
= (forye D;jandd <i+v, Q" (y,Diyp_q)=1)

~ (@ =1

D;

From the fact that the inherent Markov chain with kernel Q is assumed to be positive Harris with
period d we know that for each cyclic set is positive Harris on the d-skeleton and aperiodic, and by
Theorem 3 it is straightforward to check the following Theorem:

Theorem 10. If the inherent Markov chain of the MSGS is positive Harris and periodic with period d, then for
the sets { Dy, D1, ..., Dy_1 } with D; € B (X) we have that

lim / A; (dx) PP (3, A) — 7110 (A)| = 0ifd > i+ vfori=0,1,..,d 1,

n—oo
D;

forany set A C Dj,, and

lim
n—oo

/A ) PP (3, A) = iy (A)| = 0ifd <itvfori=0,1,...,d 1,

forany set A C D 4.
Now, from the above Theorem and the decomposition Theorem 4, we immediately get the following:

Theorem 11. If the inherent Markov chain of the MISGS is positive recurrent and periodic with period d, then
for the sets { Dy, D1, ..., Dy_1 } with D; € B (X), then for each i there exist a rt;—null set N; which for every
initial distribution A; with A; (N;) =0

nlglgo =0ifd>i+vfori=0,1,.,d—-1,

J A ) P, 4) = iy (4)
D;

forany set A C Dj,, and

Jim /}\,» (dx) P (2, A) — 7t g (A = 0ifd < it ofori=0,1,.d 1,
D;

forany set A C Dj iy 4.

We will now start building the proof for the periodicity Theorem for an MSGS and we will state
the theorem in the end. The important question is the periodicity of the expected population structure

Ep [N (t,X)] = [Ep [N (x,£, A1)], Ep [N (x,t, A2)], .., Ep [N (x, £, A)]],
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when the inherent Markov chain with kernel Q is positive Harris and periodic with period d or is
positive recurrent and periodic with period d. With no loss of generality and for simplicity reasons, in
what follows we will use the set A instead of any of the sets A;, (i = 1,2, ..., k) . From Equation (10) we
have that

Ep [N (x,t, A)] //\ (dx) O (x, A) +ZAT /y(dx)Qf—”(x,A). (37)
X
We will work with each part of the right hand side of Equation (37) separately. We have that

/A(dx)Qf(x,A) — A(Do) /AO (dx) Q' (x, A) + A (Dy) //\1 (dx) Q' (x, A)
X

Dy

Fot A (Dy) / A1 (dx) Q' (x, A) (38)
Dy

We could write the set A in general as follows
A=ANDyUAND U..UANDy_q, with (AND;)N (AND;) =@, fori # j. (39)

Let without loss of generality that t = 7td 4 v and consider in what follows that for all i =
0,1,....d—1,d > i+ v. Then we have that

Qf (x,A) = Q™Y (x,A) = Q™ (x, ANDp) + Q™ (x, ANDy) + ... + Q7 (x, ANDy_1). (40)

From (38) we have that

d—1
lims oo || [ A (dx) Q (x, A) — 120 A(Dy) iy (ANDiyy) || =
X 1=
. d=1 y d—1
= limy—e0 ‘ZOA(Di) [ A (dx) Q4 (x, A) — ‘ZO/\(DI-) Tivo (AN Dify) (41)
1= D; 1=
d—1
< limy—eo '20 A(D;) || [ A (dx) Q7Y (x, A) — 74y (AN Digy)
i= D;
Now, from (40) and (41) we get that
_ d-1
limy—seo || [ A (dx) QF (x, A) — Zo A(Di) iy (AN Djyy)
X 1=
< 1Moo z A(D i J A (dx) Q0 (x, AN D;) — 7tipy (AN Dysy)
i=0 j=0 D;
< limyr—se0 z A(Di) || Ai (dx) Q7 (x, AN Diyy) — iy (AN Dity) (42)
i=0 D;

+hmnw2A< ) r
i= j=0,j#i+v ||D

(from Theorem 10 and relatlon (36) we get that)
<ec.

fA (dx) Q™*V (x, AN Dj)

Hence, we proved that when t = 7td + v and d > i + v then the limit of [ A (dx) Q' (x, A) as
X
t — oois
d—1

Y A(Di) iy (ANDjpy) - (43)
i=0
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Similarly, following the same steps we could prove that for t = 7td + vand d < i+ v then

lim //\ (dx) Q' (x, A) Z)\ ) Tivo-d (AN Diyo_a)| = 0. (44)
From (42) and (43) it is not difficult to check that
d—v-1
im0 || [ A (dx) QF (x, A) — P A (D) Tty (AN Diyy)
X (45)
- dz A(Dj) Titp—4 (AN Dity—gq) [|= 0.
i=d—v

Assume now that limy ;. T (t) = T and AT (t) > 0 for every t. Let again that t = 7d 4 v then

U ()= T AT () ) Q" (. 4) =" AT () [ ) Q407 (5,
n=1 X
d):l nzl AT (Td+m f]’l dx Qﬂd‘FU*(Td‘FWl) (x,A) (46)
m= OT 0

+ Z AT (7ed +m) [ p (dx) QrdFv=(md+m) (x A).
m=0 X

Now, since lim;—, AT (t) = 0 we have

-1
iMoo | ¥ AT (ed +m) [ p (dx) Qo= (xd4m) (x A)
m=0 X
o1 (47)
< Y limpyeo AT (70d + m) limy—yeo || [ 1 (dx) Q0= (M) (1 A)|| = 0.
m=0 X
Hence, from (46) and (47) we get that
d—1 m—1
lim U(t) = lim Y Y AT( Td—l—m)/y(dx) Qrrtv=(rdm) (x A)
f=reo T =0 70 X
-1
— lim Y Y AT(td+m) / 1 (dx) QUE=Tdv= (1 A) 48)
T =0 1=0 ¥
d—1 n-1
+ lim Z ZAT (td +m) /V (dx) Q (r—t—-1)d+(d+v—m) (x,A).
T = v+1 7=0

It is apparent that since AT (t) > 0

td+r
ZAT (td+m) < ZAT =T (nd+r)—T(0),
=0
and thus the series )
—
Y AT (td+m),

=0
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is bounded by T — T (0), its elements are non-negative and thus it converges; so let

m—1
limgoe Y, AT (1d 4 m)
Wi = L . (49)
limyeo Y AT (f)

Now, let us define by
Jim U (¢ Z lim ¥ AT (e +m) [ tax) QU (3, 2) (50)
=0 X
Now from (49) we get that
-1
,%EQOZAT (td +m) = wy, Jim ZAT wy (T —T(0)). (51)
Therefore (50) becomes
%
lim Uy (t) = (T—T(0)) m; W (52)

=l AT (td +m)

Jm, Yo p (dx) QU (x, 4)
=0 Y AT (td +m) X
=0
=l AT (td +m)
i (m—1)d+v—m
Jim, T;O 1 (dx) Q (x, A).

-1
Y AT (td +m) X
=0
We now provide the following useful Lemma:
n
Lemma 1. Ifa,/ Y ap — 0asn — coand {ay,} non-negative, and {b,} — b then
k=0

boa, + b1a,_1 + ... + byag

lim .
Y a
k=0

n—oo

—b. (53)

From Lemma 1, (52) and the result in (45) where we may replace A (dx) by p (dx) it is not difficult
to check that the following holds

v d—(v—m)—1
limeseo | Uy () = (T=T(O) L L @t (Di) iy ymm) (A0 Dis (o))
o a1 T (54)
—(T=TO) X T @upt (D) i arom (ANDiaiom) I=0.
m=0i=d—(v—m)
i<d—1
Define by
_ (m—t-1)d+(d+v—m)
lim Uy (1) = lim 2 2 AT (td + m) / 1 (dx) Q (x, A). (55)

m=v+1 1=
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Then similarly we could prove that

limy—e0 || Ua (£) — (T — T (0)) x
d—1 d—(d+v-m)-1
Py Wit (Di) Ty s (v—m) (A n Di+d+(vfm))
m=v+1 i=0 i i1 (56)
—(T-T(0) ¥ Y wmp (D)) X
m=v+1i=d—(d+m—v)
i<d—1

TCi—d4-(d+v—m) (Aﬁ D;_ d+(d+v—m) ) ”*

Therefore from (37), (45), (48), (54) and (56) for t = 7td + v we get that

d—v—1
lim/o || Ep [N (x,t, AH —T(0) ';0 A(D;) iy (AN Djyy)
-1
7T(O) dz A (Di) Tiyv—d (A N Dz+v d)
i=d—v
v d—(v—m)—1
“(T=TO) L L @t (D) isomm) (AN Dicioom))
v d—1
—(T-T©) X L wnp(Di) Ti_gs(o—m) (Aﬁ Di7d+(vfm)) (57)
m=0i=d—(v—m)
i<d—1
d—1 (m—v)-1
~(T=T©O) T % @utt(D) iras(oom (AN Diras(oom))
e S

~(T=T(0) T @nit(D)Aipiom (AN Diom) 1= 0,
m=v+1i=(m—v)
i<d—1

forv=0,1,...,d — 1. Hence, we have proved the following Theorem:

Theorem 12. Let an MSGS and let that the inherent Markov chain of the MISGS be positive Harris and periodic
with period d.

OR let it be that the inherent Markov chain of the MSGS is positive recurrent and periodic with period
d, and let the sets {Dg, D1, ..., Dg_1} with D; € B (X). Then the expected population structure splits into d
converging subsequences, that is,

tlggo | Ep [N (x,t, A)] ; i) Titw (AN Digy)
d—1
_T(O) Z (Di) Tty d(AﬂD1+v d)
i=d—v
v d—(v—m)—1
~(T-T(0) ¥ Wntt (D) 714 (o-m) (AN D (o )
m=0 i=0
v d—1
—(T=TO) Y, ¥ @utt(D) i gitoom (ANDisgi(om))
m=0i=d—(v—m
iﬁlg—l )
d—1 (m—v)—1

—(T=T(0) Y. Y @t (Di) Tiras(o-m) (A N Di+d+(v—m))
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d—1 d—1
~(T=T©) ¥ ¥ @t (D) Tistom (AN Disoom)) =0,
m=v+1i=(m—v)
i<d—1
forv=0,1,2,.,d -1
5. Total Variability from the Invariant Measures in the Periodic Case. Coupling Theorems

In this section, we study the total variability from the invariant measures in the periodic case
for an MSGS. We show that the total variation in the periodic case is finite. This is also known as the
coupling problem (see [58]). From [34] (p. 332) we get the following:

Theorem 13. Suppose that ® is positive Harris and aperiodic chain and assume that the chain has an atom
a € Bt (X). Then for any A, u reqular initial distributions

Y [ [ Ao uay) [P (x) = P (5] < o,
nle X
and in the case that ® is reqular, then for any x,y € X

illll’” (x,.) = P" (y,.)|| < co.

Theorem 14. Suppose P is a positive Harris and aperiodic chain. For any A, y reqular initial distributions
Y. [ [ At @y 1P (5, = P ()] < o
n=ly x

Theorem 15. Suppose that ® is a positive Harris and aperiodic chain and then let « be an accessible atom.
IfEy [12] < oo, then for any regular initial distribution

[«
Y AP" — 7] < co.
n=1

Now, if we assume that the inherent Markov chain ®g with kernel Q of the MSGS is positive

Harris with period d then by Proposition 1 when restricted to each cyclic set is aperiodic and positive
Harris on the d-skeleton, and by Theorems 13-15 it is straightforward to check the following theorem:

Theorem 16. If the inherent Markov chain ® g with kernel Q of the MSGS is positive Harris with period d,
then for the sets {Dy, D1, ..., Dy_1} with D; € B (X) we have that
(a) For any reqular initial distributions A, y and ford > i+ v,

¥ [ [ 2 0n ) [ (5, A0Dise) - @ (AN D)
"= D; D;

<oo, x,y €D for i,v=0,1,.,d-1
Also, ford <i+v
Y ///\ (dx) p (dy) HQ"‘HU (x, ANDjsy_q) — Q" (y,AN Di+v7d)H
n:1Di D;

< oo, x,y €D, for i,v=0,1,..,d—1.
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fori,v=0,1,..,d -1
(b) If for the accessible atom W we have that By, [T, ] < 0o, then for any reqular initial distribution A we
have ford >i+v,x € Dijandi,v =0,1,..,d — 1

< o©

7

Z H/\ (dx) Qnd+v (x/ AN Di+v) — Tito (A N Di+v)
n=1

andford <i+v,x € Djandi,v=0,1,..,.d -1
Y ||2 @) Q" (x, AN Dy ) = Tiyu-a (AN Diyy-a)| < o0

We will now prove the following coupling theorem for an MSGS with inherent Markov chain @,
which is assumed to be positive Harris and periodic.

Theorem 17. Assume that the inherent Markov chain ®q of a Markov system that lives in (X, B (X)) with
kernel Q (x,.) is positive Harris with period d. Also, let it be that

lim T (t) =T, AT (t) > 0 forevery t € Z*.

t—o0

Then for any regular distributions A1, u1, Az, o we have
Y |EpN (x,t,A) —Ep [N (y,t, A)]|| < co.
t=1

Proof. We have that

[INnek:

HEPN(x t,A)—Ep[N(y,t, A)]l| = tEl 1 T(0) [ A1 (dx) Q" (x, A) +
= X

¥ AT(ﬂ))J; p1 (dx) Q7" (x, A) — T (0) f)\z(dJ/ )Q (v, A) -

n=1
_nZ1AT m) J p2 (dy) Q7" (v A) | (58)
<LTO [ M@ Qe = (@) Q' A)] | +

ZZAT \|fy1def”xA f#zdyQt”(y/)H:UA(f)JrUu(f)

t=1n=1
With no loss of generality assume that t = 7td + v. Denoted by

Az (dx)
Ay (D)

/\1,‘ (dX) ( ) and )\2, (dX)

dx
A (D) 59)

From (58) and (59) we have that

<y ZT I 24 (Di) [ Ay ) @ (x,4) = 22 (Dy) [ Aas (@) Q7 (3, 4) || . (60)
D;

=0 i= D;
1

We have that
d—1 d—1
Y A (Dj)=1and ) Ay (D) =1 (61)
i=0 i=0
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From (61) it is apparent that with no loss of generality we may assume that

D;) > Ay (Dy) forj=j+1,..,d—1. (62)

)\1 (Dl) < /\2 (DZ) fori = 0, 1,] and /\1 (

Also, without loss of generality again we may assume that d > j + v, then from (60) and (62)

o ]
Up ()< & L T(0)A(D) | f Ayi (dx) Q7 (x, AN Dyyp)
m=0i=
fAZz dy QMHU (y Asz—l—v) ||
D;
o d—uv—1 i
+ X X T(O) ” fAlz dx) Qn v (x AmDH—U)
=0 i=j+1 D; (63)

f/\21 dy QWH_U (y Ale-ﬁ-v) ||
D;

1

+ Y Z T(O) A (D) || J Mg (dx) Q740 (x, AN Dyyp-a)

=0i= D;
— [ hai (dy) va (x, AN Dipoa) lI= U () + U (1) + U (1),
D;
Now, it is not difficult to check that
[ i@ @ (AN D) = [ [ dai(dx) das (@) @ (1, AND1), (69
D,‘ Di Di
and
[ i @) Q7 (1,40 D) = [ [ A () A (dy) @ (1, ANDi) . (65)
i D; D;
Therefore from (63)—(65) we get that
j o
ul (1) < L T(0)A2(Dy) L [ [ Mi (dx) Az (dy)
i=0 n=0D; D; (66)
x || QMY (x, AN Diyy) — Q™ (y, AN Diyy) || -
From Theorem 16 and (66) we get that
(67)

j
SZ i) Ky < oo,

In a similar way we get that U§2) () < o0 and US) () < oo and consequently from (63) we
get that
Up (t) < co. (68)

The case for d < j+ v is proved in an analogous way.
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We have that

()

Uy () = Z[Z AT (n fm (dx) Q" (x, A)

=1
t—1

— ¥ AT (n) [ pa (dx) Q" (x, A)]
n=0 X

oo d—1 | md+v—1
=0 v=0 n=0

=Y .| L AT(n {fmdef”xA fuzdny"(y, )}

o d-=1d-1mn-1

=Y T[T L AT(d+m)x

=0 0v=0 m=0 t=0
{){,ul dx Q(nd+v) Td+m) x A fVZ d]/ Q(miJrv)f(‘rdij) (]/,A)}]

+ Y 1S AT (d +m) {f pa (dx) QUIdTo)=(mdm) (x, A)

=0 m=0

—){ﬂz (dy) Q(m;l+v) (m;l+m) (y,A)}] _ UP(L”) (t) + U}({“) (t).
We start with UP(,U) (t) and we have that

|ul 0 < £ 1T AT (v +m)

=0 m=0

(dx) QU™ (x, A) fyz (dy) Q"™ (y, A )}]H

[e0)

< Z[): AT (td +m) 2 | J 1 (dx) QU™ (x, AN Djsy_m)

=0 m=0 i=0 D,

—gﬂz (dy) Q""" (y, AN Diyp—m)}] || -

Denote by

pa (dx) p2 (dx)
Hii (dx) 1 (D1> and Hai (dx> 1o (Dl)

Then with no loss of generality we may assume that there is an r such that

1 (Di) < u (D,') fori=0,1,..,rand 251 (Di) > U (Di) fori=r+1,..,d—1.

From (70)—(72) and using Theorem 16 we get that

| (1)]| < ZAT (td+m) Y 2 (D)

=0 m= i=0

I [ J wai (dx) pai (dy) QU™ (x, AN Dygp—m)

D; D;
- bf g p1i (dx) piai (dy) QU (¥, AN Dijp—m) } |
o o v—1 d—1
+ L[ X AT(td+m) ¥ p(D;) %
=0 m=0 j=r+1
I J i (dx) poi (dy) QU™ (x, AN Diyy—pn)

D; D;

— [ J i (dx) i (dy) QU™ (y, AN Dygvp) }] ||
D; D;

o v—1 T d—1
<Y L AT(d+m)[X pp (D)) Ky (v—m)+ ¥ p1(D;i) Ko (v—m)] < oo

=0 m=0 =0 =1

19 of 23

(69)

(70)

(71)

(72)

(73)
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We now move to U}(ln) (t) and we have that

| < £'518 ar(xacm | o (0 Qo400 3, 4)

=0 v=0 m=0 =0

*f#z (dy) QUr—r)+e- ’”(}/ A) |l

o d-1 d-1 mn—1 (74)
Y Y[ L X AT(td+m) ||f pp (dx) QU= dtdtv=m ( A)

=0 v=0 m=v+1 =0

= [ (dy) QUT Dy, A) = |uf™ @ +[jus™ ).

ja

We start first with U;,n’l) (t) and we get that

. o d-1 v

Jurt o < £E £ araem £ J 1 (@) QU (1, )
=0v=0m= m—T1=1i=0

—Df#z (dy) QU= d+o= ’”(y A |

d*ll v 0o r

) 20 ZOAT(Td—i—m) ) 1’20]/12(Di) X

v=0m n—1=1i=

J i (dx) poi (dy) QUI—DIFv=mm (1, A)

. D;

i (dx) pog (dy) QUE=Dav=m (x, A) ||

. D;

d—1 v

+ Y'Y ¥ AT (td+m) E i 1 (Dy) %

7=00v=0m=0 =1i=
| f J i (dx) poi (dy) Qe o " (x, A)

Z i

- Df Dfﬂu (dx) pigg (dy) QU=D+v=m (e A) =] UMY (1) || + | U (#) |-

<

128

(75)

%D_P\T

8o

Now, using Theorem 17 and from (75) we have that

(o] — %
O SZZZ (rd+m) Y. Y pa(Dy)Clv—m) < oo 76)
Similarly, we get also that

1 U (1) [|< coand || US (#) [|< co. (77)

From (68), (69), (76), and (77), we conclude the proof of the Theorem. [

Similarly, and with the use of Theorem 16.b we could prove the following Theorem

Theorem 18. Assume that the inherent Markov chain ®q of a Markov system that lives in (X, B (X)) with
kernel Q (x,.) is positive Harris with period d. Assume, in addition, that for the accessible atom W, we have
B [13] < oo and that

lim T (t) = T, AT (t) > 0 foreveryt € Z™.

t—00

Then for any regular distribution A we have

oo —1d—v—
Z”E[ xtA Z Z 7Tl+v AmDH—v)
t=1

=0 i=0

<
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-1 d-1
—T(O)Z Y, AD) iy (ANDjpy )

. _
~(T-TO) Y ¥ Wntt (D) 7y (o-m) (AN D (o )
v=0m=0 i=0

d—1 v d—1
)Y Y Y. Wup(Di) Ty (o—m) (AﬁDi—d+(u—m)>
v=0m=0i=d—(v—m)

i<d—1

d—1 d—1 (m—v)-1

)Y, Y Y wupt(Di) Tiyar(o—m) (AmDHdJr(vfm))

v=0m=v+1 i=0
d—1 d-1 —

Z Z Z wm}l Tt (v—m) (Ale#(vfm)) [=0.

v=0m=v+1i=(m—
i<d— l

6. Conclusions and Further Research

We studied a population that lives in a general state space that at every instant has leavers and
new entrants, which evolves under the Markov property. We proved that under certain conditions the
expected population structure converges with geometrical rate to an invariant population structure
with loss of memory. We also provided the analogous result for the V-uniformly ergodicity of MSGS.
Moreover, under the assumption that the inherent Markov chain is periodic with period d, we proved
that the sequence of the expected population structure splits into d convergent subsequences and
provided their limits in closed forms. Finally, we proved that the total variability from the invariant
measure in the periodic case is finite. We concluded the novel results by proving two coupling theorems
under the assumption that the inherent Markov chain is positive Harris with period d using different
additional conditions in each case. The above theoretical results have important applications both in
the classical areas where Markov chains in general spaces have already been applied but especially to
the important area of the health systems that, nowadays, are in crisis all over the world.

The results in the present paper together with the ones introduced in [33] provide the nucleus for
anew path for extensive research in the area. Immediate further research of interest is to establish Laws
of Large numbers for MSGS as a possible extension of the Laws of Large numbers for populations that
live in countable spaces [59].
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