The Relationship between the Core and the Modified Cores of a Dynamic Game
Abstract
:1. Introduction
2. Background
3. The Results
3.1. General Results
- 1.
- If for any coalition , then for every game stage .
- 2.
- If for any coalition , then for every game stage .
- 3.
- If for any coalition , then for every game stage .
- 1.
- If for any coalition , then for every game stage .
- 2.
- If for any coalition , then for every game stage .
- 3.
- If for any coalition , then for every game stage .
3.2. Linear Symmetric Games
- 1.
- If , then for every game stage .
- 2.
- If , then for every game stage .
- 3.
- If , then for every game stage .
- 1.
- If , then .
- 2.
- If , then .
- 3.
- If , then .
3.3. Two-Stage Network Games
3.4. A Class of Linear-State Games
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yeung, D.; Petrosyan, L. Subgame Consistent Economic Optimization: An Advanced Cooperative Dynamic Game Analysis; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Yeung, D.; Petrosyan, L. Subgame Consistent Cooperation: A Comprehensive Treatise; Springer: Singapore, 2016. [Google Scholar]
- Van den Heuvel, W.; Borm, P.; Hamers, H. Economic lot-sizing games. Eur. J. Oper. Res. 2007, 176, 1117–1130. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, J.; Kimms, A. Computing core allocations in cooperative games with an application to cooperative procurement. Int. J. Prod. Econ. 2010, 128, 310–321. [Google Scholar] [CrossRef]
- Toriello, A.; Uhan, N.A. Dynamic cost allocation for economic lot sizing games. Oper. Res. Lett. 2014, 42, 82–84. [Google Scholar] [CrossRef]
- Chander, P.; Tulkens, H. The core of an economy with multilateral environmental externalities. Int. J. Game Theory 1997, 26, 379–401. [Google Scholar] [CrossRef]
- Germain, M.; Toint, P.; Tulkens, H.; de Zeeuw, A. Transfers to sustain dynamic core-theoretic cooperation in international stock pollutant control. J. Econ. Dyn. Control 2003, 28, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Parilina, E.; Zaccour, G. Node-consistent core for games played over event trees. Automatica 2015, 53, 304–311. [Google Scholar] [CrossRef]
- Petrosian, O.; Zakharov, V. IDP-Core: Novel Cooperative Solution for Differential Games. Mathematics 2020, 8, 721. [Google Scholar] [CrossRef]
- Petrosyan, L. Strongly time-consistent differential optimality principles. Vestnik Leningradskogo universiteta. Seriya 1 Matematika, mekhanika, astronomiya 1993, 4, 35–40. (In Russian) [Google Scholar]
- Petrosyan, L.; Sedakov, A.; Sun, H.; Xu, G. Convergence of strong time-consistent payment schemes in dynamic games. Appl. Math. Comput. 2017, 315, 96–112. [Google Scholar] [CrossRef]
- Petrosyan, L.; Zaccour, G. Cooperative differential games with transferable payoffs. In Handbook of Dynamic Game Theory; Springer: Cham, Switzerland, 2018; pp. 595–632. [Google Scholar]
- Başar, T.; Olsder, G.J. Dynamic Noncooperative Game Theory; SIAM: Philadelphia, PA, USA, 1999; Volume 23. [Google Scholar]
- Sedakov, A. On the strong time consistency of the core. Autom. Remote Control 2018, 79, 757–767. [Google Scholar] [CrossRef]
- Parilina, E.; Petrosyan, L. Strongly subgame-consistent core in stochastic games. Autom. Remote Control 2018, 79, 1515–1527. [Google Scholar] [CrossRef]
- Petrosyan, L. Construction of strongly time-consistent solutions in cooperative differential games. Vestnik Leningradskogo universiteta. Seriya 1 Matematika, mekhanika, astronomiya 1992, 2, 33–38. (In Russian) [Google Scholar]
- Shapley, L.S. Cores of convex games. Int. J. Game Theory 1971, 1, 11–26. [Google Scholar] [CrossRef]
- Lovász, L. Submodular functions and convexity. In Mathematical Programming The State of the Art; Springer: Berlin, Germany, 1983; pp. 235–257. [Google Scholar]
- Petrosyan, L.; Zenkevich, N. Game Theory, 2nd ed.; World Scientific: Singapore, 2016. [Google Scholar]
- Petrosyan, L.; Sedakov, A.; Bochkarev, A. Two-stage network games. Autom. Remote Control 2016, 77, 1855–1866. [Google Scholar] [CrossRef]
- Gao, H.; Petrosyan, L.; Qiao, H.; Sedakov, A. Cooperation in two-stage games on undirected networks. J. Syst. Sci. Complex. 2017, 30, 680–693. [Google Scholar] [CrossRef]
- Sedakov, A. Characteristic function and time consistency for two-stage games with network externalities. Mathematics 2020, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Sedakov, A.; Qiao, H. Strong time-consistent core for a class of linear-state games. J. Syst. Sci. Complex. 2020. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedakov, A.; Sun, H. The Relationship between the Core and the Modified Cores of a Dynamic Game. Mathematics 2020, 8, 1023. https://doi.org/10.3390/math8061023
Sedakov A, Sun H. The Relationship between the Core and the Modified Cores of a Dynamic Game. Mathematics. 2020; 8(6):1023. https://doi.org/10.3390/math8061023
Chicago/Turabian StyleSedakov, Artem, and Hao Sun. 2020. "The Relationship between the Core and the Modified Cores of a Dynamic Game" Mathematics 8, no. 6: 1023. https://doi.org/10.3390/math8061023
APA StyleSedakov, A., & Sun, H. (2020). The Relationship between the Core and the Modified Cores of a Dynamic Game. Mathematics, 8(6), 1023. https://doi.org/10.3390/math8061023