A New Extension of Hardy-Hilbert’s Inequality Containing Kernel of Double Power Functions
Abstract
:1. Introduction
2. Some Lemmas
3. Main Results
- (i)
- Bothandare independent of;
- (ii)
- is expressible as a single integral
- (iii)
- in (13) is the best possible constant factor;
- (iV)
4. Operator Expressions and Some Particular Cases
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
- Yang, B.C. On a generalization of Hilbert double series theorem. J. Nanjing Univ. Math. 2001, 18, 145–152. [Google Scholar]
- Krnić, M.; Pečarić, J. Extension of Hilbert’s inequality. J. Math. Anal. Appl. 2006, 324, 150–160. [Google Scholar] [CrossRef] [Green Version]
- Adiyasuren, V.; Batbold, T.; Azar, L.E. A new discrete Hilbert-type inequality involving partial sums. J. Inequal. Appl. 2019, 2019, 127. [Google Scholar] [CrossRef]
- Yang, B.C. The Norm of Operator and Hilbert-type Inequalities; Science Press: Beijing, China, 2009. [Google Scholar]
- Krnić, M.; Pečarić, J. General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 2005, 8, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Perić, I.; Vuković, P. Multiple Hilbert’s type inequalities with a homogeneous kernel. Banach J. Math. Anal. 2011, 5, 33–43. [Google Scholar] [CrossRef]
- Huang, Q.L. A new extension of Hardy-Hilbert-type inequality. J. Inequal. Appl. 2015, 2015, 397. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Wang, Q. A multiple Hilbert-type discrete inequality with a new kernel and best possible constant factor. J. Math. Anal. Appl. 2015, 431, 889–902. [Google Scholar] [CrossRef]
- Xu, J.S. Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 2007, 36, 63–76. [Google Scholar]
- Xie, Z.T.; Zeng, Z.; Sun, Y.F. A new Hilbert-type inequality with the homogeneous kernel of degree -2. Adv. Appl. Math. Sci. 2013, 12, 391–401. [Google Scholar]
- Zheng, Z.; Gandhi, R.R.; Xie, Z.T. A new Hilbert-type inequality with the homogeneous kernel of degree -2 and with the integral. Bull. Math. Sci. Appl. 2014, 7, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Xin, D.M. A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 2010, 30, 70–74. [Google Scholar]
- Azar, L.E. The connection between Hilbert and Hardy inequalities. J. Inequal. Appl. 2013, 2013, 452. [Google Scholar] [CrossRef] [Green Version]
- Adiyasuren, V.; Batbold, T.; Krnić, M. Hilbert–type inequalities involving differential operators, the best constants and applications. Math. Inequal. Appl. 2015, 18, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Rassias, M.T.; Yang, B.C. On half-discrete Hilbert’s inequality. Appl. Math. Comput. 2013, 220, 75–93. [Google Scholar] [CrossRef]
- Yang, B.C.; Krnić, M. A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0. J. Math. Inequal. 2012, 6, 401–417. [Google Scholar]
- Rassias, M.T.; Yang, B.C. A multidimensional half—Discrete Hilbert—Type inequality and the Riemann zeta function. Appl. Math. Comput. 2013, 225, 263–277. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B.C. On a multidimensional half-discrete Hilbert—Type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 2014, 242, 800–813. [Google Scholar] [CrossRef]
- Yang, B.C.; Debnath, L. Half-Discrete Hilbert-Type Inequalitiesl; World Scientific Publishing: Singapore, 2014. [Google Scholar]
- Yang, B.C.; Wu, S.H.; Wang, A.Z. On a reverse half-discrete Hardy-Hilbert’s inequality with parameters. Mathematics 2019, 7, 1054. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.Q.; Wu, S.H.; Yang, B.C. On a new half-discrete Hilbert-type inequality involving the variable upper limit integral and partial sums. Mathematics 2020, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Wen, Y. A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Ann. Math. 2016, 37, 329–336. [Google Scholar]
- Yang, B.C.; Wu, S.H.; Chen, Q. On an extended Hardy-Littlewood-Polya’s inequality. AIMS Math. 2020, 5, 1550–1561. [Google Scholar] [CrossRef]
- Yang, B.C.; Wu, S.H.; Wang, A.Z. A new Hilbert-type inequality with positive homogeneous kernel and its equivalent forms. Symmetry 2020, 12, 342. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.C.; Wu, S.H.; Liao, J.Q. On a new extended Hardy–Hilbert’s inequality with parameters. Mathematics 2020, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Kuang, J.C. Applied Inequalitie; Shangdong Science and Technology Press: Jinan, China, 2004. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Wu, S.; Chen, Q. A New Extension of Hardy-Hilbert’s Inequality Containing Kernel of Double Power Functions. Mathematics 2020, 8, 894. https://doi.org/10.3390/math8060894
Yang B, Wu S, Chen Q. A New Extension of Hardy-Hilbert’s Inequality Containing Kernel of Double Power Functions. Mathematics. 2020; 8(6):894. https://doi.org/10.3390/math8060894
Chicago/Turabian StyleYang, Bicheng, Shanhe Wu, and Qiang Chen. 2020. "A New Extension of Hardy-Hilbert’s Inequality Containing Kernel of Double Power Functions" Mathematics 8, no. 6: 894. https://doi.org/10.3390/math8060894
APA StyleYang, B., Wu, S., & Chen, Q. (2020). A New Extension of Hardy-Hilbert’s Inequality Containing Kernel of Double Power Functions. Mathematics, 8(6), 894. https://doi.org/10.3390/math8060894