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Abstract: In this paper, we provide a new extension of Hardy-Hilbert’s inequality with the kernel
consisting of double power functions and derive its equivalent forms. The obtained inequalities
are then further discussed regarding the equivalent statements of the best possible constant factor
related to several parameters. The operator expressions of the extended Hardy-Hilbert’s inequality
are also considered.

Keywords: Hardy-Hilbert’s inequality; best possible constant factor; equivalent statement;
operator expression

MSC: 26D15; 26D10; 26 A42

1. Introduction

The famous Hardy-Hilbert’s inequality reads as follows

o be
lenZ m+n sin(Z/p) (n;ﬂf%) (};bi) , (1)

wherep > 1, ; + ; =1, amb,20,0< Y a <ocoand 0 < Y7, bq < o0, Furthermore, the constant

factor —%— ( 75 in (1) is the best possible (see [1], Theorem 315).

In 2001 Yang [2] used the Beta function,
B(u,v) := foo ;t”_ldt(u v>0) )
0 (1 + t>1l+'()
to establish an extension of inequality (1) in the case of p = g = 2, i.e,,

Motivated by the result of Yang, in 2006, Krni¢ and Pecari¢ [3] proposed a further extension of
inequality (1) by introducing parameters A; and A, as follows

(o)

/\/\ - a2l
5’5 ZmlAZan A2z, 3)

m=1 n=1

1

[ee) 7 a

iz A Dn B(Ay, A0)] Zmpl M)=1g7 1 i (1-1,) 1bq @

n=1 m+n —1
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where A; € (0,2] (1 =1,2),A1 + )\2 = A € (0,4], the constant factor B(A1, A;) in (4) is the best possible.
For A = 1,41 = 1 Ay =1 mequahty (4) reduces to the Hardy-Hilbert’s inequality (1); for
p=q=2, A=A = 2, 1nequahty (4) reduces to the Yang’s inequality (3).
Recently, with the help of inequality (4), Adiyasuren, Batbold and Azar [4] established a new

Hilbert-type inequality containing the kernel m and gave the best possible constant factor

A1A2B(A1, A2) involving partial sums, as follows:
IfA; € (0,1]Nn(0,A)(i=1,2),A1 + A2 = A € (0,2], then

1 1
00 00

[Se] [Se] P q
Z Z " <MAaB(Ay, Ap) () m M TALY () nt B )
=1 (m+n)

m=1 n=1
where, for a,;, by, > 0, the partial sums A, = Y./, a; and B, = Y/, by satisfy

(o] [s]
0< Z mPMTIAP < oo and 0 < Z n~1271BT < oo,
m=1 n=1

It is well-known that Hardy-Hilbert’s inequality (1) and its extensions have important applications
in real analysis and operator theory (see [5-15]).

Apart from the inequalities of Hardy-Hilbert type mentioned above, the following half-discrete
Hardy-Hilbert inequality is also attractive (see [1], Theorem 351), i.e.,

If K(t) (t > 0) is a decreasing function, p > 1, % + % =10<g(s) = fooo K(t)£tdt < 00, a, > 0,
0< Y™ ah < oo, then

f x”_Z(Z K(nx)a,)Pdx < ¢f (= Z h. (6)
0 n=1

A lot of investigations have been given to the extensions of inequality (6) and its applications,
see [16-22] and references cited therein.

Recently, it has come to our attention that some results were provided by Hong and Wen in [23]:
in the paper they studied the equivalent statements of the extended inequalities (1) and (2), and
estimated the best possible constant factor for several parameters. Inspired by the ideas of Hong and
Wen in [23], using the Euler-Maclaurin summation formula, Yang, Wu and Chen [24] presented an
L___ as follows

(max{m,n})

extension of Hardy-Littlewood—-Polya’s inequality involving the kernel

[S ]

1 1
_ amby v 7
n= 1m21 (max{m, n}))‘ < kA (/\Z)k)L (/\1) (7)
1
x{ E Pl (A2 A2+A1)] } OZO‘ (A 1A1)] 1b¢7}
m=1 =
wherep > 1, %+% —1,1€(0,3), A€ (0,4]n(0,4), ky(A) = ﬁ (i=1,2), ay, by > 0.

Yang, Wu and Wang [25] established a Hilbert-type inequality containing the positive homogeneous
kernel (min{m, n})A, ie.,

-

1
Z Z (minf{m, n}) umbn<k§(/\1)kq(/\2)
n=1m=1
N N o, » 711 1 (8)
AR A A

m=1

wherep>1, L+ 0 =1 1€ (0,31], A € (0,5]N(0,A), ka(Ai) =

11l (i=1,2), am, by > 0.

(A )
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Yang, Wu and Liao [26] gave an extension of Hardy-Hilbert’s inequality involving the kernel

M— -, that is,
1 1
21 > b < k] (k] (A1)
n=1m=
00 A=Ay 1 oo )\2 A= /\1 1 (9)
x{ Y mP[l (= +2 )] -1 P} (Y n‘i[l_(p )= 1bQ}
m=1 n=1

wherep>1, L +7=1,1€(0,3], A € (0,3]n(0,A), ka(A;) = Tero7y (1= 1,2), aw, by 0.
This paper continues the studies from [24-26]; we establish a new extension of Hardy-Hilbert’s
inequality with the kernel consisting of double power function

p— (A€ (0,6],a,p€(0,1)).

Based on the obtained inequality, we derive its equivalent form and discuss the equivalent
statements of the best possible constant factor related to several parameters. The operator expressions
and some particular cases of the obtained inequality of Hardy-Hilbert type are also considered.

2. Some Lemmas

In what follows, we suppose that p > 1, =1,N={12 ---}, A € (0,6}, a, € (0,1],

1
q
A1€(0,2]n(0,1),4, € (0, [3} (0,A),kr(A;) == B(Aj, A= A;) (i = 1,2). We also suppose that a,,, b, > 0
are such that

s A=A A/\ A
0<Zm’”[1_“( 25 )]1’”<ooand0<z Al 1Jrz)“bfl<oo. (10)

m=1 n=1
Lemma 1. For A € (0,6], a, € (0,1], A, € (0, ﬁ] (0, A), define the following weight coefficient:

[e9)

CD(/\ ) a(A—/\z)Z ﬁnﬁ/b_l ( c N) (11)
2,m)i=m —(m .
n=1 (ma + n'B)/\

Then we have the following inequalities

1
0<kA(A2)(1—O(m)) <LD()\2,TYZ) <kA(/\2)(m€N), (12)
where O(—L- —5) fo’”“ ;‘ful du > 0.

Proof. For fixed m € N, we define the function g(m, t) as follows:

‘Btﬁ)\z—l

g(m, t) = (t>0).

(me + 6"

By using the Euler-Maclaurin summation formula (see [2,3]), for the Bernoulli function of 1-order
Py(t) :=t—[t] - 3, we have

ngn fl (m, t)dt + $g(m,1) —|—f1 Pi(t)g' (m, t)dt

—fo (m, t)dt — h(m),
= [ g(m, t)dt=1g(m, 1) ~ [ Py(H)g’ (m,t)dt.
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We obtain —3g(m, 1) = ﬁ, and

B(pAp-1)t1272 g2 P22

-g'(m,t) = -
8 ( ) (ma‘f’tﬁ)/\ (ma+tﬁ)/\+1
B(BAL=1)tBY 272 2N (1P —m®) P22
o (m"‘-l—tﬁ))\ (ma+tl3)/\+1
,B(ﬁ}\ [3/\2+1) BA =2 ﬁZ/\matﬁ/\z—Z
(ma+tﬁ) (m“thﬁ))Hl .

Integrating by parts, we have

f fl ’gtﬁf\z u tﬁf
o & 0 (m a+tﬁ 0 m"‘+u)/‘

11 duAZ 1 ut2 d
= =— = =— - —_—Uu

A2Jo (m“+u) T A (m“+u IO fo (meu)* 1
_ 1 A du/\2+1
A (m”+l 2(A2+1) Jo (m+u) A+l

1

11 A w2t A(A+1) Lo+l
> = u du

A2 (may1)?t RaRTITeESY [(maJru)/Hl]O AZ(AZH)(maH)MfO
11 42 1 A(A+1) 1

A2 (mag)t 7 A2(A241) (mag)ML T Aa(A2+1)(A242) (ma41)AH2

For0< A; < ﬁ,0<‘8<1 Ay < A <6, it follows that

i BAy—2 i pA2=2
(-1 ld_ _ > 0,(_1)"1_, t—] >0(i=0,1,2,3).
At (m“ _’_tﬁ)/hLl

At (ma 4 15)*
Utilizing the Euler-Maclaurin summation formula (see [2,3]), we obtain

#ha2 g _B(BA-pAa+1)

P(BA = pA +1)f1 P(t) (m‘;+tﬁ)/\ . 12(me+1)* 7
2 aq [ A2 pemA Brm*A tBr2—2 =1
prmeAf” P gm“+tﬁ)“1 2(me1)tT 720 [(ma+tﬁ)“l]”
BAm*+1-1)A _ pA(m+1)A [()\+1)(7\+2)ﬁ2 B(A+1)(5-p=261>) (2—/5Az>(3—mz)]
12(ma+1)41 720 (ma1)M+3 (ma1)M+2 (ma1)M1
__ B PP [(A+1)(A+2)/32 BATD(E=p-2BN2) | (2—&2)(3—%)]
To2me+ )t 12(me+ )M 7200 (e g )2 (ma4+1)M1 (met1)t

and then, one has
B B=F*A2 _ BPAR=BA2)(3=BA2)

A(A+1
h(m) > (mail)Ahl - (mag 1)1 ha + ( a(+1)A)+zh3rh1 = A_z I A VI 720 ’
b 1B PO+ (5-p-2B1s)
2= L) 12 720

and
e 1 _BHA+2)
3T LA+ 1) (A2 +2) 720

Further, we deduce that

s L_B_B=Fh APC-pL)G-pl) _ g(h)
A 2 12 720 = 7201,

where the function g(o) (o € (0, ]) is defined by

g(0) := 720 — (4208 + 6AB%)0 + (608 + 5Ap%)0% — Ata°.
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For B € (0,1],A € (0,6] and ¢ € (0, %}, we have

g7(0) = —(4208 + 6AB?) + 2(60p* 4+ 5Ap%)0 — 3p%0?
< —420B — 6AB2 +2(60p% + 518%) &
= (14A8-180)8 < 0

Thus, it follows that

31,

B2 B2 5(A+1)BE 1 A+1

L e S s S ALY A
>3 720~ (13~ 1g0 F > 0(0<A<6)
and 1 A42
— _ AT eNp3
hs >(24 0 )B°>0(0<A<6).

Hence, we get h(m) > 0. Setting t = m®/Pul/F, it follows that

o(Ay,m) = meA-12) E g(m,n) < m“(/\_AZ)fOoo g(m, t)dt
n=1

. 1-1 0o pfro—1 o -l .
m(A=2) [ mdtfj(; (”1‘+u)AdufB()\2,/\—/\2).

On the other hand, we also have

ngn fl (m, t)dt + $g(m,1) —I—fl Pyi(t)g (m,t)dt

_f1 (m, t)dt + H(m),
H(m) := g(m 1) +f1 Py(t)g’ (m,t)dt.

Note that 3¢(m,1) = ﬁ and
o) B(BA —PAy + 1)thh2=2 g2 Ay hr2a=2
g'(mt) =~ .

For A; € (0, ﬁ] (0,A4),0 < A < 6, by using the Euler-Maclaurin summation formula (see [2,3]),

we obtain
00 tﬁ/\2—2
—ﬁ(ﬁA—ﬁAerl)f Py (t) ————dt >0
1 (m® + tP)
and 612 5 )
2~ A A
ﬁzm"‘/\f Py () —————dt > - prm > P .
1 (me + tB)*F 12(me +1)*" 12(me +1)

Hence, we have

B FA B P

) 1= A 7 =0
2(m*4+1)"  12(m*+1) 2(m*4+1)"  12(m*+1)
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Further, it follows that

@(Ay,m) = m*(A-12) OZO, g(m,n) > m“(/\‘AZ)floo g(m, t)dt
n=1
= ma(A-142) foog (m, t)dt —m /\_AZ)flg (m, t)dt

a 1
:k)\(AZ)[ k)\(/\z fom ;‘Jrz /\d“]>0

where we set O(—L~ — 5) = fo’”“ ;‘Jrz du > 0 satisfying

m% u/\Z_l m% 1
0< f —Adu <f W gy = =
0 (1+u) 0 Apm®*2

Therefore, we obtain inequalities (12). The Lemma 1 is proved. O

Lemma 2. The following extended Hardy-Hilbert’s inequality holds true:

[S ]

1= £ ¥ b o (1 (1)) (2K, (A1)

Q=

1 .—1 (m¥4nb
n=1m=1 (m*+nP) (13)

A=A +A72)}_1

N S Rl AU
Proof. Following the way of the proof of Lemma 1, for n €N, we have the following inequality
sl a/\l—l

0<ky(A)(1- O(nm )) < w(Ay,n) == nﬁu—mz am

ki(Aq). 14
D r— <ka(A1) (14)

Using Holder’s inequality (see [27]), we obtain
0o o mLy(l—Al)/q(ﬁnﬁ—l)l/P nﬁ(l—}tz)/p(ama—l)l/q

_ 1
I= nﬁ(l—/\z>/p(ama—1)1/‘iam ma(1=M)/q(gp=1)1/P 71

n=1m=1 (ma'f‘”ﬁ)/‘
< E I R e R I IR AP0-12)0-) pa-14 1

1
P a
=1 =1 (m+nf)" nP=12) (ama-1)? 2l [751 mZ:1

m”‘+nﬁ)/\ ma(l—/\l)(ﬁnﬁ—l)ﬂ—l
- _
IW{ZQ(M A

1
x{ Y w(Ay,n)n? l1-p(° /\1+AP2)]_1bZ}q.
n=1

Thus, from inequalities (12) and (14), we obtain (13). The proof of Lemma 2 is complete. O

=

Remark 1. For A1 + Ap = A € (0, 6], setting

1
K/\(Al) = —al/Qﬁl/PB(/\ll /\2)
By inequality (10), we obtain
o ﬁ/\z meM -1
a)()\l, ) " mzl (m“+nﬁ)

[e6]
0< Zlmp(l‘“/\l)‘la’; <ocoand0 < Zl nI1=p2)=1p7 < oo,
m= n=
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and the following inequality

SR amb - 1w 1
— I Ky (A)[ Y mPUme 1Py pa(=pa) -1y (15)

Lemma 3. For A; + A, = A € (0, 6], the constant factor Ky (Aq) in (15) is the best possible.
Proof. For any 0 < ¢ < pA;, we set
Ay 1= ma(Al_i)_l,Fbvn = g1 (m,n e N).

If there exists a constant M <K, (A1) such that (15) is valid when replacing K, (A1) by M, then in
particular, by substitution of a,, = ay, and b, = by, in (13), we have

T i i T Z p(1=ah) =150 };[Z pI(1=BA2) =150 (16)

n=1m=1 (ma + nﬁ =1

In the following, we shall prove that M > K, (A1), and this will lead to M = K, (A1) is the best
possible constant factor in (16).
By inequality (16) and the decreasingness property of series, we obtain

T<M[ Y mp(-ah)-Lypati-ac—p]p [ ¥ pa(1-PAa)-1,a8Aa-pe—) 5
m=1 n=1
1 x . 1
M1+ Y mee )i (14 Y afe)i

m=2 n=2

<M1+ [ xmoe 1clxll71+f1 —Pe- 1cly)%
1 1
=M1y (ﬁ+e) .

&

By using inequality (14) and setting

. 2 . .
)\1:/\1—5e(O,E)m(O,/\)(O</\2:A2+§:)\—/\1<)\),

we find - -
= b2 1 ed-1],-Be-1

nél [ mzl (ma+"ﬁ)A ]

=1¥ (A, nn Pl > Lk (A1) ¥ (1-0(=%))nPet

n=1 - - n=1 nPh

_ 11 (3% —Be-1 _ 1

= akA(:\l)(él” pe n§1 O(nﬂ(/\1+§>+1))

> k() (J x P dx - O(1))

= zapka (A1) (1= BO(1)).

In virtue of the above results, we have

r,1
a_ﬂB(Al_;_o A2+p)(1—sﬁ0(1))<€I<M( +¢) (B

For ¢ = 01, in view of the continuity of the beta function, we get

1
q

+e) .

1
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Hence, M = K (A1) is the best possible constant factor in (15). The Lemma 3 is proved. O
Remark 2. Setting F/ﬂ = /\_PAZ + %,;{2 = A_T/\l + %, we find
- = A=A A A=A A A A
MAd="2 42 2222 2o,
p q 9 p P 19
and thus we can rewrite inequality (13) as
SR s < bk )
1= 5 T b < (b, (1) (3, (1))
1 1 (17)
x| pp(1—ay)-1 P]p[z na(1-pAz)— 1b‘7]q
m:l

1
(1k (A1) 7 for various parameters,

S

Lemma 4. If inequality (17) has the best possible constant factor (13 ky(A2))
then A = Ay + A,.

Proof. Note that

A= AA2+A1>OA <—+)L
0<A2 A— A1</\

A

Hence, we have

ka(A1) = B(A1,A2) € Ry = (0, 00).

1 1
If the constant factor (%kA(Az))” (3k,(A1))7 in (17) is the best possible, then in view of (15)
we have . .
1 p,1 q ~
(EkA(/\Z)) (Sky (M) < Ka(d),
1 1 ~
namely, k! (A2)k{ (A1)< k(A1)
Applying Holder’s inequality (see [27]), we obtain
k(A1) = ka (252 + 41)
o 4 Al o Akt ne

:j(; s R du:fo (1+u)A(u P ) (w7 )du

< [J(;oo 1 MA_AZ_ldu]Fl’[foo 1

1

) 0 Tt (18)
[ a1 1 M-1g4,07
_[‘{(‘) (1+v) v d fO (1+u)? 1 du}'i
=k} (Az)kg (A1)

1 1 ~
Hence k} (A2)k] (A1)= ka (A1), which implies that (18) keeps the form of equality.

We observe that (18) keeps the form of equality if and only if there exist constants A and B such
that they are not both zero and (see [27]) Aur171 = ByM-lge in Ry

Assuming that A # 0, we have u*~2~41 = %a.e. inR4.
Hence A — A — A1 = 0, namely, A = A1 + A. This completes the proof of Lemma 4. O
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3. Main Results

Theorem 1. Inequality (13) is equivalent to the following

1
o edh ) g Py
]::{anﬁ(q+,,)1[z ﬁam]}
n=1 m=1 (m@4nP) 19
1 1o oAl My @)
< (Y, (M) (Rky (A) T T 10 )
m=1

If the constant factor in (13) is the best possible, then so is the constant factor in (19).

Proof. Firstly, we show that inequality (19) implies inequality (13). By using Holder’s inequality
(see [27]), we have

1

Z /\ /\1 0 A=Ay 1
[ = +/3 + ’_5(7 *)b < qa[1-p( 7* )] 1bq . 20
nZl[ le m“nﬁ an][n? J Z e Qo

Then from inequality (19), we obtain inequality (13).

Next, we show that inequality (13) implies inequality (19). Assuming that inequality (13) is valid,
we set

A=Ay | A s
b= THDNY L) nen
m=1 (moc + n'B)

If ] = 0, then inequality (19) is naturally valid; if | = oo, then it is impossible to make inequality

(19) valid, namely, | < co. Suppose that 0 < | < co. By inequality (13), we have

o A= Al Ay 1 1
Zl ql-p(——+ )] bq — ]P = J< (ﬂk (Az))p( k/\(Al))q
= 1 1
x{oi pli-a(*52+71))- 17’} {io:n[_ﬁ(/‘ sl 1bq}
—1 n=1
1

{%zo‘ il q[1-B( A \1+ )] 1 }”< (%kA(/\Z))%(%k/\(Al))%

1

which leads to inequality (19). Hence, inequality (13) is equivalent to inequality (19).
By means of the above obtained result, we can conclude that if the constant factor in (13)
is the best possible, then so is the constant factor in (19). Otherwise, if there exists a constant

1 1 1 1
M(M < (ﬁk/\( 2))F (%k/\(/\l))q) such that (19) is valid by replacing (ll;kA(Az))” (%k}\()\l))‘f by M, then

1 1
by (20), we would reach a contradiction that the constant factor (%kA (A2))* (%kA (A1))7 in (13) is not
the best possible. The proof of Theorem 1 is complete. O

Theorem 2. The following statements (i), (ii), (iii) and (iv) are equivalent:

P

1
(i) Both k! (A2)k

1 1

(A1) and kA(% + %) are independent of p,q;

(ii) kY (A2)k] (A1) is expressible as a single integral
A=A A ~ 0 1 1
B2 4 2 = () = [
p q 0 (1+u)
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1 1
(iii) (%k/\ (A2))* (%kA (A1))7 in (13) is the best possible constant factor;
(iV) A= A1 + /\2.
If the statement (iv) follows, namely, A = A1 + A, then we have (15) and the following equivalent
inequality with the best possible constant factor Ky (A1):

1

1
1
Y Y, ] | <K O e1)
n=1 m=1 1M n m=1

Proof. (i)=(ii). By (i), in view of the continuity of the Beta function, we have

1

1 1 1

A p—)ooq_,1+
A=A A . . >y . . oy >y
(=2 +7) = I}I_{IQO#I{L’CA(M) = ;}gﬁloqllﬂB(/\l'/\ - A1)

= B(A1, A - A1) = ka(Aq),

1 1
namely, k) (A2)k] (A1) is expressible as a single integral

~ 0 1 -
ki(Aq) = — Mgy,
)\( 1) L (1—}—1,{)/\1/{ u

1 1 —
(i))=(iv). If k) (A2)k} (A1)=ky(A1), then (18) keeps the form of equality. In view of Lemma 4,
it follows that A = A1 + A».
1 1
(iv)=(). If A = Ay + Ay, then both k) (A2)k] (A1) and k/\(% + /\71) are equal to k) (A1), which are
independent of p, 4. Hence, it follows that (i)&(ii) & (iv).
(iii)=(iv). By Lemma 4, we have A = A1 + A,.
(iv)=(iii). By Lemma 3, for A = A1 4+ Ay,
1 1y 1
P q
(BkA(/\z)) (Zky (A1) (= Ka (1))
is the best possible constant factor in (13). Therefore, we have (iii) & (iv).
Hence, we conclude that the statements (i), (ii), (iii) and (iv) are equivalent. This completes the
proof of Theorem 2. O

4. Operator Expressions and Some Particular Cases

We choose functions

PI-aC52 01y a1

p(m) :=m

wherefrom,
A=Ay

PP (n) = PP +A72)_1(m,n e N).

Define the following real normed spaces:
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- 1
o == 1{a = {am}y,_;llallpe :== ( ;lw(m)|am|P)ﬂ < o0},

Lo = (b = b} Ibllyp = ( glw(n)wnm% < oo,

& 1
by gres = e = lealyyilll goop = (917 (w)leal?)7 < o0l

93

Leta € I, and let

o0

C—Cﬂnycn'—z am,nEN.
m"‘+nﬁ

Then, we can rewrite (19) as follows:

1 1

1 r,1 7
el < (5002 (3, (1)) il < 5,
that iS, Cc € lp/lpl—p.

Definition 1. Define an extended Hardy-Hilbert’s operator T : I, , — lprlpl—p as follows:
For any a € Iy, there exists a unique representation Ta = c € I, 1y satisfying, for any n € N,
(Ta)(n) = cy. Define the formal inner product of Ta and b € 1, and the norm of T as follows:

(T, b) ;:i i aulbu, Tl := sup

(m* + nP a(#6)€ly,p llallp,

ITall, y1-p

Then, by Theorems 1 and 2, we have

Theorem 3. If a € Iy, b € 1y, llally,p, Ibllg,p > O, then we have the following inequalities:

1 1
1 r .1 4
(Ta,b) < (/;kA(AzD"(akml))‘7||a||p,<,,||b||q,¢, 22)
1 1
1 p .1 q
||T11||p,¢1fp < (‘Ek)\()\z)) (;k;\()h)) llallp,qp- (23)
Moreover, A1 + Ay = A if, and only if, the constant factor
1 1 1
P q
(EkA(/\z)) (akA(/\l))

in (22) and (23) is the best possible, namely,

IT|l = Ky (A1) = B(A1, A2). (24)

al/qﬁl/p
Remark 3. (i) Tuking « = p = 1,A1, A2 € (0,2] (A1 + A2 = A € (0,4]) in (15) and (21), we obtain inequality
(3) and the following inequality with the best possible constant factor B(A1, Ay):

1

1
%) 00 p P © P
npr2-1 <B(Aq, A mP(=M)=1gP 1 25
{Z Y, —— P } (A, A2)[) ] # (25)

mzl m=1

Hence, inequalities (13) and (15) are new extensions of inequality (1).
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(i) Taking o = B = %,A1, A2 € (0,4](A1 + A2 = A € (0,6]) in (15) and (21), we get the following
inequality with the best possible constant factor 2B(Aq, A3):

i i %A <2B(A1, A7)

n=1m=1 (W+ ‘/ﬁ) m

{ 1 Y <2B(A1, A0) ZmP 1) 27)

P
m=1 ( \/_-i—\/_ ﬂm]} m=1

(iii) Taking a = p = 3, A1, A5 € (0,3](A1 + A2 = A € (0,6]) in (15) and (21), we derive the following
inequality with the best possible constant factor EB(/\L A2):

1
q

mP(1 Z AN (26)

gk

1

==
<=

nMx

1
q

iiLA i WMi i i = (28)

=

') (29)

Ol e 1 3 had BN
E n-3 1[ E ﬁam] < EB()\l,)\z)[ E mP1-3")
= m=1

5. Conclusions

We first provided a brief survey on the study of Hardy-Hilbert’s inequality, and then we stated the
main results, new extensions of Hardy-Hilbert’s inequality, in Lemma 2 and Theorem 1, respectively.
For further study on the obtained inequalities, the equivalent statements of the best possible constant
factor related to several parameters are given in Theorem 2; the operator expressions of the extended
Hardy-Hilbert’s inequality are established in Theorem 3. It is worth noting that the extended
Hardy-Hilbert’s inequality (13) obtained in this paper differs from the inequality (9) that appeared
in [26], since inequalities (9) and (13) contain different kernels of m/‘in + and (m”in B We also note that
the two kinds of kernels have a similar form; this prompts us to consider the meaningful problem of
how to establish a unified extension of inequalities (9) and (13) in a subsequent study.
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