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Abstract: Cavity flow past an obstacle in the presence of an inflow vorticity is considered.
The proposed approach to the solution of the problem is based on replacing the continuous vorticity
with its discrete form in which the vorticity is concentrated along vortex lines coinciding with the
streamlines. The flow between the streamlines is vortex free. The problem is to determine the shape
of the streamlines and cavity boundary. The pressure on the cavity boundary is constant and equal
to the vapour pressure of the liquid. The pressure is continuous across the streamlines. The theory
of complex variables is used to determine the flow in the following subregions coupled via their
boundary conditions: a flow in channels with curved walls, a cavity flow in a jet and an infinite flow
along a curved wall. The numerical approach is based on the method of successive approximations.
The numerical procedure is verified considering a body with a sharp edge, for which the point
of cavity detachment is fixed. For smooth bodies, the cavity detachment is determined based on
Brillouin’s criterion. It is found that the inflow vorticity delays the cavity detachment and reduces
the cavity length. The results obtained are compared with experimental data.
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1. Introduction

The theoretical study of cavity flows is usually based on the model of ideal liquid with the
assumption that the liquid is incompressible, inviscid and irrotational. Liquid viscosity manifests
itself in a thin boundary layer next to the body and can be ignored in the rest of the flow region.
However, in some cases the boundary layer may develop far upstream due to interaction with other
bodies situated upstream. In such cases the thickness of the boundary layer may be comparable with
or exceed the size of the body that forms a cavity. In these cases the velocity profile of the inflow is
nonuniform, which makes it difficult to introduce the velocity potential function.

The theoretical study of non-potential flows presents a great challenge and requires special
treatments. The exception is flows with a constant vorticity, for which the velocity potential can be
introduced in the form of a superposition of a potential vortex-free flow and a flow generated by
a single vortex. Since the position and strength of the single vortex are prescribed, for the potential
component of the flow the effect of the vortex can be accounted for through appropriate changes in the
boundary conditions.

Cavity flows with a constant vorticity in a linear approximation were studied by Street [1],
Vasil’iev [2], Kotlyar & Lazarev [3]. They formulated a boundary-value problem for the potential
component of the flow and solved the boundary-value problem for the velocity potential function
by using the Keldish-Sedov integral formula [4,5]. Kotlyar and Lazarev [3] presented a solution
for a cavitating wedge in a flow with a uniform vorticity. The nonlinear problem of a cavity flow
with a uniform vorticity for a wedge in a jet of finite width was considered in papers [6] and [7].
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These studies revealed that the vorticity weakly affects the drag coefficient, but significantly decreases
the cavity size.

In the cavity flows with vorticity mentioned above, the cavity detachment point is fixed at
the body’s sharp edge. If the body is smooth, the location of the separation point is not known
a priori and has to be determined as part of the solution of the problem. In the model of ideal
liquid, flow detachment is governed by Brillouin-Villat’s criterion [8,9], from which it follows that the
curvature of the free surface is equal to the body surface curvature at the point of detachment. At the
same time, experiments [10–12] show that in a real liquid flow detachment occurs downstream of the
point predicted by the model of ideal liquid. The real properties of the liquid such as viscosity or
surface tension may affect the position of flow detachment [13]. In the present study, we investigate
how the vorticity generated by the fluid viscosity in the boundary layer may affect the position of
cavity detachment. For this purpose, we apply the methodology [7], which allows one to reduce
the problem of a flow with a continuously distributed nonuniform vorticity to a set of problems of
vortex-free potential flows related to one another via boundary conditions that account for the vorticity
of the original flow.

The methodology is described in Section 2. The main idea is to replace a continuously distributed
vorticity with discrete vortex sheets that coincide with the streamlines. In Section 3, solutions to the
set of potential vortex free flows including the cavity flow past the body are presented. The effect of
the velocity profile in the boundary layer on the cavity size and the force coefficient is analysed in
Section 4. The numerical approach is comprehensively verified in Section 4.1, and the effect of the
boundary layer on the cavity detachment is presented in Section 4.2.

2. General Approach for Flows with Vorticity

Fluid viscosity manifests itself in the boundary layer and causes a significantly nonuniform flow
vorticity. The vorticity varies from zero on the outer boundary of the boundary layer to some value
on the body boundary. In order to account for the non-uniformity of the vorticity, the continuously
distributed vorticity in the flow region is replaced with discrete vortex sheets wherein the vorticity
is concentrated. The vortex sheets are arranged along the streamlines, and the flow between the
vortex lines is assumed to be vortex free. The flow region is divided into layers/channels bounded by
the vortex sheets, or streamlines as shown in Figure 1. The normal components of the velocity and
the pressure are continuous across the walls of the channels, while their tangential components are
discontinuous. In this approach, the velocity profile changes in a stepwise manner from one channel
to another. The larger the number of layers/channels, the smaller the stepwise discontinuity
in the velocity profile, and it disappears in the limit of an infinite number of layers/channels.
This corresponds to the original flow with a continuous nonuniform vorticity.

This vortex flow model allows one to reduce the problem of a cavity flow with a vorticity to a set
of problems of vortexfree flows, which can be solved using the theory of potential flows. There are
three kinds of vortex-free problems which constitute the original problem: the first kind is a cavity flow
in a channel of finite width with a given shape of the lower side and a specified velocity distribution
on the upper side (channel ‘0’ in Figure 1); the second kind is a flow in a channel with curved walls
(channels 1÷ N); and the third kind is a semi-infinite flow along a curved surface (layer N + 1).

Each problem mentioned above is solved using the methods proposed by Michell [14],
Joukovskii [15] and Chaplygin [16]. They introduced a parameter plane in which boundary value
problems for both the complex velocity, dw/dz, and the derivative of the complex potential, dw/dζ,
are formulated. When these functions are determined, the mapping function relating the parameter
plane and the physical plane is determined as follows

z(ζ) = z0 +
ζ

∫
0

dz
dζ

dζ = z0 +
ζ

∫
0

dw
dζ

/dw
dz

dζ, (1)
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where z0 is the point in the physical plane corresponding to the point ζ = 0 in the parameter plane.
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Figure 1. Sketch of a vortex flow: (a) past a downward step. (b) past an upward step.

The singular point method developed by Chaplygin (see Section 1 in [16]) allows one to derive
expressions for the complex velocity and the derivative of the complex potential when the solid
boundary forms a polygon, and the velocity on the free surface is constant. The problems under
consideration are somewhat more complicated. One part of the flow boundary is considered as a solid
curved wall, and the other part is a free streamline along which the velocity magnitude may vary.
For this kind of boundary value problem, the solution can be obtained using the integral formula
derived in [17,18]. The formula and details of its application are shown in Section 2.

The set of problems mentioned above is solved successively as follows. By solving the problem
for the zeroth channel in which the cavity occurs as shown in Figure 1, the shape of the upper wall
is determined assuming the velocity magnitude to be known from the previous iteration. This wall,
which is also the lower side of channel 1, is considered as a solid wall in channel 1. The upper wall
of channel 1 is considered as a free streamline, along which the velocity magnitude is assumed to be
known from the previous iteration. By solving the problem for channel 1 the shape of its upper side
is determined. By repeating the process we can arrive at the outer layer N + 1 corresponding to the
half-space of the liquid flowing along the curved solid wall of channel N. By solving this problem,
the velocity magnitude on the upper wall of channel N can be determined.

Now we start moving back and solving the problem for channel N, we can find a new
approximation of the velocity distribution along the lower side of channel N. Using the condition of
pressure continuity across the channels, we can obtain a new approximation of the velocity distribution
on the upper side of channel N −1. Moving down and repeating the procedure for each channel, we can
specify the velocity magnitude on the upper side of the zeroth channel. The successive computations
in the up and down directions are repeated until the convergence of the iteration process. Notice that
the computational efficiency depends on the effective solution procedure for each channel from ‘0’ to
N. The solutions of the flow problems in the channels are presented in next section.
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3. Complex Potentials of Flows

3.1. Cavity Flow in Channels with Curved Walls

Figure 2 shows a schematic of the “zeroth” channel with the cavity. For convenience, the channel
number subscript is omitted. The liquid is assumed to be ideal, incompressible and irrotational.
The pressure on the cavity surface OA is assumed to be constant and equal to the pressure in the cavity
pc. The origin of the Cartesian coordinate system xy is chosen at point O where the flow detaches from
the body and forms the cavity contour OA. The flow velocity at infinity, BB′, is V. The shape of the
obstacle DO is given by its slope β∗(s) where s is the arc length coordinate along the contour. On the
contours AC and B′C′ the velocity magnitude is specified, v∗(s). The cavity contour OA closes on the
contour AC, along which the velocity magnitude decreases from its value on the cavity boundary to
its value at infinity, CC′. The pressure at infinity is the same in all directions, therefore the velocity at
right infinity is also V. The cavity contour OA, the closure contour AC and the upper wall B′C′ are
unknown. They have to be determined from the solution of the problem.

Figure 2. Sketch of flow past a body in the channel: (a) physical plane; (b) parameter plane.

We introduce a cavitation number σ0 based on the reference velocity V in the channel and
a cavitation number σ based on the velocity on the outer boundary of the boundary layer, U, which are
related as follows

σ0 =
p∞ − pc

0.5ρV2 , σ = p∞ − pc

0.5ρU2 , σ0 = σv2
∞, (2)

where v∞ = V/U is the dimensionless incident velocity. Based on these definitions, the velocity on the
cavity surface is v0 = v∞

√
1+ σ0.

The problem is solved in the parameter plane. The first quadrant of the ζ-plane is chosen as the
parameter region that corresponds to the flow region in the physical plane z. The conformal mapping
theorem allows us to chose the position of three points in the parameter region arbitrarily. They are O,
B and C as shown in Figure 2b.

The real axis in the ζ-plane corresponds to the solid body BDO. The interval 0 < η < 1 of the
imaginary axis corresponds to the cavity contour OA and the cavity-closure contour AC. The interval
1 < η <∞ corresponds to the upper side of the channel, B′C′. We assume that the velocity magnitude
v∗(s) on the upper side B′C′ is known. It will determined later in the iterative solution of the
whole problem.

In order to derive an expression for the complex velocity, dw/dz, we assume that the velocity
magnitude on the contours OAC and B′C′ is known as a function of the parameter variable η, v(η).
We also assume that the slope of the solid surface ODB is known as a function of the variable ξ, β(ξ).
Then, we can write the following boundary-value problem for the complex velocity function:

∣dw
dz

∣ = v(η), 0 < η <∞, ξ = 0. (3)

χ(ξ) = arg(dw
dz

) = { −β(ξ), 0 < ξ < d, η = 0,
0, d < ξ <∞, η = 0.

(4)
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The functions v(η) and β(ξ) will be determined later.
The integral formula [18]

dw
dz

= v(∞) exp
⎡⎢⎢⎢⎢⎣

1
π

∞

∫
0

dχ

dξ
ln(ζ + ξ

ζ − ξ
) dξ − i

π

∞

∫
0

d ln v
dη

ln(ζ − iη
ζ + iη

) dη + iχ(∞)
⎤⎥⎥⎥⎥⎦

, (5)

provides a solution to the mixed boundary-value problem in Equations (3) and (4). Here, v(∞) =
v(η)η=∞ is the velocity magnitude at infinity BB′. It can be easily verified that for ζ = ξ the argument
of the function dw/dz is the function χ(ξ), while for ζ = iη the modulus ∣dw/dz∣ is the function v(η).
Thus, the boundary conditions in Equations (3) and (4) are satisfied. Substituting Equation (4) into the
first integral and using the relation arg(ζ − iη) = arg(iη − ζ)−π in the second integral, we obtain the
following expression for the complex velocity

dw
dz

= v0 exp
⎡⎢⎢⎢⎢⎣
− 1

π

∞

∫
0

dβ

dξ
ln(ζ − ξ

ζ + ξ
) dξ − i

π

∞

∫
0

d ln v
dη

ln( iη − ζ

iη + ζ
) dη − iβ0

⎤⎥⎥⎥⎥⎦
, (6)

where β0 = β(0) is the angle of the velocity at point O, and

v0 = v(∞) exp(−∫
∞

0

d ln v
dη

dη)

The complex flow potential has logarithmic singularities due to a sink at point C (ζ = i) and
a source of the same strength at point B (ζ =∞). By applying Chaplygin’s singular point method [16],
we can obtain the derivative of the complex potential

dw
dζ

= M
ζ

ζ2 + 1
, w(ζ) = q

π
ln (ζ2 + 1) , (7)

where M = 2q/π is a scale factor. By substituting Equations (6) and (7) into Equation (1), we obtain the
derivative of the mapping function z = z(ζ),

dz
dζ

= M
v0

ζ

ζ2 + 1
exp

⎡⎢⎢⎢⎢⎣

1
π

∞

∫
0

dβ

dξ
ln(ζ − ξ

ζ + ξ
) dξ + i

π

∞

∫
0

d ln v
dη

ln( iη − ζ

iη + ζ
) dη + iβ0

⎤⎥⎥⎥⎥⎦
. (8)

The arc length coordinate along the free streamline, s = s(η), and along the solid surface, s = s(ξ),
are obtained as follows

s(η) = −
η

∫
0

∣ dz
dζ

∣
ζ=iη

dη, s(ξ) = −
η

∫
0

∣ dz
dζ

∣
ζ=ξ

dξ. (9)

3.1.1. Cavity Closure Model

Within the framework of the model of ideal liquid, the statement of the cavity flow problem is not
unique. This issue is known as Brillouin’s paradox [8], and it requires an assumption about the cavity
contour at the end of the cavity. Various models were proposed by Roshko, Riabouchinsky, Efros,
Tulin, and they are known as classical models of cavity flows [16,19]. These models predict similar
results for developed cavitation regimes, for which the cavity exceeds the size of the body. When the
size of the cavity is comparable with or smaller than the size of the body, the assumption may affect
the results. This is because the cavity closure region becomes larger than the cavity itself.

Crocco and Lees [20] proposed a model of viscous/inviscid interaction for separated turbulent
flows, which accounts for the effect of the viscous wake on the outer inviscid flow in real flows.
Crocco and Lees’s [20] approach was extended to cavity flows (Semenov and Tsujimoto [21]),
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which made it possible to account for a turbulent wake downstream of the cavity. This model
predicts a monotonic decrease in the velocity magnitude along the turbulent wake region from the
velocity on the cavity boundary to the velocity at downstream infinity.

In the this paper we focus our attention on the effect of the vorticity, therefore, we drop the
viscous wake model and assume a velocity distribution along the cavity closure region. For simplicity,
we assume that the magnitude of the velocity v∗(s) on the contour AC is the same as the velocity on
the body ODB, i.e.,

v∗[s(η)] = v[sA − s(η)] = ∣dw
dz

∣
ζ=ξ−1[sA−s(η)]

, sA < s <∞, ηA < η < 1. (10)

These equations define the function v∗(s), which is symmetric about the middle cross section of
the cavity at s = sA/2 where sA is the arc length coordinate of point A. This definition of the velocity in
the cavity closure region results in a flow pattern geometry symmetric about the vertical cross section
passing through the point s = sA/2.

Notice that various classical cavity models can be obtained from the presented solution if the
velocity magnitude along the cavity closure contour is chosen appropriately. For example, Tulin’s
second cavity closure model [22] can be obtained as follows. Let the velocity magnitude at the cavity
closure point change by step

v(η) = { v0, 0 < η < ηA,
v∞, ηA < η < 1.

By substituting this Equation into Equation (6) and evaluating the second integral over the step
change at point A (η = ηA)

lim
ε→0

ηA+ε

∫
ηA−ε

d ln v
dη′

ln( iη′ − ζ

iη′ + ζ
) dη′ = ln( iηA − ζ

iηA + ζ
) ln

v∞
v0

,

the complex velocity in Equation (6) takes the form

dw
dz

= v0 (
iηA − ζ

iηA + ζ
)

i
π ln

v0
v∞

exp
⎡⎢⎢⎢⎢⎣
− 1

π

∞

∫
0

dβ

dξ
ln(ξ − ζ

ξ + ζ
) dξ − iβ0

⎤⎥⎥⎥⎥⎦
, (11)

The above expression is the complex velocity for the present problem corresponding to Tulin’s
second cavity model.

3.1.2. Integro-Differential Equations in the Functions v(η) and β(ξ)

The integro-differential equations determining the functions d ln v/dη and dβ/dξ are obtained
using the chain rule for differentiation

d ln v
dη

= d ln v∗

ds
ds
dη

,
dβ

dξ
= dβ∗

ds
ds
dξ

. (12)

The functions v∗(s) and β∗(s) are known functions in the physical plane. The above equations
are solved using the method of successive approximations.

(d ln v
dη

)
k+1

= d ln v∗

ds
( ds

dη
)

k

, (dβ

dξ
)

k+1

= dβ∗

ds
( ds

dξ
)

k

.
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3.2. Jet Flow Along a Curved Wall

The flow in the channel next to the cavity channel is considered as a jet flow along the solid wall
whose shape is obtained from the solution of the problem in channel ‘0’. A flow sketch is shown
in Figure 3. The complex velocity function and the derivative of the potential are derived in the
parameter plane which is chosen to be the same as that shown in Figure 2b. Point C is absent in the
present case. Points O, O′, B, B′ in Figure 3 correspond to the same points in the parameter plane
in Figure 2b.

Figure 3. Sketch of a jet flow along a curved wall.

The velocity magnitude along the upper streamline is specified, and it is denoted v∗(s). The slope
of the lower solid wall is denoted as β∗(s). The corresponding functions in the parameter plane are
v(η) and β(η). The boundary value problem for the complex velocity, dw/dz can be formulated as
follows. The argument of the complex velocity is given along the real axis, arg(dw/dz) = −β(ξ), and its
modulus is given along the imaginary axis of the parameter region, ∣dw/dz∣ = v(η). Then, the integral
formula in Equation (5) determines the complex velocity function as follows

dw
dz

= v∞ exp
⎡⎢⎢⎢⎢⎣
− 1

π

∞

∫
0

dβ

dξ
ln(ζ − ξ

ζ + ξ
) dξ − i

π

∞

∫
0

d ln v
dη

ln(ζ − iη
ζ + iη

) dη

⎤⎥⎥⎥⎥⎦
, (13)

where v∞ = V/U is the dimensionless velocity at left infinity (point BB′).
The complex potential for a jet of finite width has logarithmic singularities corresponding

to a source at point BB′ (ζ = ∞), and to a sink of the same strength at point OO′ (ζ=0).
Therefore, we can write

w(ζ) = 2q
π

ln ζ,
dw
dζ

= 2q
π

1
ζ

, (14)

where q = Vh is the strength of the source/sink corresponding to the flow rate in the channel.
In view of Equation (1), the derivative of the mapping function takes the form

dz
dζ

= 2q
πv∞

exp
⎡⎢⎢⎢⎢⎣

1
π

∞

∫
0

dβ

dξ
ln(ζ − ξ

ζ + ξ
) dξ + i

π

∞

∫
0

d ln v
dη

ln(ζ − iη
ζ + iη

) dη

⎤⎥⎥⎥⎥⎦
(15)

By integrating Equation (15) along the imaginary axis of the parameter region we obtain the
contour of the upper streamline of the jet. The functions v(η) and β(ξ) are obtained from the solution
of integro-differential equations similar to Equation (12). The arc length coordinates along the solid
surface, s = s(ξ), and along the upper streamline, s = s(η), are obtained from Equation (9).

3.3. Semi-Infinite Flow Passing Over a Solid Curved Surface

Layer N + 1 in Figure 1 occupies all the space of the upper half-plane. A sketch of the physical
plane is shown in Figure 4. The position of points O, O′, B and B′ is chosen so that they correspond to
the same points in the parameter plane shown in Figure 2b. Points B and B′ are placed on the straight
part of the solid surface far downstream, along which the velocity magnitude is constant and equal to
the velocity at infinity.



Mathematics 2020, 8, 909 8 of 16

Following Joukowskii’s method [16], we can obtain the complex potential in the form

dW
dζ

= Mζ, (16)

where M is a scale factor.

Figure 4. Sketch of a semi-infinite flow along a curved wall.

The complex velocity is obtained from the integral formula in Equation (8) taking into account
that d ln v/dη = 0 on the imaginary axis of the parameter region, i.e., the second integral in Equation (8)
vanishes. The expression for the complex velocity takes the form

dw
dz

= v∞ exp
⎡⎢⎢⎢⎢⎣
− 1

π

∞

∫
0

dβ

dξ
ln(ξ − ζ

ξ + ζ
) dξ

⎤⎥⎥⎥⎥⎦
. (17)

The derivative of the mapping function, dz/dζ, is obtained from Equation (1) and
Equations (16) and (17). The arc length coordinate s = s(ξ) is obtained from Equation (9).

4. Results and Discussion

The intgro-differential equations for each channel in Equation (12) are solved numerically using
the method of successive approximations. Two sets of nodes are chosen on the real and the imaginary
axis of the parameter region: ξi, i = 1, . . . Kξ and ηj, j = 1, . . . Kη . On each interval (ξi−1, ξi) and (ηj−1, ηj)
the derivatives dβ/dξ and d ln v/dη are assumed to be constant, which allows one to evaluate the
integrals in Equations (6) and (8) analytically, thus significantly reducing the computational effort.
Usually, from 10 to 15 iterations are required to reach the convergence of the iterations with a tolerance
of 10−5 between successive iterations. The number of the nodes on the upper and the lower side of the
channel is chosen to be Kξ = 200 and Kη = 200.

4.1. Cavity Flow with a Fixed Point of Cavity Detachment

The dimensionless velocity profile in the boundary layer is approximated by the function

v∞(y) = V(y)
U

= {
y
δ (2− y

δ ) , 0 ≤ y ≤ δ,
1, δ ≥ y <∞,

(18)

where U is the velocity on the outer boundary of the boundary layer, and δ is the boundary layer
thickness. The flow rate and the inflow velocity in the channel i in view of Equation (18) are defined
as follows

qi =
1

UL

yi+1

∫
yi

V(y)dy, v∞i =
qi

hi
,

where hi = (yi+1 − yi)/L is the width of channel i at infinity BB′, and L is the length of the arc OD.
The interaction between adjacent channels accounts for the conditions of velocity direction and

pressure continuity across the channel walls.

γi−1 = βi, pup
i−1 = plw

i , (19)
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where γi−1 = arg (dz/dη)i−1 is the slope of the upper side of the channel i − 1, βi is the slope of the solid
lower side of the channel i and pup

i−1, plw
i are the pressures on the upper side of channel i − 1 and the

lower side of channel i, respectively.
From the Bernoulli integral for the adjacent channels

p∞ + ρU2
v2
∞(i−1)

2
= pup

i−1 + ρU2 v2
i−1
2

,

p∞ + ρU2 v2
∞i
2

= plw
i + ρU2 v2

i
2

,

we can obtain the relation between the velocity magnitudes on the upper side of channel i − 1 and on
the lower side of channel i using Equation (19),

v2 up
i−1 = v2 lw

i + v2
∞ i−1 − v2

∞ i. (20)

In the case of a uniform inflow, v∞ i−1 = v∞ i and vup
i−1 = vlw

i . For the purpose of verification and
accuracy estimation of the results, we divide the uniform jet of width H/L = 3 into jets of widths
h0 = H0/L = 1 and h1 = H1/L = 2. The cavity length is chosen to be sA/L = 2, and the corresponding
cavitation number is determined from the solution. Figure 5 shows the computed upper boundary of
the flow for the two channels (solid line) and for the one channel (dashed line). The obtained cavitation
number σ = 1.810 for the two channels and σ = 1.813 for the one channel demonstrates quite a good
accuracy of the method.

0

1

2

3

4

-2 -1 0 1 2 3 4

X/L

Y
/L

s =1.810s  =1.813
Figure 5. Streamlines corresponding to two liquid sheets of width h0 = 1 and h1 = 2 passing over
a circular arc (solid lines); the dashed line corresponds to the free streamline of one layer of width h0 = 3.

The capability of the method to capture the effect of a nonuniform inflow velocity depends on the
required discretization of the boundary layer. As the number of channels increases, the results should
converge to those corresponding to the continuous inflow velocity profile.

Figure 6 shows the effect of the number of channels N on the cavitation number corresponding to
cavity length sA/L = 2 and a linear velocity profile in the boundary layer. The results show that a 4- or
5-channel discratization of the boundary layer can provide results close to those corresponding to the
continuous velocity profile in the boundary layer. It can also be seen that the boundary layer thickness
has a weak effect on the required number of discrete channels.

The effect of the boundary layer thickness on the streamline shape and the cavity size is shown in
Figure 7a,b for a parabolic velocity profile (Equation (18)). It can be seen that the cavity length becomes
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smaller as the boundary layer thickness increases. This is because the velocity and thus the total flow
pressure in the vicinity of the body decrease, which is similar to a greater local cavitation number.

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N

Figure 6. Effect of the boundary layer discretization degree on the cavitation number at the cavity
length sA/L = 2: δ/L = 1 (solid line), δ/L = 2 (dashed line), δ/L = 3 (dotted line).
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Figure 7. Effect of the boundary layer thickness δ/L on the streamlines at cavitation number σ = 0.24:
δ/L = 3 (a) and δ/L = 1 (b).

The pressure coefficient can be derived using Equation (20) relating the outer inviscid flow and
channel ‘0’ with the cavity

cp =
p − p∞
1
2 ρU2 = v2

∞0 + σ − v2,
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where v∞0 and v are the velocity at infinity and on the body in channel ‘0’, respectively. Then, the drag
force coefficient is defined as

Cx =
1
hb

d

∫
0

cp [s(ξ)] sin β [s(ξ)] ds
dξ

dξ, (21)

where the height of the body is hb =
L

∫
0

sin β(s)ds, and d is the coordinate of point D on the real axis of

the parameter region (see Figure 2).
The drag coefficient versus the relative thickness of the boundary layer is shown in Figure 8.

The results correspond to a linear velocity profile of the incoming flow at infinity. It can be seen that
for boundary layer thickness δ/L > 0.5, the cavitation number and the drag coefficient are nearly the
same. This is because the contribution of the dynamic component to the total pressure is small. As the
boundary layer thickness tends to zero, the cavitation number and the drag coefficient tend to their
values corresponding to potential vortex-free flow past the arc of circle.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cx

4

sc/L=2

, C
x

/L

Figure 8. Cavitation number and drag coefficient versus the boundary layer thickness for two cavity
lengths sA/L = 2 and 4 for a linear velocity profile in the boundary layer.

4.2. Cavity Flow Past a Circular Cylinder

For a body with a sharp edge, the pressure takes its minimal value at the edge, which leads to
cavity inception. Therefore, the position of cavity detachment is fixed at that point. For smoothly
shaped bodies, the position of the minimal pressure is unknown, and it has to be determined as part
of the solution of the problem. In the model of ideal liquid, cavity detachment is determined from
Brillouin-Villat’s criterion [8,9], which states that the cavity detaches tangentially to the solid surface
and the curvature of the free surface is equal to the curvature of the body at the detachment point.
These conditions lead to the equation derived by Villat [9],

lim
s→0

dv
ds

= lim
s→0

d
ds

∣dw
dz

∣
ζ=0

= 0, (22)

where s is the arc length along the wetted part of the body. The physical meaning of this equation is
that the velocity in the flow region reaches its maximal value at the detachment point.

We apply the presented method to the study of the effect of the boundary layer on cavity flow
past smoothly shaped bodies. According to the model, the flow in the channels is vortex free, and thus
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we can use Brillouin-Villat’s criterion [8,9] for the zeroth channel, where the cavity occurs. In view of
Equation (6), Equation (22) takes the form

∞

∫
0

dβ

dξ

dξ

ξ
+

∞

∫
0

d ln v
dη

dη

η
= 0. (23)

Equation (23) determines the position of point O (ζ = 0), which influences the function
β(ξ) = β[s(ξ)].

Figure 9 shows cavity contours at different thicknesses of the boundary layer with the velocity
profile of (18). The solid line corresponds to the case without boundary layer. It can be seen that
the boundary layer significantly affects the size of the cavity. In addition, the position of the cavity
detachment moves somewhat downstream. This feature will be discussed in the following.

0 4 8 12 16
0

1

2

y/
R

x/R

Figure 9. Cavity downstream of a circular cylinder at cavitation number σ = 0.61 and different
thicknesses of the boundary layer, δ/R = 0, 0.7, 1.5, solid/dashed/dotted lines, respectively.

The effect of the boundary layer on the cavitation number is shown in Figure 10 for different
cavity lengths, sA/R. The cylinder radius R is chosen as the characteristic length. The results are
similar to those shown in Figure 8 for the arc of circle with a fixed position of cavity detachment.
The larger the thickness of the boundary layer, the smaller the cavitation number. This implies that
a lower pressure at infinity is required to maintain the same cavity size.

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

/R

Figure 10. Cavitation number versus the boundary layer thickness for different lengths of the cavity:
sA/R = 12(◇), sA/R = 6(△) and sA/R = 2(▽).

Cavity detachment from smooth shaped bodies was studied experimentally by Arakeri and
Acosta [10], Arakeri [11], Tassin-Leger and Ceccio [12]. These researches revealed that the real liquid
properties such as viscosity, surface tension and the solid/liquid work of adhesion affect the cavity
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detachment position. Among these physical properties, the liquid viscosity plays the major role due
to the development of a boundary layer on the body surface. Arakeri and Acosta [10] showed that
viscous effects are predominant, and the mechanisms of cavity detachment and laminar boundary
layer separation are related. A boundary layer separates first and foremost due to an adverse pressure
gradient of the external flow, and this determines the cavity detachment position. A recirculation region
may occur between the points of laminar boundary layer separation and cavity detachment. Its size
may vary significantly depending on the flow configuration, surface tension and the solid/liquid work
of adhesion. Sometimes, this region is not observed in experiments [23].

The present model does not account for the flow viscosity, but it can account the effect of the
boundary layer, which has been developed at upstream. The angle of cavity detachment, θ, measured
from the front stagnation point is shown in Figure 11 as function of the thickness of the boundary
layer at upstream, δ/R, for different cavity lengths or the cavitation numbers. The smallest thickness of
the boundary layer for which the results were obtained is δ/R = 0.25. For the smaller thickness of the
boundary layer, the larger number of nodes ξi, i = 1, . . . Kξ and ηj, j = 1, . . . Kη is necessary to capture
the same size of the flow region in the physical plane.

In Figure 11 it can be seen that the angle θ remains nearly constant in the wide range of the
boundary layer thickness from δ/R = 0.25 to 3.0. The cavity length, (the cavitation number) also weakly
affects the position of cavity detachment. By contrast, the angle θ predicted by the model of ideal
liquid without a boundary layer, δ = 0, is smaller, and it depends on the cavity length. These results
are shown as open symbols on the y-axis for different cavity lengths. As the cavity length decreases,
the angle θ increases, i.e., the position of cavity detachment moves slightly downstream.

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
50

60

70

80

90

de
g.

/R
Figure 11. Cavity detachment angle measured from the stagnation point versus the boundary layer
thickness of the for various cavity lengths: sA/R = 12(◇), sA/R = 6(△) and sA/R = 2(▽); the open and
solid rectangles show the experimental values in the range of Reynolds numbers from 6 × 104 to 3 × 105

taken from Tassin-Leger and Ceccio [12].

The angles θ of laminar flow separation and cavity detachment were measured in Tassin-Leger
and Ceccio [12] for a cavitating cylinder in a uniform flow for the range of Reynolds numbers from
6 × 104 to 3 × 105 and for cavitation numbers σ = 1.1 and 1.3. There is no upstream boundary layer for
this case, i.e., δ = 0. A very thin boundary layer develops on the wetted part of the cylinder surface for
this range of Reynolds numbers, which does not affect the outer flow. The angles of laminar separation
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and cavity detachment measured in those experiments are shown in Figure 11 as open and solid
rectangles, respectively. We note that in those experiments, the position of laminar separation does
not depend on the Reynolds number, while the angle of cavity detachment slightly decreases as the
Reynolds number increases. Since the boundary layer thickness is very small for the Reynolds numbers
in the range mentioned above, it does not affect the outer flow, which determines the pressure gradient
along the wetted surface of the cylinder and, accordingly, the separation of the laminar boundary layer.

By comparing the predicted angle of cavity detachment θ with the experimental data, we can see
that the predicted values of the angle θ are in the middle of the range that includes both the separation
of the laminar boundary layer and the cavity detachment measured in the experiments. The results
obtained can be justified based on the model of ideal liquid, whose results are shown in Figure 11 as
open symbols. The smaller the cavity length (the larger the cavitation number), the larger the angle of
cavity detachment. In the presence of a boundary layer, the angle θ is governed by the local cavitation
number σ0 for the zeroth channel rather than the cavitation number σ for the whole flow. As a result
that σ0 based on the average velocity V in the zeroth channel is larger than σ based on the velocity
U of the outer inflow, the angle θ(σ0) in the presence of a boundary layer is larger than θ(σ) without
a boundary layer. Although the model developed does not include the physical properties of the liquid
directly, the inclusion of the boundary layer into consideration provides relatively good agreement of
the cavity detachment with the experimental data.

5. Conclusions

A general approach to the solution of steady cavity flows in the presence of an inflow vorticity is
presented. The approach is based on replacing the continuously distributed vorticity with discrete
vortex lines placed along the streamlines. This allows one to dispense with solving Poisson’s equation.
The flow between the vortex lines is assumed to be vortex free, thus making it possible to formulate
boundary value problems for the velocity potential in the vortex free subregions.

A set of potential flow problems coupled via boundary conditions is formulated. They include
a cavity jet flow past an arbitrary shaped body, a flow in curved channels and an unbounded flow
along a curved wall. These boundary value problems are solved using the integral hodograph method
to determine the complex velocity and the derivative of the potential in explicit form as a function of
the parameter variable. The derived system of integro-differential equations in the velocity magnitude
and the velocity angle on the boundary of the flow regions is solved numerically using the method of
successive approximations. The convergence and accuracy of the computations are comprehensively
verified by comparing the potential flow in the whole flow region and its subregions formed by
the streamlines.

The presented method allows one to account for a nonuniform vorticity of the inflow and study
the effect of the boundary layer on the cavity size, the force coefficient, and the flow detachment
position for smoothly shaped bodies. The results obtained show that the boundary layer reduces the
size of the cavity and the force coefficient. The larger the boundary layer thickness, the smaller the
cavity size and the drag coefficient. When the boundary layer thickness is greater than the height of
the obstacle, the dynamic term in the Bernoulli equation contributes to the drag coefficient to a far
smaller extent than the static pressure. This agrees with the results obtained, which show that the drag
coefficient is nearly equal to the cavitation number.

The analysis of cavity flows past smoothly shaped bodies revealed the effect of the boundary
layer on the cavity detachment position. The effect is associated with the momentum of the liquid
near the surface of the body. As the velocity near the body surface decreases, the local cavitation
number increases, as a result of which the position of cavity detachment slightly moves downstream
as predicted by the model of ideal liquid.

At the same time, the proposed model has numerical limitations in dealing with very thin
boundary layers, and it does not account explicitly for viscosity, surface tension or the solid/liquid
work of adhesion.
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Nomenclature

x, y Cartesian coordinates
z = x + iy Complex coordinate/physical plane
ζ = ξ + iη parametric variable/parameteric plane
s arclength coordinate
φ flow potential
ψ stream function
w complex potential
dw/dz complex velocity
dw/ζ derivative of the complex potential
ζ complex potential
Hi width of the channel i
L characteristics length
R radius of the cylinder
p∞ pressure at infinity
pc pressure in the cavity
U velocity on the outer boundary
V average velocity across the channels
σ cavitation number based on U
σ0 cavitation number based on V
v velocity magnitude
β slope of the side of the channel
δ thickness of the boundary layer
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