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Abstract: The local controlled generalized H-Bézier model is one of the most useful tools for shape
designs and geometric representations in computer-aided geometric design (CAGD), which is owed
to its good geometric properties, e.g., symmetry and shape adjustable property. In this paper,
some geometric continuity conditions for the generalized cubic H-Bézier model are studied for
the purpose of constructing shape-controlled complex curves and surfaces in engineering. Firstly,
based on the linear independence of generalized H-Bézier basis functions (GHBF), the conditions of
first-order and second-order geometric continuity (namely, G1 and G2 continuity) between two adjacent
generalized cubic H-Bézier curves are proposed. Furthermore, following analysis of the terminal
properties of GHBF, the conditions of G1 geometric continuity between two adjacent generalized
H-Bézier surfaces are derived and then simplified by choosing appropriate shape parameters. Finally,
two operable procedures of smooth continuity for the generalized H-Bézier model are devised.
Modeling examples show that the smooth continuity technology of the generalized H-Bézier model
can improve the efficiency of computer design for complex curve and surface models.

Keywords: generalized H-Bézier basis functions; generalized H-Bézier model; shape parameter;
geometric continuity conditions; complex curve and surface design

MSC: 65D07; 65D10; 65D17; 65D18; 68U05; 68U07

1. Introduction

Parametric curves and surfaces are the main tools used to describe the geometric shape of products
in computer-aided geometric design (CAGD), and their related theories and technologies are also the
bases and core contents of the whole CAGD [1,2]. Traditional Bézier curves and surfaces are parametric
curves and surfaces constructed from Bernstein basis functions. They are not only an important method
for representing complex curves and surfaces in the field of CAGD, but also a powerful tool for shape
designs and geometric representations of various products [3,4]. However, the Bézier model has some
limitations: (i) the shape of the Bézier model is only determined by its control points; and (ii) the
Bézier model cannot accurately represent conic curves and surfaces [5]. To overcome these limitations,
the shapes of the rational Bézier model and non-uniform rational B-spline (NURBS) with fixed control
points can be modified by altering the weight factor [1]. The rational Bézier model and NURBS can
accurately express circles and ellipses, but they cannot precisely describe transcendental curves such
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as hyperbolic curves, catenary curves, and so on [3]. In order to preserve the good properties of the
classical Bézier model and enhance its shape adjustability, scholars have recently constructed many
curves and surfaces with shape parameters [2–22].

The H-Bézier model with shape parameters in algebraic hyperbolic hybrid space maintains
the advantages of the Bézier model and can also be used to accurately represent hyperbolic and
catenary curves [2,9–22]. In 1993, Pottmann [9] constructed a basis set in algebraic hyperbolic space
{1, t, sinht, cosht} For the first time and defined the famous H-Bézier curves using this basis set. A cubic
H-Bézier curve is defined as [9]

C(t; α) =
3∑

i=0

zi,3(t; α) Pi, 0 ≤ t ≤ α, α > 0 (1)

where α is the shape parameter, P0, P1, P2, P3 are the control points of cubic H-Bézier curves, and
zi,3(t) (i = 0, 1, 2, 3) are the basis functions of the cubic H-Bézier curves, defined as follows:

z0,3(t; α) =
(α−t)−sinh(α−t)

α−sinhα , z3,3(t; α) = t−sinht
α−sinhα ,

z1,3(t; α) = M
[
αcoshα−tcoshα−sinhα+sinht)

αcoshα−sinhα − z0,3(t; α)
]
,

z2,3(t; α) = M
[

sinh(α−t)+tcoshα−sinhα)
αcoshα−sinhα − z3,3(t; α)

] (2)

where M = α cos hα−sin hα
α cos hα+α−2 sin hα . The basis functions (2) of cubic H-Bézier curves also satisfy some

important properties, such as non-negativity, partition of unity, and symmetry. In 2005, Li and
Wang [10] extended the definition of cubic H-Bézier curves to nth-degree curves. They constructed a
normative basis set in algebraic hyperbolic hybrid space Γn = span

{
1, t, · · · , tn−2, sin ht, cos ht

}
(n ≥ 2)

and defined the H-Bézier curves of degree n using this function basis set. The H-Bézier model not only
represents hyperbola and catenary curves accurately, but can also adjust its shape without modifying
the coordinates of control points.

In view of the remarkable advantages of the H-Bézier model, scholars have done much research
on the related theories and applications of the H-Bézier model in recent years. Wang and Yang [11]
presented a characterization diagram of the planar cubic H-Bézier model and studied the existence
conditions of singularities and inflection points. Qian and Tang [12] investigated the sufficient and
necessary conditions for continuity of curvature and tangency between H-Bézier curves of order 4.
Fan and Wang [13] presented the matrix representation of the H-Bézier basis and the H-B-spline
basis using recursion. Wu [14] analyzed the geometric characteristics of the cubic H-Bézier model,
e.g., convexity, singularities, and inflection points. Zhao and Wang [15] proposed a geometric
characterization of the H-Bézier model and then compared the singularities of the Bézier, C-Bézier,
and H-Bézier models. Wang et al. [16] proposed an effective algorithm of approximate reduction
for H-Bézier curves based on generalized inverse matrix theory. Qin et al. [17] constructed the
PHH-Bézier curve and proposed sufficient and necessary conditions for a cubic H-Bézier curve to
be a PH curve. In [18], Lee and Ahn obtained the limit curves of nth-degree H-Bézier curves as
α→∞ . Cao et al. [19] proposed two algorithms for the approximation of the respective offset curves
of H-Bézier and H-B-spline spline curves. Huang and Wang [20] presented a novel orthogonal basis
in hyperbolic hybrid polynomial space which retains prominent characteristics of the H-Bézier basis.
Zhang et al. [21] proposed a novel method for unifying C-curves and H-curves by extending the
calculation to complex numbers. As is well known, the global shape of the H-Bézier model can be
altered without modifying the positions of control points. However, the H-Bézier model in [9–21] has
no local shape adjustability due to the lack of local shape parameters. In [22], Hu et al. presented a
novel local controlled H-Bézier model called the generalized H-Bézier model. The global and local
shapes of the new model can be adjusted by changing its local shape parameters while the control
points are maintained. Compared with the H-Bézier model, the generalized H-Bézier model in [22] has
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greater advantages and plays a key role in describing complex curves and surfaces. In order to handle
the problem of not being able to construct complex curves and surfaces using a single generalized
H-Bézier model, in this paper we propose the respective geometric continuity conditions between two
adjacent generalized H-Bézier curves and surfaces.

The rest of the paper is organized as follows. The definition and properties of the generalized
H-Bézier model are given in Section 2. In Section 3, we propose the geometric continuity conditions for
the generalized H-Bézier model and give some examples. Two practical applications are discussed in
Section 4, and finally, conclusions are given in Section 5.

2. The Generalized Cubic H-Bézier Model

2.1. Definition of Generalized Cubic H-Bézier Curves

Definition 1. Let us consider shape parameters α1,α2,α3 > 0; the functions

h0,3(t) =
α1(1−t)−sinh(α1−α1t)

α1−sinhα1
,

h1,3(t) =
α1t−sinhα1+sinh(α1−α1t)

α1−sinhα1
−

α2tcoshα2+sinh(α2−α2t)−sinhα2−sinh(α2t)+α2t
α2coshα2−2sinhα2+α2

,

h2,3(t) =
α2tcoshα2+sinh(α2−α2t)−sinhα2−sinh(α2t)+α2t

α2coshα2−2sinhα2+α2
−
α3t−sinh(α3t)
α3−sinhα3

,

h3,3(t) =
α3t−sinh(α3t)
α3−sinhα3

(3)

in terms of variable t ∈ [0, 1] are then called the generalized cubic H-Bézier basis functions [22].

Remark 1. If the shape parameters are such that α1 = α2 = α3 = α, then the basis functions
hi,3(t) (i = 0, 1, 2, 3) are just the classical cubic H-Bézier basis defined by (2). It can be proved that
the basis functions hi,3(t) (i = 0, 1, 2, 3) in (3) have many properties similar to those of the classical cubic
H-Bézier basis functions, such as non-negativity, symmetry, etc. (see Theorem 1 in [22]).

Figure 1 shows a graphical representation of the basis functions hi,3(t) (i = 0, 1, 2, 3) in (3) with
variation of the shape parameters. One can see from Figure 1 that modification of the three shape
parameters has a distinct effect on the basis functions hi,3(t) (i = 0, 1, 2, 3).Mathematics 2020, 8, x FOR PEER REVIEW 4 of 24 
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Theorem 1. The basis functions hi,3(t) (i = 0, 1, 2, 3) possess the following terminal properties:

h0,3(0) = h3,3(1) = 1, hi,3(0) = h j,3(1) = 0, i = 1, 2, 3; j = 0, 1, 2;

h(1)0,3 (0) = −h(1)1,3 (0) =
α1(coshα1−1)
α1−sinhα1

,

h(1)i,3 (0) = h(1)j,3 (1) = 0 (i = 2, 3; j = 0, 1),

h(1)3,3 (1) = −h(1)2,3 (1) =
α3(1−coshα3)
α3−sinhα3

;

h(2)0,3 (0) =
−α2

1sinhα1
α1−sinhα1

, h(2)1,3 (0) =
α2

1sinhα1
α1−sinhα1

−
α2

2sinhα2
α2coshα2−2sinhα2+α2

,

h(2)2,3 (0) =
α2

2sinhα2
α2coshα2−2sinhα2+α2

, h(2)3,3 (0) = 0,

h(2)0,3 (1) = 0, h(2)1,3 (1) =
α2

2sinhα2
α2coshα2−2sinhα2+α2

,

h(2)2,3 (1) =
α2

3sinhα3
α3−sinhα3

−
α2

2sinhα2
α2coshα2−2sinhα2+α2

, h(2)3,3 (1) =
−α2

3sinhα3
α3−sinhα3

.

(4)

Proof. These results follow obviously from Definition 1. �

Definition 2. For given control points Pi ∈ Ru (u = 2, 3; i = 0, 1, 2, 3), a generalized cubic H-Bézier curve

H(t; Ω) =
3∑

i=0

Pihi,3(t), t ∈ [0, 1], (5)

can be defined as follows [22], where Ω = {α1,α2,α3} are local shape parameters and hi,3(t) (i = 0, 1, 2, 3) are
the generalized cubic H-Bézier basis functions defined by (3).

Remark 2. It follows from (3) that the curves in (5) inherit many excellent properties of the cubic H-Bézier
curves in (1), such as symmetry, the convex hull property, etc. (see Theorem 2 in [22]). In particular, when
α1 = α2 = α3 = α, the curves H(t; Ω) in (5) degenerate to traditional cubic H-Bézier curves.

Theorem 2. The curves H(t; Ω) in (5) have the following terminal properties:

H(0; Ω) = P0, H(1; Ω) = P3,

H′(0; Ω) =
α1(1−coshα1)
α1−sinhα1

(P1 −P0), H′(1; Ω) =
α3(1−coshα3)
α3−sinhα3

(P3 −P2),

H′′ (0; Ω) =
α2

1sinhα1
α1−sinhα1

(P1 −P0) +
α2

2sinhα2
α2coshα2−2sinhα2+α2

(P2 −P1),

H′′ (1; Ω) =
α2

2sinhα2
α2coshα2−2sinhα2+α2

(P1 −P2) +
α2

3sinhα3
α3−sinhα3

(P2 −P3).

(6)

Proof. According to the terminal properties in (4), as well as the definition of the generalized cubic
H-Bézier curves, we can deduce the terminal properties (6) of the curves H(t; Ω), thus proving
Theorem 2. �

2.2. Shape Control of the Generalized Cubic H-Bézier Curves

For t ∈ [0, 1], we rewrite (5) as follows:

H(t; Ω) = P0 + f1(t;α1)(P1 −P0) + f2(t;α2)(P2 −P1) + f3(t;α3)(P3 −P2), (7)
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in which 
f1(t;α1) =

α1t−sinhα1+sinh(α1−α1t)
α1−sinhα1

,

f2(t;α2) =
α2tcoshα2+sinh(α2−α2t)−sinhα2−sinh(α2t)+α2t

α2tcoshα2−2sinhα2+α2
,

f3(t;α3) =
α3t−sinh(α3t)
α3−sinhα3

,

(8)

where fi(t;αi)(i = 1, 2, 3) are called translational speed functions; see Figure 2.
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⎪⎪
⎧𝑓𝑓1(𝑡𝑡;𝛼𝛼1) =

𝛼𝛼1𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛼𝛼1 + 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼1 − 𝛼𝛼1𝑡𝑡)
𝛼𝛼1 − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛼𝛼1

,

𝑓𝑓2(𝑡𝑡;𝛼𝛼2) =
𝛼𝛼2𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝛼𝛼2 + 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼2 − 𝛼𝛼2𝑡𝑡) − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛼𝛼2 − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼2𝑡𝑡) + 𝛼𝛼2𝑡𝑡

𝛼𝛼2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝛼𝛼2 − 2 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛼𝛼2 + 𝛼𝛼2
,

𝑓𝑓3(𝑡𝑡;𝛼𝛼3) =
𝛼𝛼3𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝛼𝛼3𝑡𝑡)
𝛼𝛼3 − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛼𝛼3

,

 (8) 
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For a given t̃ ∈ (0, 1) and a fixed control polygon, the expression of the curves H(̃t; Ω) describes
the movement locus of a fixed point H(̃t) when one of the shape parameters, αi(i = 1, 2, 3), changes.

Afterwards, we obtain the partial derivative of (7) with respect to αi as follows:

∂H(̃t; Ω)

∂αi
=


d fi (̃t;αi)

dαi
(Pi −Pi−1) (i = 1, 2),

−
d fi (̃t;αi)

dαi
(Pi−1 −Pi) (i = 3),

(9)

which signifies that the trace curve H(̃t; Ω) of a fixed point H(̃t) is a straight line only when the shape
parameter αi changes (as shown in Figure 3).
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Figure 3. The influences of shape parameters on generalized cubic H-Bézier curves.

Obviously, for a fixed control polygon and a given t̃ ∈ (0, 1), the value change of one shape
parameter αi(i = 1, 2, 3) will result in a linear change of a point H(̃t) on the curves. For a fixed t̃ ∈ (0, 1),
according to (8), we know that

d f1
(̃
t;α1

)
dα1

> 0. (10)

We can see from (10) that f1 (̃t;α1) is an increasing function with α1 (see Figure 2a), which means
that the generalized cubic H-Bézier curve will move along the same direction as P1 −P0 with increasing
α1, and vice versa. Analogously, we deduce that the shape parameter α3 has a similar effect on the
edge P2 − P3 on the basis of the monotonicity principle of f3(t;α3) (as shown in Figure 2c). Notice,
however, that f2(t;α2) augments or diminishes with increasing α2 for any fixed t̃ ∈ (0, 0.5) or t̃ ∈ (0.5, 1),
respectively (as shown in Figure 2b), which signifies that the curves H(t; Ω) defined on intervals
(0, 0.5) and (0.5, 1) move in the same and opposite direction as the edge P2 − P1 as α2 increases,
respectively. From the discussions above, the effect laws of the shape parameters αi(i = 1, 2, 3) on
generalized cubic H-Bézier curves are obtained under the circumstance of the control points of the
curves remaining unchanged.
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(a) For fixed shape parameters αi(i = 2, 3), the curves H(t; Ω) will gradually approach or go far
away from the control point P1 when increasing or decreasing the value of shape parameter α1.
That means that the shape parameter α1 is mainly used to adjust the local shape of the curves in
the vicinity of control point P1 (as shown in Figure 3a).

(b) For fixed shape parameters α1 and α3, the curves H(t; Ω) will simultaneously move away from
the control points P1 and P2 with increasing value of the shape parameter α2 (as shown in
Figure 3b). What calls for special attention is that the location of point H(0.5; Ω) will not change
as α2 increases.

(c) For fixed shape parameters α1 and α2, the curves H(t; Ω) will get nearer to or farther away from
control point P3 when increasing or decreasing the value of shape parameter α3. That means that
the shape parameter α3 is mainly utilized to control the local shape of the curves in the vicinity of
control point P3 (as shown in Figure 3c).

Besides this, the curves H(t; Ω) gradually approach or move away from their control polygon
spanned by Pi (i = 0, 1, 2, 3) when increasing or decreasing the values of shape parameters α1 and α3

simultaneously (as shown in Figure 3d). In conclusion, we can see expressly that the shape parameters
αi(i = 1, 2, 3) can act as tension parameters, and their influence rules on the curves H(t; Ω) are
perspicuous (see Figure 3).

Figure 3 displays the influences of the three shape parameters on the cubic generalized H-Bézier
curves when their control points are fixed. Figure 3a–c shows the curves with two fixed shape
parameters while changing α1, α2, α3, respectively. Figure 3d shows the curves while altering shape
parameters α1 and α3 simultaneously. The influence rules of the shape parameters on the curves
H(t; Ω) can be seen distinctly in Figure 3. Note that, in Figure 3, the values in parentheses show the
changes of the shape parameters in the corresponding position, with the values from left to right in
parentheses corresponding to the H-Bézier curves from the black dotted curve to the green solid curve
in each graph; the red asterisks marked on the different generalized cubic H-Bézier curves in each
figure represent the points with the same parameter t̃, so that the straight lines connecting these points
are the motion trajectory of the points corresponding to t̃ when altering the shape parameters.

2.3. Definition of Generalized Bicubic H-Bézier Surfaces

Definition 3. Given a set of control points Qi, j ∈ R3(i, j = 0, 1, 2, 3
)
, the tensor product parametric surfaces

S(u, v; Ωα, Ωβ) =
3∑

i=0

3∑
j=0

hi,3(u)h j,3(v)Qi, j, 0 ≤ u, v ≤ 1, (11)

are called generalized bicubic H-Bézier surfaces with 4× 4 control mesh points Qi, j, where hi,3(u)(i = 0, 1, 2, 3)
and h j,3(v)( j = 0, 1, 2, 3) are the generalized cubic H-Bézier basis functions defined in (3); Ωα = {α1,α2,α3}
and Ωβ = {β1, β2, β3} are local shape parameters for the basis functions hi,3(u) and h j,3(v), respectively.

The tensor products of generalized bicubic H-Bézier surfaces have properties similar to those of
the tensor products of classical bicubic H-Bézier ones. By keeping the control mesh fixed, the shape
of the generalized bicubic H-Bézier surface can also be modified by altering the shape parameters.
Figures 4 and 5 show the different behaviors of surfaces S(u, v; Ωα, Ωβ) by alteration of the shape
parameters in their domain.
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where },,{ 3,12,11,11 ααα=Ω  and },,{ 3,22,21,22 ααα=Ω  are the shape parameters of the curves 

( )11 ,ΩH t  and ( )22 ,ΩH t , respectively. 
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𝛼𝛼3,1(1 − 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝛼𝛼3,1)
𝛼𝛼3,1 − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛼𝛼3,1

⋅
𝛼𝛼1,2 − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝛼𝛼1,2

𝛼𝛼1,2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝛼𝛼1,2)
(𝑃𝑃31 − 𝑃𝑃21) + 𝑃𝑃31

 (13) 

where 0>λ  is an arbitrary constant. 

Figure 5. The effects of β3 on the generalized bicubic H-Bézier surface.
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3. Geometric Continuity Conditions for the Generalized Cubic H-Bézier Model

In the design of curve and surface modeling, we often encounter some complex curves and
surfaces that cannot be represented by a single curve and surface, so the technology of smooth splicing
between multiple adjacent curves and surfaces seems to be very important. According to the smooth
continuity conditions of parametric curves and surfaces, we will discuss the G1 and G2 continuity
conditions for generalized cubic H-Bézier curves and G1 continuity conditions for generalized bicubic
H-Bézier surfaces. Since the smooth continuity of surfaces has directionality, there are three different
ways for surfaces to achieve smooth continuity at the joint, which are the continuity of the two surfaces
in the u direction, the continuity of one surface in the u direction and the other in the v direction,
and the continuity of the two surfaces in the v direction. These smooth continuity conditions will be
discussed one by one below.

3.1. G1 and G2 Smooth Continuity for Generalized Cubic H-Bézier Curves

For the convenience of our discussion, it is assumed that the expressions of the two generalized
cubic H-Bézier curves to be spliced are as follows:

H1(t; Ω1) =
3∑

i=0
P1

i hi,3(t),

H2(t; Ω2) =
3∑

i=0
P2

i hi,3(t),
(12)

where Ω1 = {α1,1,α2,1,α3,1} and Ω2 = {α1,2,α2,2,α3,2} are the shape parameters of the curves H1(t, Ω1)

and H2(t, Ω2), respectively.

Theorem 3. For the two adjacent generalized cubic H-Bézier curves defined by (12), the necessary and sufficient
conditions of G1 smooth continuity at the joint are as follows:

P2
0 = P1

3,

P2
1 = λ ·

α3,1(1−cos hα3,1)
α3,1−sin hα3,1

·
α1,2−sin hα1,2

α1,2(1−cos hα1,2)

(
P1

3 − P1
2

)
+ P1

3
(13)

where λ > 0 is an arbitrary constant.

Proof. In order to make two adjacent curves H1(t; Ω1) and H2(t; Ω2) reach G1 smooth continuity at
the joint, they should satisfy G0 continuity in the first place, which means that the two splicing curves
should be connected from end to end:

P2
0 = H2(0; Ω2) = H1(1; Ω1) = P1

3. (14)

At the same time, G1 continuity of the two curves needs to have the same tangent direction at the
splicing point [23,24]; that is,

H′2(0; Ω2) = λH′1(1; Ω1), (15)

where λ > 0 is an arbitrary constant.
According to the terminal properties (6) of generalized cubic H-Bézier curves, we have

H′2(0; Ω2) =
α1,2(1−cos hα1,2)
α1,2−sin hα1,2

(
P2

1 − P2
0

)
,

H′1(1; Ω1) =
α3,1(1−cos hα3,1)
α3,1−sin hα3,1

(
P1

3 − P1
2

)
.

(16)
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Substituting (16) into (15) and combining it with (14), we can obtain

P2
1 = λ ·

α3,1(1− cos hα3,1)

α3,1 − sin hα3,1
·
α1,2 − sin hα1,2

α1,2(1− cos hα1,2)

(
P1

3 − P1
2

)
+ P1

3. (17)

From the above, (14) and (17) constitute G1 smooth continuity conditions for the two adjacent
generalized cubic H-Bézier curves. Thus, Theorem 3 is proved. �

Specifically, Equation (13) is the necessary and sufficient condition for C1 smooth continuity of
two adjacent generalized cubic Bézier curves when λ = 1.

Theorem 4. For the two adjacent generalized cubic H-Bézier curves defined by (12), the necessary and sufficient
conditions of G2 smooth continuity at the joint are given by

P2
0 = P1

3,

P2
1 = λ

α3,1(1−cos hα3,1)
α3,1−sin hα3,1

α1,2−sin hα1,2

α1,2(1−cos hα1,2)

(
P1

3 − P1
2

)
+ P1

3,

P2
2 = λ2RSP1

1 −R
[
λ2

(
S +

α2
3,1 sin hα3,1

sin hα3,1−α3,1

)
+ µ

α3,1(cos hα3,1−1)
sin hα3,1−α3,1

+

λ
α3,1(cos hα3,1−1)

sin hα3,1−α3,1

α1,2−sin hα1,2

α1,2(1−cos hα1,2)

(
α2

1,2 sin hα1,2

sin hα1,2−α1,2
+ 1

R

)
]P1

2+

R
[
λ2 α2

3,1 sin hα3,1

sin hα3,1−α3,1
+ µ

α3,1(cos hα3,1−1)
sin hα3,1−α3,1

−
α2

1,2 sin hα1,2

sin hα1,2−α1,2
+(

α2
1,2 sin hα1,2

sin hα1,2−α1,2
+ 1

R

)(
λ
α3,1(cos hα3,1−1)

sin hα3,1−α3,1

α1,2−sin hα1,2

α1,2(1−cos hα1,2)
+ 1

)
]P1

3,

(18)

where λ > 0, µ is an arbitrary constant, and

R =
α2,2 cos hα2,2 − 2 sin hα2,2 + α2,2

α2
2,2 sin hα2,2

, S =
α2

2,1 sin hα2,1

α2,1 cos hα2,1 − 2 sin hα2,1 + α2,1
.

Proof. If the two adjacent generalized cubic H-Bézier curves H1(t; Ω1) and H2(t; Ω2) achieve G2

continuity at the joint, they are required to achieve G1 continuity first (as shown in (13)).
Furthermore, G2 continuity of the two adjacent curves also needs to be satisfied [23–25]:

H′′2 (0; Ω2) = λ2H′′1 (1; Ω1) + µH′1(1; Ω1), (19)

where λ > 0, µ is an arbitrary constant.
In terms of the terminal properties (6) of generalized cubic H-Bézier curves, we have

α2
1,2 sin hα1,2

α1,2−sin hα1,2

(
P2

1 − P2
0

)
+

α2
2,2 sin hα2,2

α2,2 cos hα2,2−2 sin hα2,2+α2,2

(
P2

2 − P2
1

)
= λ2

[
α2

2,1 sin hα2,1

α2,1 cos hα2,1−2 sin hα2,1+α2,1

(
P1

1 − P1
2

)
+

α2
3,1 sin hα3,1

α3,1−sin hα3,1

(
P1

2 − P1
3

)]
+

µα3,1(1−cos hα3,1)
α3,1−sin hα3,1

(
P1

3 − P1
2

)
.

(20)

Finally, the third equation of (18) can be obtained by combining (13) and (20). Thus, Theorem 4
is proved. �

Specifically, Equation (18) is the necessary and sufficient condition for C2 smooth continuity of
two adjacent generalized cubic H-Bézier curves when λ = 1, µ = 0.
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Remark 3. While keeping the continuity conditions of G1 and G2 unchanged, we can adjust the global and local
shapes of composite generalized cubic H-Bézier curves by modifying the values of shape parameters, which is the
advantage of splicing generalized cubic H-Bézier curves.

According to the two smooth continuity conditions of generalized cubic H-Bézier curves discussed
above, we take G2 continuity as an example to give a specific splicing algorithm for two adjacent
curves. The procedure is shown in Algorithm 1.

Algorithm 1. CurveJoint(Px, Py, A, B, lamda, mu)

{ /* G2 smooth continuity between two adjacent generalized cubic H-Bézier curves */
/* Input: Px, Py control points of the first curve */
/* A, B shape parameters of the first and second curve, respectively */
/* lamda, mu */
/* Output: composite generalized cubic H-Bézier curves with G2 smooth continuity */
N = 101;
Compute the values of the basis function for u and store them in h03[N], h13[N], h23[N], h33[N],

respectively;
for (i = 0; i <= N; ++i)

{
Hx[i] = h03[i] * Px[0] + h13[i] * Px[1] + h23[i] * Px[2] + h33[i] * Px[3];
Hy[i] = h03[i] * Py[0] + h13[i] * Py[1] + h23[i] * Py[2] + h33[i] * Py[3];
}

Plot the initial generalized cubic H-Bézier curve according to Hx and Hy;
Compute the first three control points of the second curve according to (18) and store them in Qx[i] and

Qy[i] (i = 0,1,2);
Give the last control point Qx[3],Qy[3];
for (i = 0; i <= N; ++i)
{

HHx[i] = h03[i] * Qx[0] + h13[i] * Qx[1] + h23[i] * Qx[2] + h33[i] * Qx[3];
HHy[i] = h03[i] * Qy[0] + h13[i] * Qy[1] + h23[i] * Qy[2] + h33[i] * Qy[3];

}
Plot the generalized cubic H-Bézier curve that needs to reach G2 smooth continuity according to HHx and

HHy;
}

Remark 4. According to Algorithm 1, composite generalized cubic H-Bézier curves with G2 continuity can be
easily obtained. Similarly, when “the first three control points of the second curve are calculated according to
(18)” and the next step “give the last control points” in Algorithm 1 are replaced by “the first two control points
of the second curve are calculated in terms of (13)” and “give the remaining two control points”, generalized
cubic H-Bézier curves with G1 continuity can be obtained by Algorithm 1.

Figures 6 and 7 show examples of shape adjustment of the composite generalized cubic H-Bézier
curves with G1 and G2 continuity, respectively, which can be obtained by Algorithm 1. It can be
clearly seen from the figure that the generalized cubic H-Bézier curve has superior shape adjustability,
which allows broader practical applications of the generalized cubic H-Bézier curve.
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Figure 6. Shape adjustment of the generalized cubic H-Bézier curves with G1 continuity.
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Figure 7. Shape adjustment of the generalized cubic H-Bézier curves with G2 continuity.
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3.2. G1 Smooth Continuity for Generalized Cubic H-Bézier Surfaces

For the convenience of this discussion, the splicing of two generalized bicubic H-Bézier surface
patches is considered here. Suppose that the two generalized bicubic H-Bézier surface patches to be
spliced are defined as follows:

S1(u, v; Ωα, Ωβ) =
3∑

i=0

3∑
j=0

hi,3(u)h j,3(v)Q1
i, j,

S2(u, v;
~
Ωα,

~
Ωβ) =

3∑
i=0

3∑
j=0

hi,3(u)h j,3(v)Q2
i, j,

(21)

where Ωα = {α1,α2,α3},Ωβ = {β1,β2,β3} and
~
Ωα = {̃α1, α̃2, α̃3},

~
Ωβ = {̃β1, β̃2, β̃3} are the shape control

parameters of S1(u, v; Ωα, Ωβ) and S2(u, v;
~
Ωα,

~
Ωβ), respectively. Meanwhile, Qk

i, j(i, j = 0, 1, 2, 3; k = 1, 2)
represent the control mesh points of the kth surface patch.

Theorem 5. If the shape parameters and control mesh points of two generalized bicubic H-Bézier surface patches
(21) satisfy 

Q2
i,0 = Q1

i,3, (i = 1, 2, 3), α̃ j = α j, ( j = 1, 2, 3),

Q2
i,1 = γ

β3(1−coshβ3)(β̃1−s̃inhβ1)

β̃1(β3−sinhβ3)(1−c̃oshβ1)
(Q1

i,3 −Q1
i,2) + Q1

i,3, (i = 0, 1, 2, 3),
(22)

then the u direction of S1 and the u direction of S2 reach G1 smooth continuity at the common boundary, where
γ > 0 is a real constant.

Proof. In order to make two adjacent generalized bicubic H-Bézier surfaces S1 and S2 reach G1 smooth
continuity in the u direction, they should satisfy G0 continuity first, which means that

S2(u, 0;
~
Ωα,

~
Ωβ) = S1(u, 1; Ωα, Ωβ). (23)

Based on the boundary properties of the generalized bicubic H-Bézier surface, we can obtain

3∑
i=0

hi,3(u)Q2
i,0 =

3∑
i=0

hi,3(u)Q1
i,3. (24)

Due to the linear independence of generalized cubic H-Bézier basis functions, and comparing the
coefficients of the two sides of (24), Equation (24) can be further simplified and the following obtained: α̃ j = α j, ( j = 1, 2, 3),

Q2
i,0 = Q1

i,3, (i = 0, 1, 2, 3).
(25)

Also, the two H-Bézier surface patches need to satisfy normal vector direction continuity at the
common boundary [26], i.e.,

∂
∂v S2(u, v;

~
Ωα,

~
Ωβ)

∣∣∣∣
v=0
×

∂
∂u S2(u, v;

~
Ωα,

~
Ωβ)

∣∣∣∣
v=0

= γ(u) ∂
∂v S1(u, v; Ωα, Ωβ)

∣∣∣
v=1 ×

∂
∂u S1(u, v; Ωα, Ωβ)

∣∣∣
v=1,

(26)

where γ(u) > 0 is the scaling factor between their normal vectors. In order to facilitate the calculation,
(26) can be simplified by the Faux method as follows [26]:

∂
∂v

S2(u, v;
~
Ωα,

~
Ωβ)

∣∣∣∣∣
v=0

= γ
∂
∂v

S1(u, v; Ωα, Ωβ)

∣∣∣∣∣
v=1

, (27)
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where γ > 0 is a real constant; (27) means that the directions of cross-boundary tangents of the two
surfaces are continuous.

After simple calculation, (27) can be simplified to

β̃1

(
1− c̃os hβ1

)
β̃1 − s̃in hβ1

3∑
i=0

hi,3(u)
(
Q2

i,1 −Q2
i,0

)
= γ

β3(1− cos hβ3)

β3 − sin hβ3

3∑
i=0

hi,3(u)
(
Q1

i,3 −Q1
i,2

)
. (28)

Due to the linear independence of generalized cubic H-Bézier basis functions, Equation (28) can
be simplified by comparing coefficients as follows:

β̃1

(
1− c̃os hβ1

)
β̃1 − s̃in hβ1

(
Q2

i,1 −Q2
i,0

)
= γ

β3(1− cos hβ3)

β3 − sin hβ3

(
Q1

i,3 −Q1
i,2

)
, (i = 0, 1, 2, 3). (29)

By combining the conclusions in (25), (29) can be reduced to

Q2
i,1 = γ

β3(1− cos hβ3)
(
β̃1 − s̃in hβ1

)
β̃1(β3 − sin hβ3)

(
1− c̃os hβ1

) (Q1
i,3 −Q1

i,2

)
+ Q1

i,3, (i = 0, 1, 2, 3). (30)

Therefore, (25) and (30) constitute G1 smooth continuity conditions of two generalized bicubic
H-Bézier surface patches in the u direction. Theorem 5 is thus proved. �

Theorem 6. If the shape parameters and control mesh points of two generalized bicubic H-Bézier surface patches
(21) satisfy 

Q2
0,i = Q1

i,3, (i = 0, 1, 2, 3), β̃ j = α j, ( j = 1, 2, 3),

Q2
1,i = γ

β3(1−coshβ3)(α̃1−s̃inhα1)

α̃1(β3−sinhβ3)(1−c̃oshα1)
(Q1

i,3 −Q1
i,2) + Q1

i,3, (i = 0, 1, 2, 3).
(31)

then the u direction of S1 and the v direction of S2 reach G1 smooth continuity at the common boundary,
where γ > 0 is a real constant.

Proof. In order to make two adjacent generalized bicubic H-Bézier surfaces S1 and S2 reach G1 smooth
continuity in the u and v directions, they should satisfy G0 continuity first, which means

S2(0, v;
~
Ωα,

~
Ωβ) = S1(u, 1; Ωα, Ωβ). (32)

Based on the boundary properties of the generalized bicubic H-Bézier surface, we can obtain β̃ j = α j, ( j = 1, 2, 3),

Q2
0,i = Q1

i,3, (i = 0, 1, 2, 3).
(33)

Then, the two H-Bézier surface patches need to satisfy continuity of normal vectors in the u and v
directions at the common boundary, i.e., [24,26]

∂
∂u

S2(u, v;
~
Ωα,

~
Ωβ)

∣∣∣∣∣
u=0

= γ
∂
∂v

S1(u, v; Ωα, Ωβ)

∣∣∣∣∣
v=1

, (34)

where γ > 0 is a real constant.
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After simple calculation, (34) can be simplified to

α̃1

(
1− c̃os hα1

)
α̃1 − s̃in hα1

3∑
i=0

hi,3(u)
(
Q2

1,i −Q2
0,i

)
= γ

β3(1− cos hβ3)

β3 − sin hβ3

3∑
i=0

hi,3(u)
(
Q1

i,3 −Q1
i,2

)
. (35)

Due to the linear independence of generalized cubic H-Bézier basis functions, (35) can be simplified
by comparing coefficients as follows:

α̃1

(
1− c̃os hα1

)
α̃1 − s̃in hα1

(
Q2

1,i −Q2
0,i

)
= γ

β3(1− cos hβ3)

β3 − sin hβ3

(
Q1

i,3 −Q1
i,2

)
. (36)

Furthermore, by combining the conclusions in (33), (36) can be reduced to

Q2
1,i = γ

β3(1− cos hβ3)
(
α̃1 − s̃in hα1

)
α̃1(β3 − sin hβ3)

(
1− c̃os hα1

) (Q1
i,3 −Q1

i,2

)
+ Q1

i,3, (i = 0, 1, 2, 3). (37)

Therefore, (33) and (37) constitute the G1 smooth continuity conditions of two generalized bicubic
H-Bézier surface patches in the u and v directions. Theorem 6 is thus proved. �

Analogously, for the G1 smooth continuity conditions of two generalized bicubic H-Bézier surface
patches in the v direction, it can be easily proved that the following theorem holds.

Theorem 7. If the shape parameters and control mesh points of two generalized bicubic H-Bézier surface patches
(17) satisfy 

Q2
0, j = Q1

3, j, ( j = 0, 1, 2, 3), β̃ j = β j, ( j = 1, 2, 3),

Q2
1, j = γ

α3(1−coshα3)(α̃1−s̃inhα1)

α̃1(α3−sinhα3)(1−c̃oshα1)
(Q1

3, j −Q1
2, j) + Q1

3, j, ( j = 0, 1, 2, 3),
(38)

then the v direction of S1 and the v direction of S2 reach G1 smooth continuity at the common boundary,
where γ > 0 is a real constant.

From the above discussion, it can be seen that in order to obtain a generalized bicubic H-Bézier
surface that satisfies the G1 continuity condition, we are only required to calculate the first two rows
of control points of the second generalized bicubic H-Bézier surface according to the corresponding
conditions; then the last two rows of control points can be given. Here, we devise a specific operable
procedure for generating composite generalized bicubic H-Bézier surfaces with G1 smooth continuity
in the u direction. The procedure is shown in Algorithm 2.
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Algorithm 2. SurfaceJoint(Px, Py, Pz, A1, B1, B2, gama)

{ /* G1 continuity between two generalized bicubic H-Bézier surfaces in the u direction */
/* Input: Px, Py, Pz the control mesh points of the surface S1 */

/* A1, B1 the shape parameters of the surface S1 */
/* B2 the shape parameters of the surface S2 */
/* gama */
/* Output: the composite generalized bicubic H-Bézier surface that satisfies the corresponding

continuity condition */
Surface (Px, Py, Pz, A1, B1);
Compute the first two rows of control mesh points of S2 according to equation (22) and store them in

Qx[i],Qy[i],Qz[i](i = 0,1);
Give the last two rows of control mesh points Qx[i],Qy[i] (i = 2,3) of S2;
Surface (Qx, Qy, Qz, A1, B2);

}
Surface(Px, Py, Pz, A1, B1)
{ /* The generation of generalized bicubic H-Bézier surfaces */

/* Input: Px, Py, Pz, A1, B1 the control mesh points and shape parameters of the generalized bicubic
H-Bézier surfaces */

/* Output: generalized bicubic H-Bézier surfaces */
i = 0;
for (u = 0; u <= 1; u += 0.04)
{

Compute the values of basis function for u direction and store them in uh03,uh13,uh23,uh33;
k = 0;
for (v = 0; v <= 1; v += 0.04)
{

Compute the values of basis function for v direction and store them in vh03,vh13,vh23,vh33,
respectively;

for (j = 0; j < 4; ++ j)
{

qvx[j] = vh03*Px[j][0] + vh13*Px[j][1] + vh23*Px[j][2] + vh33*Px[j][3];
qvy[j] = vh03*Py[j][0] + vh13*Py[j][1] + vh23*Py[j][2] + vh33*Py[j][3];
qvz[j] = vh03*Pz[j][0] + vh13*Pz[j][1] + vh23*Pz[j][2] + vh33*Pz[j][3];

}
qux = uh03 * qvx[0] + uh13 * qvx[1] + uh23 * qvx[2]+ uh33 * qvx[3];
quy = uh03 * qvy[0] + uh13 * qvy[1] + uh23 * qvy[2] + uh33 * qvy[3];
quz = uh03 * qvz[0] + uh13 * qvz[1] + uh23 * qvz[2]+ uh33 * qvz[3];
X(i,k) = qux;
Y(i,k) = quy;
Z(i,k) = quz;
k = k + 1;

}
i = i + 1;

}
Plot the generalized bicubic H-Bézier surfaces according to X,Y and Z;

}

Remark 5. According to Algorithm 2, it is easy to obtain composite generalized bicubic H-Bézier surfaces with
G1 continuity in the u direction. Similarly, when “the first two rows of control points of the second generalized
bicubic H-Bézier surface are calculated according to (22)” in Algorithm 2 is replaced by “the first two rows of
control points of the second surface are calculated according to (31)” or “the first two rows of control points
of the second surface are calculated in terms of (38)”, respectively, then the above composite surfaces with G1

continuity in the u and v directions or in the v direction can be obtained.
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Figure 8 shows a modeling example to illustrate G1 smooth continuity in the u direction between
two generalized bicubic H-Bézier surfaces and modifies the shape of the composite surface by changing
shape parameters without changing the continuity conditions. In Figure 8, the green mesh surfaces
represent the original surface S1(u, v; Ωα, Ωβ), the blue polylines are its control mesh, and the circles
on the polylines represent control points (for visual effect, only four corners of the surfaces are shown

here; the same below). The yellow mesh surfaces are the constructed surfaces S2(u, v;
~
Ωα,

~
Ωβ) which

satisfy the G1 smooth continuity conditions in the u direction, that is, Equation (22). The red polylines

are the control meshes of the surfaces S2(u, v;
~
Ωα,

~
Ωβ), and the circles on the polylines denote their

control points. In Figure 8a, the shape parameters of surfaces S1(u, v; Ωα, Ωβ) and S2(u, v;
~
Ωα,

~
Ωβ)

are Ωα =
~
Ωα = {1, 2, 1},γ = 0.9. Figure 8b was obtained by modifying the value of the partial shape

parameters in Ωβ,
~
Ωβ (specific modifications can be seen in Figure 8) on the basis of Figure 8a.
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Figure 9 shows a modeling example to demonstrate G1 smooth continuity in the u and v directions
between two generalized bicubic H-Bézier surfaces and modifies the shape of the composite surface
by changing shape parameters without changing the continuity conditions. In Figure 9, the green
mesh surfaces represent the original surface S1(u, v; Ωα, Ωβ) and the yellow mesh surfaces are the

constructed surfaces S2(u, v;
~
Ωα,

~
Ωβ) which satisfy the G1 smooth continuity conditions in the u and v

directions, that is, Equation (31). In Figure 9a, the shape parameters of surfaces S1(u, v; Ωα, Ωβ) and

S2(u, v;
~
Ωα,

~
Ωβ) are Ωα =

~
Ωβ = {1, 5, 1},γ = 0.5. In Figure 9b, we take Ωα =

~
Ωβ = {5, 2, 5} and modify

some shape parameter values in Ωβ,
~
Ωα (specific modifications can be seen in Figure 9) so as to adjust

the shape of the composite surfaces.
Figure 10 shows a modeling example to display G1 smooth continuity in the v direction between

two generalized bicubic H-Bézier surfaces and modifies the shape of the composite surface by
changing shape parameters without changing the continuity conditions. In Figure 10, the green mesh
surfaces represent the initial surface S1(u, v; Ωα, Ωβ) and the yellow mesh surfaces are the constructed

surfaces S2(u, v;
~
Ωα,

~
Ωβ) which satisfy the G1 smooth continuity conditions in the v direction, that is,

Equation (38). In Figure 10a, the shape parameters of surfaces S1(u, v; Ωα, Ωβ) and S2(u, v;
~
Ωα,

~
Ωβ)

are Ωβ =
~
Ωβ = {1, 2, 1},γ = 0.9. Figure 10b is obtained by modifying the value of the partial shape

parameters in Ωα,
~
Ωα on the basis of Figure 10a. From Figure 8 to Figure 10, it can be seen that when

the continuity condition of the surface remains unchanged, modification of the local or global shape of
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the composite surface can be achieved by modifying the values of multiple shape parameters, which is
undoubtedly important in practical applications.Mathematics 2020, 8, x FOR PEER REVIEW 20 of 24 

 

  

(a) {1,2,1}~},1,1,1{ == αβ ΩΩ  (b) {1,7,4}~},1,1,4{ == αβ ΩΩ  

Figure 9. Generalized bicubic H-Bézier surfaces with G1 continuity in the u and v directions. 

Figure 10 shows a modeling example to display G1 smooth continuity in the v direction between 
two generalized bicubic H-Bézier surfaces and modifies the shape of the composite surface by 
changing shape parameters without changing the continuity conditions. In Figure 10, the green mesh 

surfaces represent the initial surface ),;,(1 βα ΩΩS vu  and the yellow mesh surfaces are the 

constructed surfaces )~,~;,(2 βα ΩΩS vu  which satisfy the G1 smooth continuity conditions in the v 

direction, that is, Equation (38). In Figure 10a, the shape parameters of surfaces ),;,(1 βα ΩΩS vu  

and )~,~;,(2 βα ΩΩS vu  are 0.9.{1,2,1},~
=== γββ ΩΩ  Figure 10b is obtained by modifying 

the value of the partial shape parameters in αα ΩΩ ~,  on the basis of Figure 10a. From Figure 8 to 

Figure 10, it can be seen that when the continuity condition of the surface remains unchanged, 
modification of the local or global shape of the composite surface can be achieved by modifying the 
values of multiple shape parameters, which is undoubtedly important in practical applications. 

  

(a) {1,1,1}~,{1,1,1} == αα ΩΩ  (b) {1,7,7}~,{3,5,1} == αα ΩΩ  

Figure 10. Generalized bicubic H-Bézier surfaces with G1 continuity in the v direction. 

4. Practical Applications 

Figure 9. Generalized bicubic H-Bézier surfaces with G1 continuity in the u and v directions.

Mathematics 2020, 8, x FOR PEER REVIEW 20 of 24 

 

  

(a) {1,2,1}~},1,1,1{ == αβ ΩΩ  (b) {1,7,4}~},1,1,4{ == αβ ΩΩ  

Figure 9. Generalized bicubic H-Bézier surfaces with G1 continuity in the u and v directions. 

Figure 10 shows a modeling example to display G1 smooth continuity in the v direction between 
two generalized bicubic H-Bézier surfaces and modifies the shape of the composite surface by 
changing shape parameters without changing the continuity conditions. In Figure 10, the green mesh 

surfaces represent the initial surface ),;,(1 βα ΩΩS vu  and the yellow mesh surfaces are the 

constructed surfaces )~,~;,(2 βα ΩΩS vu  which satisfy the G1 smooth continuity conditions in the v 

direction, that is, Equation (38). In Figure 10a, the shape parameters of surfaces ),;,(1 βα ΩΩS vu  

and )~,~;,(2 βα ΩΩS vu  are 0.9.{1,2,1},~
=== γββ ΩΩ  Figure 10b is obtained by modifying 

the value of the partial shape parameters in αα ΩΩ ~,  on the basis of Figure 10a. From Figure 8 to 

Figure 10, it can be seen that when the continuity condition of the surface remains unchanged, 
modification of the local or global shape of the composite surface can be achieved by modifying the 
values of multiple shape parameters, which is undoubtedly important in practical applications. 

  

(a) {1,1,1}~,{1,1,1} == αα ΩΩ  (b) {1,7,7}~,{3,5,1} == αα ΩΩ  

Figure 10. Generalized bicubic H-Bézier surfaces with G1 continuity in the v direction. 

4. Practical Applications 

Figure 10. Generalized bicubic H-Bézier surfaces with G1 continuity in the v direction.

4. Practical Applications

As an extension of the traditional Bézier model, the generalized H-Bézier model can provide a
new, alternative tool for the development of computer-aided design and manufacturing (CAD/CAM)
application software, which plays a potential role in areas such as the manufacturing industry, computer
graphics, etc. By using the approaches proposed in this paper, we can handily construct various
kinds of complex curves and surfaces. In this section, we give several representative and convincing
examples to illustrate the effectiveness of the proposed methods.

Figure 11 gives an example of designing the contour curves of a car headlight by using generalized
H-Bézier curves. In Figure 11, the contour curves of the car headlight are composed of eight generalized
H-Bézier curves with G1 smooth continuity. As can be seen from Figure 11, designers can use control
points to delineate the initial shape of the contour curves of the car headlight, and then the shape of
the initial contour curves can be adjusted slightly by modifying the local shape parameters, so as to
quickly obtain satisfactory contour curves in car headlight modeling. In automobile modeling design,
the car front face is undoubtedly the most important part of the car body, and the contour curves of
the car headlight are an important visual feature in car front face modeling. As shown in Figure 12a,
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by using the method proposed in this paper, various types of projection contour curve schemes of the
car headlight can be obtained quickly. Then we can project the contour curves onto the surface of the
car front face, and different styles of car headlight modeling schemes (as shown in Figure 12b) can be
obtained using surface trimming technology. The appearance design of a ship hull using generalized
H-Bézier surfaces is displayed in Figure 13. In Figure 13, the body of this ship hull is composed of four
generalized H-Bézier surfaces with G1 smooth continuity. The modeling examples provided show that
our methods are effective and provide an alternative for constructing complex curves and surfaces
in industry.
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5. Conclusions

In this paper, we investigated some properties of the generalized H-Bézier model and derived the
geometric conditions for G1 and G2 smooth continuity between two adjacent generalized H-Bézier
curves and for G1 smooth continuity between two adjacent generalized H-Bézier surfaces. Furthermore,
we developed two operable procedures of smooth continuity for generalized H-Bézier curves and
surfaces, and we utilized several representative and convincing examples to verify the effectiveness of
the proposed geometric continuity conditions. Overall, the generalized H-Bézier model provides a
useful technology with distinctive characteristics while including the H-Bézier model as a special case.
The advantages of the generalized H-Bézier model can be summarized as follows:

(a) The local controlled generalized H-Bézier model is an extension of the classical H-Bézier model
constructed by Pottmann in [9].

(b) The generalized H-Bézier model inherits all beneficial properties of the classical H-Bézier model,
and the composite H-Bézier model has more shape adjustability than the classical H-Bézier one
described in [9,10].

(c) For a composite generalized H-Bézier curve, designers can adjust the global and local shape of
the curve by changing the shape parameters without having to redetermine the control points.

We will focus on studying the interpolation and approximation of the generalized H-Bézier model
in future work. In addition, some interesting directions for future research would be to realize curve
editing, user control, and shape optimization for the generalized H-Bézier model by finding optimal
shape parameters.
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