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Abstract: We consider a two-dimensional system which is a mathematical model for a temporal
evolution of a well-stirred isothermal reaction system. We give sufficient conditions for the existence
of purely imaginary eigenvalues of the Jacobian matrix of the system at its fixed points. Moreover,
we show that the system admits a supercritical Hopf bifurcation.
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1. Introduction

In the recent years mathematical studies of chemical, biological and biochemical systems are
growing. There is a significant role played by limit cycles oscillations in biochemical reaction
systems organization in living organisms and it is important to determine the simplest, realistic
mechanisms that can generate periodic oscillations. Results on Hopf bifurcations of many systems,
from two-dimensional, e.g., [1,2], to three dimensional, e.g., [3,4] or higher are known. Studies of
limit cycles of a two-dimensional system, which is a mathematical model for a temporal evolution of
a well-stirred isothermal reaction system in contact with a large bath,

X=a—xy+y>

1
y=0b-cy(l+y) ' +xy -y} /K, @

go more than forty years back. The system in the form (1) was first time studied more detailed in [5],
but some results are known as given as well by Z. Kadas and H.G. Othmer, see [6]. They have shown
that a stable limit cycle can exist in a two-species open system. For such systems only one biomolecular
reaction following mass action kinetics occurs. The disagreement with the results from paper [6] was
then presented and supported with proofs in [5]. As written in paper [5], the authors in [6] claim
that their choice of chemical potential differences for the constitutive relation is more appropriate on
the thermodynamic grounds than a relation linear in concentration differences. The author J.J. Tyson
disagree with that claim and presents arguments, and more details on the contradistinguished conclusion,
that confirm his claim. Independently, the same results were obtained by Hanusse [7] and by Tyson and
Light [8].

In the model presented by a system (1) area = (A/V)jyand b = (A/V)jy,, where A is the area
across which the diffusion takes place. The volume of the reaction vessel is denoted by V and j; is the
flux of the species s into the vessel from the bath, K denotes the equilibrium constant for the reaction
x +y = 2y and c is a reaction rate. If the diffusional flux is given by

js = hi(pl — ps),
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where 5 and 40 are the chemical potentials of species s (in our case dynamical quantities x and y) in
the reaction vessel and in the bath, and ;s is a “phenomenological coefficient”.

In this paper we performed a detailed study of of the behaviour of the vector field in the first
quadrant. There we have observed more complicated behaviour of trajectories near singularity at the
infinity, which was studied using blow-up method. For more details on this method, see [9]. We have
determined all the singular points of system and studied the Hopf bifurcation. Exact conditions on
chemically relevant values, so positive values, under which a supercritical Hopf bifurcation were
determined. Some examples of this Hopf bifurcation were given as well.

2. Preliminaries

To analyse the vector flow of the two-dimensional system

1= P(xy)

y=Q(xy)
we have to determine the behaviour of trajectories in a neighborhood of its fixed points. They can
appear not only as singularities with finite values of coordinates but also as the points at infinity.
To study such examples we use the Poincaré compactification.

Let S = {(x,y,2z) € R?: x? + 4 + z2 = 1} be the unit sphere and consider the phase plane (x, )
with the plane 7 tangent to the sphere through the point (0,0, —1). We project the finite points of the
plane 7 to the northern and southern hemispheres of S and the infinite points to the equator z = 0 by
applying the central projection. To analyse points on the equator we project them further to the two
planes tangent to S at (1,0,0) (chart U;) and (0, 1,0) (chart Uy), respectively. Then the vector fields are

i) (), o -e(l ) muy

@

and
o5 1)wa(2 ), - -alt Yt

where d denotes the degree of the system. The points at infinity correspond to v = 0 in these two
charts. For more details, see [10,11].

The analysis of a neighborhood of a singular point in a planar system depends on its type. We can
classify simple singular points (with both eigenvalues different from zero) with Hartman—Grobman
theorem, where the main problem is to distinguish between a center and focus. Semi-simple singular
points (with exactly one eigenvalue different from zero) are also amenable (see [10]). Situation is
more complicated when both of the eigenvalues are zero. To analyse the topology around the linearly
Zero cases:

X =P(x,y) = Pu(x,y) +hot,
y=Q(x,y) = Qu(x,y) + hot,

where Py, and Q; are homogeneous polynomials of degree m > 0, for each individual case we can use
the blow-up technique. One type of the blow-up is a polar blow-up where the degenerate singular
point is blown into a circle. Another type is a directional blow-up where the singularity is expanded
into a straight line. Possible directions of the blow-up are the roots of the characteristic function

®)

F(xy) = xQum(x,y) = yPu(x,y)-
The blow-up in the x direction is the transformation x — x,y — xz which yields the system

x = P(x,xz),
s Q(x,xz) — zP(x, xz) 4)
” )




Mathematics 2020, 8, 938 30f10

The singular point at the origin of system (3) corresponds to the z-axis in system (4) and it is called
the exceptional divisor. The common factor, either x™ or x™~1 needs to be cancelled and the second
and third quadrants are swapped. We study singular points on the exceptional divisor and determine
their type. In some cases a sequence of blow-ups is needed. However, their number is always finite
(see [12]). After we determine the topological behaviour on the whole z-axis, we start with the reverse
procedure and “compress” the line back into the singular point.

Similarly, the blow-up in the y direction is given by the transformation x — yz,y — y with
the exceptional divisor y = 0 and the third and fourth quadrants being swapped; for more details
see [9,11,13].

An indicator of the auto-oscillations in a mathematical model described by a planar system of
differential equations is a limit cycle. This is an isolated closed orbit that attracts other orbits from its
neighborhood with increasing (in this case the limit cycle is stable) or decreasing (the unstable limit
cycle) time. A Hopf bifurcation is a way to obtain such periodic trajectory in a phase plane. We start by
considering a Lyapunov function in the form

O(x,y) = Y. apxly, )
j+1=2

where 4;; € R and it is positive defined in some neighborhood of the origin. If the quadratic part
of (5) is positive defined and the derivative of the function with respect to the planar vector field of
system (2) is

¥(@) = 2D p(x, y) + 2ED (1, y) = g1 (2% + 1) + G202+ 1) + .. (6)

then the quantity g,, on the right hand side of this equation is called the n-th focus quantity. When g; < 0
the singular point is a stable focus. With perturbation of the set of parameters we can slightly change
the system in a way that the real part of the eigenvalues becomes positive. With increasing time the
trajectories from the neighborhood of the origin start to tend away from the origin towards the stable
limit cycle. This occurrence is called a supercritical Hopf bifurcation. On the contrary, when g; > 0 the
singular point is an unstable focus which can be achieved with a perturbation called a subcritical Hopf
bifurcation. For more details, see [1,7,14].

3. Singular Point

There exists only one finite singular point of system (1), namely,

a-+b ac a+b
A(iaia+b—c a+V7a+b—J'

As the variables in the system denote concentrations of the species, we are only interested in their
positive values. The singular point lies in the first quadrant when

c=s(a+b), s>1,

in which case we have that

A(a(s—l)ntﬁ,ﬁ).

If the eigenvalues of the Jacobian matrix are purely imaginary, we can observe two possible
behaviours in a neighborhood of the singular point A. Either every trajectory lies on a closed orbit
around A and we have a center, or it is a focus, where every trajectory spirals towards or away from
the singular point A as the time increases. The following theorem provides necessary conditions for
a Hopf bifurcation.
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Theorem 1. Suppose that ¢ = s(a+b) withs > 1,

and

Then the Jacobian matrix of system (1) at the point A has purely imaginary eigenvalues

+i(a+b)Vs—1
V(a+b)(a(s —1)2=b(s —1)3 —s)

Proof. Calculation of the Jacobian matrix at the singular point A yields

AMp =

115 a—+ % —as
A
G-1K sG-1K
with eigenvalues
M2 = ZK(sl— s R+ VM)

where
R=a(s—1)>=b(s—1)> = (1+K)s,

M =—4(a+b)K(s —1)3s + (—a(s = 1) + b(s — 1)> + s + Ks)2.

The eigenvalues are purely imaginary when R = 0 and M < 0. These conditions and a, b, K > 0,
s > 1 imply that

Ca(s—1)2—b(s—1)>—s s a(s —1)% —s
K= S ,a>mand0<b<w

and under these conditions the eigenvalues are

+i(a+b)vs—1
V@a+b)(als —1)2—b(s —1)3—5)

AMp =

O

Theorem 2. All the first quadrant trajectories of system (1) approach the singular point A or a limit cycle
revolving around it as t — oo, when the parameters a, b, ¢ and K are positive.

Proof. First, we multiply the equations in system (1) by (1 + y) to obtain the following system:

x:a+ay—xy+y2—xy2+y3,

7
y':(b+(b—c)y+xy—y2+xy2—y3)/1<. @

The vector field on the coordinate axes bounding the first quadrant is directed inside the quadrant.
More precisely,
ifx=0andy>O0thenx =a+ay+y*>+y>>0
and b
ify=0and x > 0theny = x> 0.
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Next we analyse the singular points of the system at infinity in order to understand the behaviour
of the trajectories in the first quadrant. To observe the singular points on the equator of the Poincaré
sphere of system (7) we apply the substitution

u =

Y
=, v=
X

X

followed by scaling of the time variable dt — %. Then we obtain the system

o1 1 K—1 K—1 b—c b
u= 7u2+—uv+ u3+ uzv+ uv2+fv3fu4fu3v

K K K K K K

— au?0? — auv® = P(u,v), ®)
v = u?v — 1l + uv* — u?v? — auv® — av* = Q(u,v).

System (8) has three singular points on the equator v = 0. These are the points B(0,0), C(1,0) and
D(— %, 0). Since we look for the points corresponding to the first quadrant we discard the point D.
Similarly, we apply the substitution

to system (7). However, the resulting system does not have singular points at the origin which implies
that there is not a singular point at the end of the axis y and hence the points B and C are the only ones
suitable for further analysis.

Next, we compute the Jacobian matrices of system (8) at the points B and C, obtaining

14K
00 —LK g

Jp= and Jc = ,
0 0 0 0

respectively. At least one of the eigenvalues of each of the matrices is equal to zero indicating that both
of the singular points are degenerate. Since all the eigenvalues of g are zero, the blow-up technique
needs to be used to investigate the behavior of the trajectories in its neighborhood. The other singular
point is semi-hyperbolic with precisely one zero eigenvalue. Therefore, we can apply Theorem 65
of [10] to analyse its vicinity.

There are no first degree terms in the system (8) and the second degree approximations of P(u,v)
and Q(u,v) are P>(u,v) = % (u? + uv) and Q(u,v) = 0. Then the characteristic function is equal to

F(u,v) =uQy —vb = —w,
K
which vanishes when u© = 0, v = 0 or # = —v and tangetialy to these lines the trajectories of the

system (8) approach or draw away from the singular point B. Now we blow-up this singularity to the
line z with the substitution

U=1u, z= —
u

and after cancelling the common factor u we get the system

1 K—1 1 K—1 b—c
Uu=—-u-+ u2+7uzfu3+ —uzzfu3z+ —uzzzfau3z2+
K K K K K
b
+ Eu223 —au®z’, )
1 1 —b
Z= ——zZ+ —-Uz— zz—i- uzz—i- uz® — Zuz*
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Singular points on the axis u = 0 are E = (0,0) and F = (0, —1). E is a saddle with separatrices
tangent to the coordinate axes (trajectories on the z-axis are moving towards the singular point),
while F is a semi-hyperbolic singular point with only one nonzero eigenvalue. We move the origin of
the system (9) to the point F, multiply the system with K and with the linear transformation

X=u Y=-cu+z

we reduce system (9) to the form
X =Ry(X,Y),

. (10)
Y=Y+5(XY),

where the polynomials Ry(X,Y) and S»(X, Y) do not have linear terms. The equation Y + S3(X,Y) =0
has the solution Y = ¢(X) = —c(—1+b+2c) X% + (c — 2bc + b?c — 4c? 4 6bc® + 5¢3 + 2K) X3 + h.o.t
and Ry (X, ¢(X)) = cKX? + h.o.t, thus by Theorem 65 of [10] the point F is an unstable node. Now we
go back to the u, v-plane. First, we multiply system (9) by the common factor u, consequently the
trajectories in the half-plane u < 0 change direction. With the blow-down the whole z-axis shrinks into
a point B and the second and the third quadrant swap (Figure 1).

a)

Z

A

b)

z

Y

i

Y

v
L../ u
]

oy )

Figure 1. Step-by-step blow-down to distinguish behaviour near singular point B. (a) A neighborhood
of the singular points of system (9). (b) After the multiplication by the common factor u the trajectories
on u < 0 change direction. (c) A neighborhood of the singular point at the origin of system (8).

Now we take a closer look at the singular point C. We move the origin to C and then with the
linear transformation
X=u Y=v

and multiplication of the whole system with 1;—[% we transform the system into form (10). Now equation
Y + S2(X,Y) = 0 has solution Y = ¢¢c(X) = %%K)X2 + ¢ X> + hot and Ry(X, 9c(X)) =
%X‘Q’ + h.o.t. By Theorem 65 of [10], C is a saddle with the approaching separatrice tangential to
the equator of the Poincaré sphere.

It follows that, with the increasing time the trajectories of the first quadrant tend to the singular

point A or to the possible limit cycle surrounding it (Figure 2). [
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Figure 2. Phase portrait of system (8): the trajectories in the first quadrant are moving towards the
stable singular point A or towards the stable limit cycle surrounding it. Some trajectories from the
fourth quadrant are approaching the singular point at infinity, point B.

We now study Hopf bifurcations in system (1). Notice that the right hand side of the second
equation in system (1) is not polynomial. First we move the origin to the singular point A. Then we take
a power series expansion of the right side of the second equation with three terms, obtaining system

x=F(xy),

. (11)
y=h(xy),
where
F(x,y) = tx+ %y — xy +y? and
— 1
Fz(x,y) - (71+s)(7a7b+s+2a:+3bsfasz73bs2+bs3)x + (—1+s)y
_ s Xy + a+b—3as—3bs+s>+3as>+3bs>—as® —bs® , 2
—a—btst2as+3bs—as? 3024053 Y s(—a—b+s+2as+3bs—as2—3bs2+bs3)
i (a+b)(—14s)* 3
52(7a7b+s+2as+3bsfasz73hsz+bs3)y :
The quadratic part of (5) is
s 2 —1+a(s—1)* ,
Dy (x,y) = —_— 12
20Y) = S b 1P =) - T 2 Y (12)
and it is positive defined for the imposed conditions on the parameters.
The calculations yield that the first Lyapunov quantity of (6) is equal to
g1=((a+b)(s =1)°(a(2s 1) +b(s = 1)(1 + (s = 1)s)))/(s(~a(s = 1)* +b(s = 1)° +5)
(76%(s — 1) +3a*(s — 1)8 +16b(s — 1)%s + 128* — 6a°(s — 1)®(1 + b(s — 1)% +5) 13)

—2a(s —1)2(3b(s — 1) + 7b(s —1)3(1 4 5) +4s5(2 +5)) + a*(s — 1)*}(7 + 3b%(s — 1)°+
6b(s —1)%(2+5) +5(14+35)))).

Theorem 3. The system (1) admits a supercritical Hopf bifurcation, but it does not admit a degenerate Hopf
bifurcation for the required values of the variables and the parameters.
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Proof. For system (1) subcritical Hopf bifurcation occurs, as describe in theory above, if first Lypunov
quantity is positive. Hence the semialgebraic system must be satisfied

Ab>0Ab < — 2

S
>0AN 1A
g1 2 s> ﬂ>(s_1>2 2 s

, (14)

where g7 is defined as (13). In order for eigenvalues to be purely imaginary the remaining conditions
of (14) must be satisfy, see Theorem 1 above.

Using the command Reduce of the computer algebra system MATHEMATICA, we have proven that
this system is unsolvable. Thus, the singular point A is a stable focus and the only Hopf bifurcation
possible for system (1) is a supercritical Hopf bifurcation. O

Note, the method which can be used to obtained the asymptotic expression on the solution near
the Hopf bifurcation is presented in [15].

Due to a result from [5], the system (1) admits relaxation oscillations when b, K < 1,¢ > 1 and
ch2 (c— 1)% < a < c—c?. A suitable set of parameters for Hopf bifurcation is a = 0.5,b = 0.01,
¢ = 2.04,K = 0.0575. With these values of parameters system (1) has a stable focus in the only finite
singular point (Figure 3). With perturbation of the parameter K = 0.06 the singular point becomes an
unstable focus and a stable limit cycle around it appears.

L L L i i I L i L i L I
k 100 200 300 400 500 t 100 200 300 400 500

Figure 3. The solution of system (1) with initial conditions x = 2.03 and y = 0.53 and parameter values
a=0.5,b=0.01,c =2.04 and K = 0.0575.

According to [5] the parameter ¢ can be chosen from the interval (1.866,3.2982) for the relaxation
oscillations still to be preserved. However, the eigenvalues of Jacobian matrix calculated at the singular
point have to be imaginary with nonzero imaginary part 8 and positive real part « for the stable limit
cycle. They depend on the parameter ¢ in the following manner:

5.355 2.601
(c) = 19.6078+/45.7679 — 696.813¢ + 3085.61c2 — 2532.31¢3 + 573.521c* — 54.06¢5 + b
N ¢(—51+100c)

Thus, for the oscillations in general, the parameter ¢ has to be chosen from the interval I. =
(2.03085,24.8652).

Calculations show that the amplitude of the limit cycle depends on the parameter c almost linearly
(Figures 4 and 5).
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a(c] Amplitude

181

o
T

Figure 4. The local extremum of function (15) on I, is the maximum at the point ¢ = 6.726 with the
value & = 2.633 while the amplitude of the limit cycle increases on the whole interval .

¥
il 20 20
A 15 15
10 10 10
5 3 5
Dﬁs 10 15 20 25 Y% 16 1 20 25 %50 15 20 25

Figure 5. Trajectories of the system (1) with parameter values a2 = 0.5,b = 0.01,K = 0.05 and c = 4
(on the left), c = 8 (in the middle) and ¢ = 16 (on the right) coiling around the limit cycles with
increasing amplitude.

To conclude, we have examined some properties of a two-dimensional system of ordinary
differential equations. We focused on the behaviour of the vector field of this system for the positive
values of the species and parameters. Some results on this system of a well-stirred isotermal reaction
model were known till now, but our approach was different. In [5], one example of the limit cycle
oscillations is computed using numerical approach. We extended these results and approached it
analytically. Using the theory of Hopf bifurcation we have found the general sufficient conditions
on parameters of the system under which a stable limit cycle arises in the phase space of the system.
We have described the behaviour of trajectories in the vicinity of the finite singularity in first quadrant
and the whole first quadrant. We have used the blow-up method, which is not known in a big extend.
Finally, we have shown the correlation between the real part of the eigenvalues of the Jacobian matrix,
calculated at the unstable focus inside the limit cycle and the amplitude of the limit cycle on the
example. There are still some open problems to be studied connected to system (1). Not regarding on
the chemical relations of parameters of system, we can study the global phase portraits. From what we
observed in the neighbourhood of the singularity in infinity in first quadrant the behaviour can be very
interesting. As seen in Figure 4 the change seems to be linear for our example and it is noticeable the
same on Figure 5. Similar dependence was noticed in other examples but the proof for such correlation
could be a good topic for further investigation.
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