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Abstract: This paper develops the exponentiated Mfamily of continuous distributions, aiming to
provide new statistical models for data fitting purposes. It stands out from the other families, as it
depends on two baseline distributions, with the use of ratio and power transforms in the definition of
the main cumulative distribution function. Thanks to the joint action of the possibly different baseline
distributions, flexible statistical models can be created, motivating a complete study in this regard.
Thus, we discuss the theoretical properties of the new family, with emphasis on those of potential
interest to the overall probability and statistics. Then, a new three-parameter lifetime distribution
is derived, with the choices of the inverse exponential and exponential distributions as baselines.
After pointing out the great flexibility of the related model, we apply it to analyze an actual dataset
of current interest: the daily COVID-19 cases observed in Pakistan from 21 March to 29 May 2020
(inclusive). As notable results, we demonstrate that the proposed model is the best among the
15 top ranked models in the literature, including the inverse exponential and exponential models,
several modern extensions of them depending on more parameters, and the “unexponentiated”
version of the proposed model as well. As future perspectives, the proposed model can be of interest
to analyze data on COVID-19 cases in other countries, for possible comparison studies.

Keywords: families of continuous distributions; exponentiated family of continuous distributions;
entropy; parameter estimation; data analysis; COVID-19 epidemic

MSC: 62N05; 90B25

1. Introduction

The modeling and analysis of real-life data are essential to understand important features
of random phenomena and to draw suitable conclusions as well. In particular, this requires the
choice of statistical models based on probability distributions, whose adequateness against the
observations will strongly influence the pertinence of the outputs. The analysis of recent data in
applied sciences (environmental sciences, engineering, finance, etc.) has shown the limitations
of the classical distributions, whose flexibility does not allow revealing some important details.
To go further into these limitations, new distributions, often divided into specific families of
distributions, have been created. A short list of the notorious families is the following: the
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skew-normal family (see [1]), Marshall–Olkin-Gfamily (see [2]), exponentiated-G family (see [3]),
beta-G family (see [4]), order statistics-G family (see [5]), sinh-arcsinh-G family (see [6]),
transmuted-G (see [7]), gamma-G family (see [8]), Kumaraswamy-G (see [9]), Topp–Leone-G (see [10]),
and ratio-exponentiated-G (see [11]). The global motivation behind them is to extend the modeling
properties of a classical baseline distribution by adding one or more tuning parameters through the
use of various flexible transformations (power, beta, gamma, ratio, etc.).

Among all the proposed families, the Mfamily of continuous distributions introduced by [12]
stands out from the others due to its original construction; it is defined by a cumulative distribution
function (cdf) based on a ratio involving two baseline cdfs, with possibly different characteristics.
More specifically, the corresponding cdf is defined by:

F(x; ξ1, ξ2) =
F1(x; ξ1) + F2(x; ξ2)

1 + F1(x; ξ1)
, x ∈ R, (1)

where F1(x; ξ1) and F2(x; ξ2) are two cdfs of continuous distributions with sets of parameters
represented by ξ1 and ξ2, respectively. These two baseline cdfs can be chosen independently of
each other, without a particular condition. However, for practical purposes, in order to avoid the
over-parametrization phenomenon, it is recommended not to have too many parameters involved;
one can reduce ξ1 and ξ2 to a unique parameter, or take ξ1 and ξ2 as two different parameters,
or ξ1 can be chosen as a subset of parameters of ξ2, or vice versa. Clearly, the M family contains
a plethora of ratio distributions and models, since a multitude of choices for F1(x; ξ1) and F2(x; ξ2) is
possible. However, to the best of our knowledge, this versatile aspect has not been fully explored yet.
Indeed, in the former work of [12], F(x; ξ1, ξ2) was presented as (1), with the proof that it satisfied the
properties of a valid cdf. Then, as a direct application, a new two-parameter lifetime distribution was
defined by the cdf (1) under the following simple configuration: F1(x; ξ1) = F2(x; ξ2), and F1(x; ξ1)

was chosen as the cdf of the Weibull distribution, i.e., F1(x; ξ1) = F1(x; a, b) = 1− e−(x/b)a
, a, b, x > 0.

Thus, the corresponding cdf is given by:

F(x; a, b) =
2
(

1− e−(x/b)a
)

2− e−(x/b)a , a, b, x > 0. (2)

As a main application, it was proven that the related model had a better fit to the exponentiated
exponential, Weibull, and gamma models, for the failure times of the air conditioning system data
from [13]. This nice result validated the entry of the M family on the short list. However, for the
special configuration F1(x; ξ1) = F2(x; ξ2), the M family loses its intrinsic originality for the following
reasons: (i) it does not mix different features for the baseline cdfs; (ii) it is included in the well-known
Marshall–Olkin family since we can express F(x; ξ1, ξ2) as:

F(x; ξ1, ξ2) =
F1(x; ξ1)

1− (1− θ)[1− F1(x; ξ1)]
,

with θ = 1/2. That is, the general form of F(x; ξ1, ξ2) is exploited at its minimum; the M family has
not revealed all of its potential.

Based on the previous setting, the multiple contributions of the paper can be summarized as
follows: (i) We introduce a simple and natural extension of the M family by the use of the power
transform, called the EMfamily. (ii) We provide some mathematical results of this family, which are also
new and applicable to the former M family. (iii) We consider F1(x; ξ1) and F2(x; ξ2) of different natures,
i.e., exponential and inverse exponential, respectively, to create a new promising (three-parameter
lifetime) distribution, which demonstrates a high modeling ability for data fitting; versatile shapes are
observed for the main functions. (iv) We investigate the estimation of the model parameters by a top
ranked method in terms of efficiency: the maximum likelihood method. (v) We apply this model to an
actual dataset of COVID-19 cases observed in Pakistan during the year 2020. As a main result, for these
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data of particular interest, the proposed model possesses an excellent fitting behavior, better than that
of 15 other top ranked models in the literature, attesting to the importance of these findings.

The remainder of the works is outlined as follows. In Section 2, the EM family is introduced,
and some of its mathematical results are proven. A special distribution of interest is presented in
Section 3, with discussions. The estimation of the related model parameters is studied in Section 4.
The application to a COVID-19 dataset is presented in Section 5. The conclusion is given in Section 6.

2. The EM Family

Here, the EM family is defined, with some of its important mathematical properties.

2.1. Definition

The EM family is the exponentiated version of the M family, that is a mix between the
exponentiated-G and M families developed by [3,12], respectively. It is defined by the following cdf:

F(x; ξ1, ξ2, γ) =

[
F1(x; ξ1) + F2(x; ξ2)

1 + F1(x; ξ1)

]γ

, x ∈ R, (3)

where γ > 0 is a shape parameter and F1(x; ξ1) and F2(x; ξ2) are two baseline cdfs of continuous
distributions with sets of parameters represented by ξ1 and ξ2, respectively. These two baseline cdfs
can be chosen independently of each other. Naturally, by taking γ = 1, we rediscover the cdf of the
former M family. The role of γ is to flexibilize the rigid ratio cdf given by (1), aiming to improve
several of its characteristics (skewness, kurtosis, tails’ heaviness, modes’ properties, etc.). Furthermore,
the following stochastic ordering result holds:

• if γ ≤ 1, we have F(x; ξ1, ξ2) ≤ F(x; ξ1, ξ2, γ),
• if γ > 1, we have F(x; ξ1, ξ2, γ) ≤ F(x; ξ1, ξ2),

showing different perspectives of modeling for the EM family in comparison to the former M family.
Among the notable studies employing the exponentiated technique, we may refer the reader to [14–16].

In addition to the cdf, the probability density function (pdf) of a continuous distribution plays
a fundamental role in probability and statistics. The pdf of the EM family is given by differentiating
F(x; ξ1, ξ2, γ) with respect to x, almost surely. After some developments, it is obtained as:

f (x; ξ1, ξ2, γ) = γ
[1+F1(x;ξ1)] f2(x;ξ2)+[1−F2(x;ξ2)] f1(x;ξ1)

[1+F1(x;ξ1)]
2

[
F1(x;ξ1)+F2(x;ξ2)

1+F1(x;ξ1)

]γ−1
,

x ∈ R,
(4)

where f1(x; ξ1) and f2(x; ξ2) are the pdfs corresponding to F1(x; ξ1) and F2(x; ξ2), respectively.
That is, for a random variable X defined on a generic probability set, say (Ω,A, P), having the

pdf of the EM family and any set A ⊆ R, we have:

P(X ∈ A) =
∫

A
f (x; ξ1, ξ2, γ)dx.

The pdf is also central in the transfer theorem, which ensures that, for any function of X, say T(X),
the expectation of T(X) is given by:

E[T(X)] =
∫ +∞

−∞
T(x) f (x; ξ1, ξ2, γ)dx, (5)

provided that it exists. From this formula, several types of moments, coefficients, probabilistic functions,
and entropy can be defined (see [17]). Let us mention that, thanks to their integral expressions,
P(X ∈ A) and E[T(X)] can be determined numerically with the help of any mathematical software.



Mathematics 2020, 8, 953 4 of 20

2.2. Reliability Functions

The following functions of the EM family are central in various probability and statistics areas,
with emphasis on reliability analysis. First of all, the survival function (sf) is specified as:

S(x; ξ1, ξ2, γ) = 1− F(x; ξ1, ξ2, γ) = 1−
[

F1(x; ξ1) + F2(x; ξ2)

1 + F1(x; ξ1)

]γ

, x ∈ R.

Furthermore, the hazard rate function (hrf), reversed hazard rate function (rhrf), and cumulative
hazard rate function (chrf) are given by, respectively,

h(x; ξ1, ξ2, γ) =
f (x; ξ1, ξ2, γ)

S(x; ξ1, ξ2, γ)

= γ
[1 + F1(x; ξ1)] f2(x; ξ2) + [1− F2(x; ξ2)] f1(x; ξ1)

[1 + F1(x; ξ1)]
{
[1 + F1(x; ξ1)]

γ − [F1(x; ξ1) + F2(x; ξ2)]
γ} [F1(x; ξ1) + F2(x; ξ2)]

γ−1 ,

r(x; ξ1, ξ2, γ) =
f (x; ξ1, ξ2, γ)

F(x; ξ1, ξ2, γ)
= γ

[1 + F1(x; ξ1)] f2(x; ξ2) + [1− F2(x; ξ2)] f1(x; ξ1)

[1 + F1(x; ξ1)] [F1(x; ξ1) + F2(x; ξ2)]
,

and:

H(x; ξ1, ξ2, γ) = − log[S(x; ξ1, ξ2, γ)] = − log
{
[1 + F1(x; ξ1)]

γ − [F1(x; ξ1) + F2(x; ξ2)]
γ}

+ γ log[1 + F1(x; ξ1)], x ∈ R.

All the details on these functions, along with their applications in concrete settings, can be found
in [18]. In the next part of the study, emphasis will be put on the pdf and hrf, due to their strong
meaning in the fitting of data.

2.3. Properties

Stochastic ordering results: Now, we aim to compare the EM family with other existing families
of distributions in the (usual) stochastic ordering sense (see [19]). That is, for two random variables X
and Y for which at least one has the cdf of the EM family, we formalize the fact that X is less likely
than Y to take any value lower than x, i.e., P(X ≤ x) ≤ P(Y ≤ x). The main results are presented in
the following proposition.

Proposition 1. The following inequalities hold.

• For γ2 ≥ γ1, we have:
F(x; ξ1, ξ2, γ2) ≤ F(x; ξ1, ξ2, γ1).

• In all cases, we have:
F(x; ξ1, ξ2, γ) ≥ K(x; ξ1, ξ2, γ),

where K(x; ξ1, ξ2, γ) is the cdf of the exponentiated uniformly weighted two-component mixtures F1(x; ξ1)

and F2(x; ξ2) with power parameter γ, i.e.,

K(x; ξ1, ξ2, γ) = [λF1(x; ξ1) + (1− λ)F2(x; ξ2)]
γ ,

with λ = 1/2.
• If F2(x; ξ2) ≥ F1(x; ξ1), then we have:

F(x; ξ1, ξ2, γ) ≥ Q(x; ξ1, ξ2, γ),
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where Q(x; ξ1, ξ2, γ) is the cdf of the exponentiated “special cdf of the M family” introduced by
(Section 2, [12]), i.e.,

Q(x; ξ1, ξ2, γ) =

[
2F1(x; ξ1)

1 + F1(x; ξ1)

]γ

.

Proof. For the first point, since [F1(x; ξ1) + F2(x; ξ2)]/[1 + F1(x; ξ1)] ∈ [0, 1], F(x; ξ1, ξ2, γ) is
a decreasing function with respect to γ, giving the desired inequality. We prove the second point by
noticing that 1/[1 + F1(x; ξ1)] ≥ 1/2, which gives:

F(x; ξ1, ξ2, γ) ≥
{

1
2
[F1(x; ξ1) + F2(x; ξ2)]

}γ

= K(x; ξ1, ξ2, γ).

The third point follows immediately from the following inequality: F1(x; ξ1) + F2(x; ξ2) ≥
2F1(x; ξ1). This ends the proof of Proposition 1.

From the statistical point of view, Proposition 1 reveals a distributional hierarchy within the EM
models and among other well-identified models of the literature. Thus, in comparison to these models,
the EMIEEmodels offer new alternatives, depending on the repartition of the data.

Some series expansions: A series expansion of the cdf of the EM family in terms of simpler cdfs
(defined as the product of exponentiated baseline cdfs) is described in the following proposition.

Proposition 2. The cdf of the EM family can be expressed as:

F(x; ξ1, ξ2, γ) =
+∞

∑
k=0

k

∑
`=0

+∞

∑
m=0

ak,`,mG`,m(x; ξ1, ξ2),

where:

ak,`,m =

(
γ

k

)(
k
`

)(
−k
m

)
(−1)k+`

and G`,m(x; ξ1, ξ2) = [F1(x; ξ1)]
m[F2(x; ξ2)]

`, which is a well-identified cdf.

Proof. The key of the proof is to notice that F(x; ξ1, ξ2, γ) can be written as:

F(x; ξ1, ξ2, γ) =

[
1− 1− F2(x; ξ2)

1 + F1(x; ξ1)

]γ

.

Now, from this expression, since [1− F2(x; ξ2)]/[1 + F1(x; ξ1)] ∈ (0, 1) and F1(x; ξ1) ∈ (0, 1),
the general and standard binomial formulae give:

F(x; ξ1, ξ2, γ) =
+∞

∑
k=0

(
γ

k

)
(−1)k[1− F2(x; ξ2)]

k[1 + F1(x; ξ1)]
−k

=
+∞

∑
k=0

(
γ

k

)
(−1)k

{
k

∑
`=0

(
k
`

)
(−1)`[F2(x; ξ2)]

`

}{
+∞

∑
m=0

(
−k
m

)
[F1(x; ξ1)]

m

}

=
+∞

∑
k=0

k

∑
`=0

+∞

∑
m=0

ak,`,mG`,m(x; ξ1, ξ2).

Then, we can remark that G`,m(x; ξ1, ξ2) is a valid cdf, corresponding to the one of the random

variable max(X(1)
1 , . . . , X(m)

1 , X(1)
2 , . . . , X(`)

2 ), where X(1)
1 , . . . , X(m)

1 are m independent and identically

distributed (iid) random variables having the cdf F1(x; ξ1) and X(1)
2 , . . . , X(`)

2 are ` iid random variables

having the cdf F2(x; ξ2), also independent of X(1)
1 , . . . , X(m)

1 . This ends the proof of Proposition 2.
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From Proposition 2, we can derive a useful sum expression of the pdf of the EM family,
as presented below.

Corollary 1. Let us consider the notations of Proposition 2. The pdf of the EM family can be expressed as:

f (x; ξ1, ξ2, γ) =
+∞

∑
k=0

k

∑
`=0

+∞

∑
m=0

ak,`,mg`,m(x; ξ1, ξ2),

where g`,m(x; ξ1, ξ2) is the pdf corresponding to G`,m(x; ξ1, ξ2), i.e.,

g`,m(x; ξ1, ξ2) = m f1(x; ξ1)[F1(x; ξ1)]
m−1[F2(x; ξ2)]

` + ` f2(x; ξ2)[F1(x; ξ1)]
m[F2(x; ξ2)]

`−1.

Owing to Corollary 1 and (5), one can provide the following sum expression for E[T(X)]:

E[T(X)] =
+∞

∑
k=0

k

∑
`=0

+∞

∑
m=0

ak,`,mIk,`,m, (6)

where, by denoting Q1(u; ξ1) and Q2(u; ξ2) the inverse functions of F1(x; ξ1) and F2(x; ξ2), respectively,
Ik,`,m is given by:

Ik,`,m =
∫ +∞

−∞
T(x)g`,m(x; ξ1, ξ2)dx

= m
∫ +∞

−∞
T(x) f1(x; ξ1)[F1(x; ξ1)]

m−1[F2(x; ξ2)]
`dx + `

∫ +∞

−∞
T(x) f2(x; ξ2)[F1(x; ξ1)]

m[F2(x; ξ2)]
`−1dx

= m
∫ 1

0
um−1T[Q1(u; ξ1)]{F2[Q1(u; ξ1); ξ2]}`dx + `

∫ 1

0
u`−1T[Q2(u; ξ2)]{F1[Q2(u; ξ2); ξ1]}mdu.

The involved integrals can have closed-forms, depending on the complexity of T[Q1(u; ξ1)],
F2[Q1(u; ξ1); ξ2], T[Q2(u; ξ2)], and F1[Q2(u; ξ2); ξ1]. Then, one can admit the following
useful approximation:

E[T(X)] ≈
K

∑
k=0

k

∑
`=0

M

∑
m=0

ak,`,mIk,`,m,

where K and M denote large integers, such that the residual term of the approximation is negligible.
Hence, we approximate the complicated integral quantity E[T(X)] by a finite sum of computable
coefficients, which can be more efficient than computing the integral directly.

3. On a Special EM Distribution

The EM family contains a myriad of new ratio distributions. Here, we focus on a new promising
one, exploiting the mix of possibly baseline cdfs of a different nature.

3.1. Definition and Shapes’ Analysis

Here, we introduce the EM inverse exponential exponential (EMIEE) distribution with parameters
α > 0, β > 0, and γ > 0, defined by the cdf given by (3), under the following configuration:

• F1(x; α) = e−α/x, x > 0, corresponding to the cdf of the inverse exponential distribution with
parameter α (see [20]),

• F2(x; β) = 1− e−βx, x > 0, corresponding to the cdf of the standard exponential distribution with
parameter β.

The choice of these functions is motivated by the following arguments: (i) F1(x; α) and F2(x; β)

are simple, both depending on only one parameter; (ii) the inverse exponential and exponential
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distributions are complementary, showing different characteristics on the tails, with various
polynomial-exponential decay, summarized in the following relation:

F1(x; α) = 1− F2

[
α

βx
; β

]
.

We thus aim to mix the features of these two distributions following the scheme of the EM family.
That is, the cdf of the EMIEE distribution is the following:

F(x; α, β, γ) =

[
e−α/x + 1− e−βx

1 + e−α/x

]γ

=

[
1− e−βx

1 + e−α/x

]γ

, x, α, β, γ > 0. (7)

It represents a three-parameter lifetime distribution, with remarkable flexible properties.
This aspect is developed in the next part of the study. At first glance, note that, if α → +∞,
then F(x; α, β, γ) becomes the cdf of the exponentiated exponential distribution with parameters β and
γ (see [3]), and if γ = 1, we obtain the “unexponentiated” version of the distribution, naturally called
the MIEE distribution.

By differentiating with respect to x, the pdf of the EMIEE distribution is given by:

f (x; α, β, γ) = γeα/x−βx α + βx2(1 + eα/x)

x2(1 + eα/x)2

[
1− e−βx

1 + e−α/x

]γ−1

, x, α, β, γ > 0. (8)

All the functions of Section 2.2 can be expressed in a similar manner. Here, we only mention
the hrf, which remains of great interest for such a lifetime distribution (see [18]). Therefore, it is
expressed as:

h(x; α, β, γ) = γe−βx
[α + βx2(1 + eα/x)]

[
e−α/x + 1− e−βx

]γ−1

x2(1 + eα/x){
[
1 + e−α/x

]γ −
[
e−α/x + 1− e−βx

]γ}
, x, α, β, γ > 0. (9)

The rest of the study is devoted to some properties of the EMIEE distribution, beginning with the
shape properties of f (x; α, β, γ) and h(x; α, β, γ).

The mode(s) analysis of the EMIEE distribution provides important information on the “tops of
the bell shapes” of the related model. Mathematically, the mode(s) can be obtained by solving the
following equation: d f (x; α, β, γ)/dx = 0, which is equivalent to:

− α

x2 − β− β
αeα/x − 2x(1 + eα/x)

α + βx2(1 + eα/x)
− 2

x
+ 2α

eα/x

x2(1 + eα/x)

+ (γ− 1)e−βx α + βx2(1 + eα/x)

x2(1 + eα/x)(1 + e−α/x − e−βx)
= 0.

Several solutions are possible, depending on the values of α, β and γ. After investigations,
the EMIEE distribution is revealed to be unimodal or bimodal (including a “limiting mode” in zero in
this last case). An analytical expression for a mode seems however not possible. The asymptotes of
f (x; α, β, γ) are studied below. After some developments, we get:

f (x; α, β, γ) ∼ γβγxγ−1, x → 0,

implying that f (x; α, β, γ)→ +∞ if γ ∈ (0, 1), f (x; α, β, γ)→ β if γ = 1 and f (x; α, β, γ)→ 0 if γ > 1.
This illustrates the importance of the power parameter γ in these asymptotes. Furthermore, we have:

f (x; α, β, γ) ∼ γβ

2
e−βx → 0, x → +∞.
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One can remark that the parameter α plays no role in these asymptotes. However, the fine
variations of f (x; α, β, γ) are complicated to handle analytically, due to a high level of complexity for
the involved equations. For this reason, we propose a graphical approach in Figure 1.
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Figure 1. Plots for the pdf of the EMIEEdistribution, for several values of the parameters.

From Figure 1, we see that f (x; α, β, γ) has very versatile shape properties. In particular, one or
two modes, reversed J shapes, several kinds of bathtub shapes, N shapes, abrupt spikes, plate shapes,
and remarkable heaviness on the tails are observed, reaching some extreme situations in terms
of modeling.

Let us now focus on the shape properties of h(x; α, β, γ). First of all, the critical points of
h(x; α, β, γ) can be obtained by solving the following equation: dh(x; α, β, γ)/dx = 0, which is
equivalent to:

− α

x2 − β− β
αeα/x − 2x(1 + eα/x)

α + βx2(1 + eα/x)
− 2

x
+ 2α

eα/x

x2(1 + eα/x)

+ (γ− 1)e−βx α + βx2(1 + eα/x)

x2(1 + eα/x)(1 + e−α/x − e−βx)

+ γe−βx
[α + βx2(1 + eα/x)]

[
e−α/x + 1− e−βx

]γ−1

x2(1 + eα/x){
[
1 + e−α/x

]γ −
[
e−α/x + 1− e−βx

]γ}
= 0.

The complexity of this equation is an obstacle for providing exact analytical solutions; the number
of solutions depends on the values of α, β, and γ, and no closed-form of them can be set, motivating the
use of a graphical approach, as proposed later.

The asymptotes of h(x; α, β, γ) are studied below. We have:

h(x; α, β, γ) ∼ γβγxγ−1, x → 0,

implying that h(x; α, β, γ)→ +∞ if γ ∈ (0, 1), h(x; α, β, γ)→ β if γ = 1 and h(x; α, β, γ)→ 0 if γ > 1.
Furthermore, we have:

h(x; α, β, γ)→ β, x → +∞.

As for f (x; α, β, γ), the parameter α plays no role in the asymptotes of h(x; α, β, γ). Furthermore,
the deep shape properties of h(x; α, β, γ) are hard to present analytically. We thus complete our analysis
by a graphical approach; some plots of h(x; α, β, γ) are sketched in Figure 2.
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Figure 2. Plots for the hazard rate function (hrf) of the EMIEE distribution, for several values of
the parameters.

From Figure 2, we see that the hrf can be increasing, decreasing, with reserved J shapes,
constant shapes, and N shapes. This wide panel of shapes indicates the great flexibility of the related
distribution. In this regard, we may refer the reader to [21].

3.2. On Different Measures

The raw moments of the EMIEE distribution can be determined and computed by using (5) or (6),
along with important probability and statistical measures. As an example, for a random variable X
following the EMIEE distribution with parameters α, β, and γ, the kth raw moment of X is given by
µ′k = E(Xk), corresponding to (5) with T(x) = xk. Furthermore, from the raw moments, the following
measures can be specified:

• the mean of X defined by µ′1, remaining the central parameter of the distribution,
• the variance of X given as Var = µ′2 − (µ′1)

2, providing a dispersion parameter,
• the standard deviation of X defined as σ = Var1/2, corresponding to a dispersion parameter with

the same unit as the mean,
• the skewness of X given by SK = [µ′3 − 3µ′1µ′2 + 2(µ′1)

3]/σ3, measuring the lack of symmetry of
tails of the EMIEE distribution (about the µ′1),

• the kurtosis of X specified by KU = [µ′4 − 4µ′1µ′3 + 6(µ′1)
2
µ′2 − 3(µ′1)

4]/σ4, measuring how heavily
the tails of the EMIEE distribution differ from those of a normal distribution,

• the coefficient of variation of X defined as CV = σ/µ′1, providing a dispersion parameter that can
serve as a benchmark for comparison.

We refer the reader to the book of [17] for further details on these measures. A numerical treatment
of these measures is proposed in Tables 1–3, for some selected values of the parameters.

Tables 1–3 show that the considered measures can take a wide range of values, with some
increasing/decreasing tendencies depending on the increasing/decreasing tendencies of the values of
the parameters. In particular, in Table 1, at α = 0.5 and β = 0.5 and when the value of γ increases,
then the values of SK, KU, and CV decrease, but the value of Var increases. Furthermore, from Table 2,
at γ = 2.0 and β = 0.5 and when the value of α increases, then the values of SK and KU increase,
but the values of Var and CV decrease. Table 3 indicates that, at γ = 2.0 and α = 0.5 when the value
of β increases, the values of Var and CV decrease. The versatility of these measures is an additional
quality of the EMIEE distribution.
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Table 1. Numerical values of some moments, variance, skewness (SK), kurtosis (KU), and the coefficient
of variation (CV) of the EMIEE distribution for some selected values of γ and at α = 0.5 and β = 0.5.

Measure γ = 1.5 γ = 2.0 γ = 2.5 γ = 3.0 γ = 3.5 γ = 4.0 γ = 4.5

µ′1 1.709 1.921 2.051 2.344 2.601 2.830 3.037
µ′2 6.381 7.465 8.162 9.823 11.382 12.853 14.247
µ′3 37.486 44.483 49.068 60.272 71.130 81.674 91.927
µ′4 297.27 354.846 392.912 487.007 579.644 670.901 760.85
Var 3.459 3.775 3.956 4.329 4.616 4.842 5.024
SK 2.294 2.132 2.046 1.882 1.766 1.679 1.611
KU 10.633 9.646 9.155 8.281 7.711 7.315 7.026
CV 1.088 1.012 0.970 0.888 0.826 0.777 0.738

Table 2. Numerical values of some moments, variance, SK, KU, and CV of the EMIEE distribution for
some selected values of α and at γ = 2.0 and β = 0.5.

Measure α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.6 α = 0.7 α = 0.75

µ′1 1.846 1.910 1.963 2.009 2.088 2.123 2.139
µ′2 7.645 7.782 7.913 8.040 8.280 8.395 8.451
µ′3 47.023 47.542 48.055 48.564 49.567 50.061 50.306
µ′4 380.997 383.988 386.972 389.947 395.867 398.811 400.279
Var 4.238 4.134 4.060 4.002 3.919 3.887 3.874
SK 1.980 2.009 2.027 2.039 2.051 2.053 2.053
KU 8.646 8.846 8.982 9.081 9.209 9.249 9.264
CV 1.115 1.065 1.026 0.996 0.948 0.929 0.920

Table 3. Numerical values of some moments, variance, SK, KU, and CV of the EMIEE distribution for
some selected values of β and at α = 0.5 and γ = 2.0.

Measure β = 0.1 β = 0.4 β = 0.7 β = 1.0 β = 1.2 β = 1.5 β = 1.8

µ′1 9.229 2.512 1.516 1.107 0.944 0.777 0.664
µ′2 191.116 12.562 4.283 2.180 1.549 1.023 0.730
µ′3 5878 94.852 18.244 6.439 3.794 1.993 1.182
µ′4 238100 952.018 103.814 25.473 12.458 5.209 2.562
Var 105.938 6.254 1.983 0.955 0.658 0.419 0.290
SK 1.980 2.039 2.053 2.049 2.040 2.023 2.001
KU 8.646 9.081 9.249 9.304 9.304 9.266 9.198
CV 1.115 0.996 0.929 0.883 0.860 0.832 0.811

We complete this part by discussing the entropy of the EMIEE distribution through the Rényi
entropy defined by Iδ = (1− δ)−1 log

[
E{[ f (X; α, β, γ)]δ−1}

]
, with δ > 0, δ 6= 1 and (δ− 1)(1− γ) < 1

(this inequality is an additional condition to ensure the existence of Iδ). Therefore, one can express the
main term via (5) or (6) by taking T(x) = [ f (x; α, β, γ)]δ−1. A numerical study of the Rényi entropy is
performed in Table 4.

Table 4 shows the versatile nature of the Rényi entropy of X; it can be positive or negative,
with varying values. In some sense, this shows the flexibility of the amount of randomness of the
EMIEE distribution. Further details about the Rényi entropy, and the general concept of entropy,
can be found in [22].
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Table 4. Numerical values of the Rényi entropy of the EMIEE distribution at different values of α,
β, and γ.

Parameters Rényi Entropy

α β γ δ = 1.2 δ = 2 δ = 3

0.5 0.5 1 0.451 0.285 0.182
0.5 0.5 1.8 0.650 0.531 0.449
0.5 0.5 3 0.782 0.705 0.656
0.5 0.5 4 0.834 0.770 0.730
0.5 0.5 5 0.865 0.805 0.768
1.5 0.5 3 0.788 0.714 0.666
2 0.5 3 0.793 0.720 0.674

2.5 0.5 3 0.799 0.727 0.682
3 0.5 3 0.805 0.734 0.690

0.5 1.5 3 0.311 0.236 0.190
0.5 2 3 0.191 0.118 0.072
0.5 2.5 3 0.100 0.028 −0.017
0.5 3 3 0.026 −0.044 −0.088

4. Parameter Estimation

Here, we derive the maximum likelihood estimates (MLEs) of the EMIEE model parameters,
along with a simulation study to illustrate their practical interest. We recall that the MLEs have the
following desirable properties. They are (i) efficient, (ii) consistent, (iii) asymptotically normal, and (iv)
easy to handle in practice. For these, we refer the reader to [23]. The mathematical basis of this method
in the setting of the EMIEE distribution is given below.

Let x1, x2, . . . , xn be n independent realizations of a random variable following the EMIEE
distribution with parameters α, β, and γ. Then, the MLEs of α, β, and γ are defined as the “argmax of
the likelihood function with respect to α, β, and γ”. Thus, by denoting them as α̂, β̂, and γ̂, they are
defined by:

(α̂, β̂, γ̂) = argmax(α,β,γ)∈(0,+∞)3 L(α, β, γ),

where, based on (8), L(α, β, γ) denotes the likelihood function given as:

L(α, β, γ) =
n

∏
i=1

f (xi; α, β, γ) =
n

∏
i=1

{
γeα/xi−βxi

α + βx2
i (1 + eα/xi )

x2
i (1 + eα/xi )2

[
1− e−βxi

1 + e−α/xi

]γ−1}
.

To avoid the complicated product form of the likelihood function, one can also define the MLEs
as (α̂, β̂, γ̂) = argmax(α,β,γ)∈(0,+∞)3 `(α, β, γ), where `(α, β, γ) denotes the log-likelihood function
given by:

`(α, β, γ) = log[L(α, β, γ)] = n log γ + α
n

∑
i=1

1
xi
− β

n

∑
i=1

xi +
n

∑
i=1

log
[
α + βx2

i (1 + eα/xi )
]

− 2
n

∑
i=1

log xi − 2
n

∑
i=1

log(1 + eα/xi ) + (γ− 1)
n

∑
i=1

log(1 + e−α/xi − e−βxi )

− (γ− 1)
n

∑
i=1

log(1 + e−α/xi ).

Thus, α̂, β̂, and γ̂ satisfy ∂`(α̂, β̂, γ̂)/∂α = 0, ∂`(α̂, β̂, γ̂)/∂β = 0, and ∂`(α̂, β̂, γ̂)/∂γ = 0,
whose extended forms are the following:
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n

∑
i=1

1
xi

+
n

∑
i=1

1 + β̂xieα̂/xi

α̂ + β̂x2
i (1 + eα̂/xi )

− 2
n

∑
i=1

eα̂/xi

xi(1 + eα̂/xi )
− (γ̂− 1)

n

∑
i=1

e−α̂/xi

xi(1 + e−α̂/xi − e−β̂xi )

+ (γ̂− 1)
n

∑
i=1

e−α̂/xi

xi(1 + e−α̂/xi )
= 0,

−
n

∑
i=1

xi +
n

∑
i=1

x2
i (1 + eα̂/xi )

α̂ + β̂x2
i (1 + eα̂/xi )

+ (γ̂− 1)
n

∑
i=1

xie−β̂xi

1 + e−α̂/xi − e−β̂xi
= 0

and:

n
γ̂
+

n

∑
i=1

log(1 + e−α̂/xi − e−β̂xi )−
n

∑
i=1

log(1 + e−α̂/xi ) = 0.

From this last equation, one can express γ̂ according to α̂ and β̂ as:

γ̂ =

{
− 1

n

n

∑
i=1

log

(
1− e−β̂xi

1 + e−α̂/xi

)}−1

,

(and plugging this expression into the first two equations, now depending on α̂ and β̂ only). Since the
above equations are complicated to solve analytically, the MLEs have no tractable expression.
However, they can be approached by standard optimization algorithms, such as the Newton–Raphson
or quasi-Newton Broyden–Fletcher–Goldfarb–Shannon (BFGS) algorithms, with the use of a statistical
software. By expressing the second partial derivatives of the log-likelihood function with respect
to α, β, and γ, we can determine the observed Fisher information matrix, allowing us to obtain the
asymptotic variances, covariances, and standard errors (SEs) of the ML estimators for α, β, and γ,
among others.

Now, let us illustrate the practical aspect of the MLEs by a simulation study, with the use of the R
software (see [24]). The BFGS algorithm is considered. That is, we generated N = 10,000 replications of
samples (x1, x2, . . . , xn) with n ∈ {50, 100, 200, 500, 1000} from a random variable following the EMIEE
distribution defined with the six following sets of parameters, in turn: Υ1(α = 1.2, β = 1.5, γ = 2.0),
Υ2(α = 1.8, β = 1.5, γ = 2.0), Υ3(α = 2.5, β = 1.5, γ = 2.0), Υ4(α = 1.2, β = 2.0, γ = 2.0), Υ5(α =

1.8, β = 1.5, γ = 4.0), and Υ6(α = 3.0, β = 1.5, γ = 4.0). Then, for each of these sets, we determined the
average MLEs of the parameters defined as, for ω = α, β, γ,

MLEω =
1
N

N

∑
k=1

ω̂k,

where ω̂k denotes the MLE of ω obtained at the kth replication, and the corresponding empirical mean
squared errors (MSEs) defined as, for ω = α, β and γ,

MSEω =
1
N

N

∑
k=1

(ω̂k −ω)2.

The results of this simulation study are in Tables 5 and 6.
The results in Tables 5 and 6 show the numerical efficiency of the maximum likelihood method

for the EMIEE model. Indeed, we see that the MLEs were relatively close to the true values of the
parameters, and globally, the MSEs decreased as n increased. This “numerical convergence” illustrated
the well-known theoretical convergence properties of the MLEs.
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Table 5. Simulation study for the EMIEE model: MLEs and MSEs with the following sets of parameters:
Υ1(α = 1.2, β = 1.5, γ = 2.0), Υ2(α = 1.8, β = 1.5, γ = 2.0), and Υ3(α = 2.5, β = 1.5, γ = 2.0).

n Υ1 Υ2 Υ3

MLE MLE MLE MLE MLE MLE

50
1.517 1.476 1.962 0.920 2.784 4.450
1.712 0.176 1.541 0.057 1.622 0.112
2.498 1.907 2.051 0.181 2.423 1.019

100
1.259 0.257 1.880 0.831 1.866 1.769
1.568 0.069 1.628 0.045 1.483 0.019
2.124 0.130 2.241 0.104 2.380 0.436

200
1.363 0.095 2.081 0.613 2.843 1.709
1.583 0.014 1.550 0.026 1.497 0.012
2.056 0.017 1.992 0.023 2.013 0.027

500
1.224 0.059 1.697 0.333 2.779 1.121
1.532 0.013 1.463 0.008 1.504 0.010
2.083 0.045 2.009 0.011 2.031 0.025

1000
1.131 0.029 1.825 0.262 2.552 0.461
1.484 0.005 1.484 0.006 1.487 0.002
2.003 0.016 2.007 0.010 1.978 0.003

Table 6. Simulation study for the EMIEE model: MLEs and MSEs with the following sets of parameters:
Υ4(α = 1.2, β = 2.0, γ = 2.0), Υ5(α = 1.8, β = 1.5, γ = 4.0), and Υ6(α = 3.0, β = 1.5, γ = 4.0).

n Υ4 Υ5 Υ6

MLE MLE MLE MLE MLE MLE

50
1.118 0.567 2.060 1.969 3.239 0.315
2.016 0.134 1.774 0.165 2.082 0.521
2.446 1.021 5.169 3.634 5.419 4.331

100
1.180 0.198 1.452 0.181 2.895 0.198
1.931 0.127 1.517 0.034 1.800 0.172
2.056 0.153 4.171 0.475 5.045 3.873

200
1.226 0.147 1.394 0.177 2.812 0.052
1.990 0.042 1.550 0.020 1.722 0.086
2.028 0.043 4.353 0.335 4.660 0.649

500
1.299 0.141 1.400 0.173 2.774 0.074
2.018 0.014 1.509 0.012 1.736 0.069
2.113 0.032 4.197 0.206 4.434 0.300

1000
1.177 0.050 1.669 0.093 2.781 0.056
2.029 0.016 1.511 0.004 1.732 0.055
2.044 0.009 4.200 0.077 4.289 0.222

5. Application to a COVID-19 Dataset

Here, we propose a concrete application with an actual dataset to assess the interest in the EMIEE
model. The considered data, called the COVID-19 dataset, is presented below.

COVID-19, which can be renamed as the “the flu of 2020”, is due to Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2). Sadly, it spread quickly in the beginning of the year 2020,
taking thousands of victims, obliging governments to take exceptional measures to protect their people.
The update as of 29 May 2020 situation of this pandemic tragedy can be found in [25–27]. Naturally,
the overall comprehension of COVID-19 is a challenge for all scientists, but necessary for the sake
of future generations. In this section, we modestly contribute to the subject by applying the EMIEE
model to fit data of daily new COVID-19 confirmed cases in Pakistan from 21 March to 29 May 2020
(inclusive), showing that it is very efficient in this regard. We thus assumed that the new COVID-19
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(confirmed) cases in Pakistan could be modeled by a continuous variable (since a discrete variable
with a wide range of values could be considered as such) and provided a new statistical model that
could be relevant for the following points:

(i) Provide a precise estimation for some measures of interest related to COVID-19 cases in Pakistan
(mean of cases, probability to have a certain number of cases, and so on),

(ii) Compare the repartitions of the number of COVID-19 cases in Pakistan with those in other
countries,

(iii) Propose an efficient strategy for fitting data on COVID-19 cases in other countries,
(iv) In a more challenging way, model the distribution of the number of cases for any pandemic

with similar features and under a similar environment (with comparable populations,
comparable climate, sanitary system, etc.).

The dataset was obtained from the following electronic address: http://covid.gov.pk/stats/
pakistan. It is given as follows: {112, 157, 89, 108, 102, 133, 170, 121, 99, 236, 178, 250, 161, 258, 172, 407,
577, 210, 243, 281, 186, 254, 336, 342, 269, 543, 488, 463, 514, 427, 796, 555, 742, 642, 785, 783, 605, 751,
806, 942, 990, 1297, 989, 1083, 1315, 1049, 1523, 1764, 1637, 1991, 1476, 1140, 2255, 1452, 1430, 1581, 1352,
1974, 1841, 1932, 2193, 2603, 1743, 2164, 1748, 1356, 1446, 2241, 2636, 2429} corresponding to the dates
{21 March 2020, 22 March 2020, . . . , 29 May 2020}, respectively.

Aiming to identify the possible shapes of the unknown hrf behind these data, we plot the total
time on test (TTT) plot in Figure 3 (see [28] for further details on the use of TTT plots in data analysis).
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Figure 3. Total time on test (TTT) plot of the COVID-19 dataset.

In Figure 3, since the red line is convex, then concave, the unknown hrf probably presents
a bathtub shape. Therefore, the EMIEE distribution is appropriate to fit the data.

Now, we aimed to compare the fitness of the EMIEE model with the one of 15 top ranked
models in the literature: (i) the Weibull-exponential (WE) model by [29], (ii) the Lomax-exponential
(LE) model by [30], (iii) the gamma-exponentiated exponential (GaE) model by [31], (iv) the beta
Weibull (BW) model by [32], (v) the Kumaraswamy exponential (KE) model by [33], (vi) the Burr
X-exponential (BXE) model by [34], (vii) the exponentiated exponential (EE) model by [35], (viii) the
CStransformation of exponential (CE) model by [36], (ix) the standard exponential (E) model (see [37],
among others), (x) the alpha-power inverse Weibull (AIW) model by [38], (xi) the Gompertz inverse
exponential (GomIE) model by [39], (xii) the Weibull-inverse exponential (WIE) model by [40], (xiii)
the inverse Weibull-inverse exponential (IWIE) model by [41], (xiv) the inverse exponential (IE) model

http://covid.gov.pk/stats/pakistan
http://covid.gov.pk/stats/pakistan
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by [20], and last, but not least, (xv) the “unexponentiated” version of the proposed EMIEE model, i.e.,
the MIEE model. We refer to the above references for the precise definitions of the related cdfs and
pdfs, along with the Greek alphabet letters used for the parameters.

Then, the model parameters were estimated through the practice of the maximum likelihood
method (with the BFGS algorithm). The R software was used in this regard. The calculations of the
MLEs and SEs for all the model parameters are provided in Table 7.

Table 7. MLEs and standard errors (SEs) (under parentheses) of the model parameters for
the COVID-19 dataset: Weibull-exponential (WE) model, the Lomax-exponential (LE) model,
the gamma-exponentiated exponential (GaE) model, the beta Weibull (BW) model, the Kumaraswamy
exponential (KE) model, the Burr X-exponential (BXE) model, the exponentiated exponential (EE)
model, the CStransformation of exponential (CE) model, the standard exponential (E) model,
the alpha-power inverse Weibull (AIW) model, the Gompertz inverse exponential (GomIE) model,
the Weibull-inverse exponential (WIE) model, the inverse Weibull-inverse exponential (IWIE) model,
the inverse exponential (IE) model.

Model α β γ λ θ η

EMIEE 1.5577 0.1184 2.4646 - - -
(0.5860) (0.0188) (0.5511) - - -

WE - - - 1.2850 0.9664 0.0528
- - - (1.3391) (0.1893) (0.0387)

LE 44.7999 0.0477 67.3943 - - -
(13.9974) (0.0199) (1.2461) - -

GaE - - - 0.0822 0.7317 1.2936
- - - (0.0450) (0.3352) (0.5946)

BW - - 1.6505 0.9444 3.4276 0.0867
- - (0.0083) (0.0069) (1.2777) (0.0109)

KE - - - 1.1891 2.9329 0.0982
- - - (0.0191) (0.1555) (0.0744)

BXE 0.0391 0.3782 - - - -
(0.0027) (0.0489) - - - -

EE 1.3633 0.1284 - - - -
(0.2239) (0.0184) - - - -

CE 16.9399 16.6595 8.1926 - - -
(2.27821) (3.1211) (2.116) - - -

E - 0.1061 - - - -
- (0.0126) - - - -

AIW 7.3531 2.6650 1.1892 - - -
(1.3953) (0.8931) (0.1124) - - -

GomIE 0.2035 1.0786 1.9361 - - -
(0.1355) (0.1925) (0.8576) - - -

WIE 0.2472 0.9974 2.0841 - - -
(0.2197) (0.1553) (1.2271) - - -

IWIE 0.3554 0.9506 9.7728 - - -
(0.5157) (0.1172) (5.2750) - - -

IE 3.7629 - - - - -
(0.4497) - - - - -

MIEE 4.3601 0.0741 - - - -
(1.11734) (0.0123) - - - -
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Among the information provided by Table 7, the parameters of the EMIEE model, i.e., α, β, and γ,
are estimated as:

α̂ = 1.5577, β̂ = 0.1184, γ̂ = 2.4646.

Therefore, based on (8), the corresponding estimated pdf is given by:

f̂ (x) = f (x; α̂, β̂, γ̂) = γ̂eα̂/x−β̂x α̂ + β̂x2(1 + eα̂/x)

x2(1 + eα̂/x)2

[
1− e−β̂x

1 + e−α̂/x

]γ̂−1

. (10)

Thus, f̂ (x) is an estimated function of the unobservable underlying pdf of the number of
COVID-19 cases in Pakistan. By the use of this function, one can estimate the quantities of interest.
Some basics of them are presented below. By denoting X the random variable modeling the daily
COVID-19 confirmed cases in Pakistan during the epidemic, the probability that X belongs to a
chosen interval, say [a, b], can be estimated by p̂a,b =

∫ b
a f̂ (x)dx. For instance, the probability that

the COVID-19 cases in Pakistan are less than a certain values c is given by p̂0,c. More generally,
an estimation of the mean of a certain transformation of X, say T(X), can be estimated by
µ̂∗ =

∫ +∞
0 T(x) f̂ (x)dx. For instance, the average number of COVID-19 cases in Pakistan can be

approximated with precision by µ̂∗ by taking T(x) = x, and so on.
As planned, a comparison of the models in terms of fitting was performed. We decided which

was the best model by determining the values of the following statistical measures: minus complete
log-likelihood function (− ˆ̀), Akaike information criterion (AIC), Bayesian information criterion (BIC),
Cramer–von Mises (W) criterion, and Anderson–Darling (A) criterion. Furthermore, we considered the
value of the Kolmogorov–Smirnov (KS) statistic and its p-value. The best model was the one having the
smallest − ˆ̀ , AIC, BIC, W, A, and KS and the largest KS p-value. For the considered data, the obtained
values are shown in Table 8.

Table 8. Values of − ˆ̀, AIC, BIC, W, Anderson–Darling (A) criterion, KS, and KS p-value of the 16
considered models for the COVID-19 dataset.

Model − ˆ̀ AIC BIC W A KS KS p-Value

EMIEE 221.3346 448.6692 455.4147 0.1228 0.8148 0.0991 0.5679
WE 223.8891 453.7781 460.5236 0.1393 0.9449 0.1036 0.4122
LE 223.9463 453.8925 460.6380 0.1399 0.9494 0.1060 0.3838

GaE 223.8191 453.6381 460.3836 0.1396 0.9447 0.1042 0.4050
BW 223.8808 455.7615 464.7555 0.1629 1.0745 0.1172 0.2695
KE 224.0199 454.0399 460.7854 0.1577 1.0497 0.1130 0.3088

BXE 224.5807 453.1613 457.6583 0.1552 1.0425 0.1040 0.4074
EE 225.2817 454.5633 459.0603 0.1632 1.1044 0.1085 0.3563
CE 228.1471 462.2942 469.0396 0.1240 0.8424 0.1392 0.1203
E 226.9804 455.9608 458.2093 0.1608 1.0887 0.1048 0.3979

AIW 231.7256 469.4511 476.1966 0.3406 2.0919 0.12049 0.2413
GomIE 223.1276 452.2553 459.0007 0.1454 0.9659 0.1107 0.3327

WIE 223.2084 452.4168 459.1623 0.1518 1.0024 0.1134 0.3049
IWIE 233.9508 473.9016 480.6471 0.4037 2.4377 0.1367 0.1327

IE 233.4393 468.8786 471.1271 0.3844 2.3318 0.1330 0.1532
MIEE 228.6196 461.2392 465.7362 0.2013 1.2916 0.1577 0.0548

From Table 8, we see that the EMIEE model was the best among all the considered models,
with the following numerical criteria: − ˆ̀ = 221.3346, AIC = 448.6692, BIC = 455.4147, W = 0.1228,

A = 0.8148, KS = 0.0991, and KS p-value = 0.5679. One can notice that the EMIEE model
outperformed the baseline E and IE models, and also, the MIEE model was derived from the former M
family, validating the use of the exponentiated transform for fitting purposes.

Figure 4 shows the estimated pdf as described in (10) over the histogram of the data. Figure 5
presents the estimated cdf, i.e., based on (7), F̂(x) = F(x; α̂, β̂, γ̂), over the empirical cdf of the data.
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The probability-probability (P-P) plot in Figure 6 shows how closely the estimated and empirical
cdfs agreed.
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Figure 4. Estimated pdf of the EMIEE model over the histogram for the COVID-19 dataset.
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Figure 5. Estimated cdf of the EMIEE model over the histogram for the COVID-19 dataset.

In all the graphics, we see that the red curves fit perfectly the black data objects, motivating the
importance of the EMIEE model in the analysis of the COVID-19 dataset. We end this application by
displaying the estimated hrf of the EMIEE model in Figure 7.

We see that the estimated hrf has a bathtub shape, which was in coherence with what was
interpreted in Figure 3.
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Figure 6. Probability-probability (P-P) plot of the EMIEE model for the COVID-19 dataset.
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Figure 7. Estimated hrf of the EMIEE model for the COVID-19 dataset.

6. Conclusions

In this paper, we derived a natural extension of the M family, called the exponentiated M (EM)
family. We investigated its main mathematical properties and discussed its ability in terms of statistical
modeling. Light was shed on a new promising distribution of the EM family, based on the inverse
exponential and exponential distributions. It was called the EM inverse exponential exponential
(EMIEE) distribution. We investigated the estimation of the EMIEE model parameters by a reputed
method: the maximum likelihood method. We applied it to analyze new COVID-19 cases in Pakistan
during 21 March to 29 May 2020 (inclusive), with fair comparisons with 15 other solid models.
The fitting results were quite favorable to the EMIEE model. That is, the EMIEE model could be used
for similar analyses in other countries, allowing comparisons in this regard and, consequently, a better
understanding of the COVID-19 pandemic.
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