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Abstract: A dominating set in a graph G is a set of vertices S ⊆ V(G) such that any vertex of V − S
is adjacent to at least one vertex of S. A dominating set S of G is said to be a perfect dominating set
if each vertex in V − S is adjacent to exactly one vertex in S. The minimum cardinality of a perfect
dominating set is the perfect domination number γp(G). A function f : V(G)→ {0, 1, 2} is a perfect
Roman dominating function (PRDF) on G if every vertex u ∈ V for which f (u) = 0 is adjacent to
exactly one vertex v for which f (v) = 2. The weight of a PRDF is the sum of its function values over
all vertices, and the minimum weight of a PRDF of G is the perfect Roman domination number γ

p
R(G).

In this paper, we prove that for any nontrivial tree T, γ
p
R(T) ≥ γp(T) + 1 and we characterize all

trees attaining this bound.
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1. Introduction

In this paper, only simple and undirected graph without isolated vertices will be considered.
The set of vertices of the graph G is denoted by V = V(G) and the edge set is E = E(G). The order of
a graph G is the number of vertices of the graph G and it is denoted by n = n(G). The size of G is the
cardinality of the edge set and it is denoted by m = m(G). For a vertex v ∈ V, the open neighbourhood
N(v) is the set {u ∈ V(Γ) : uv ∈ E(G)}, the closed neighbourhood of v is the set N[v] = N(v) ∪ {v}, and
the degree of v is degG(u) = |N(v)|. Any vertex of degree one is called a leaf, a support vertex is a vertex
adjacent to a leaf, a strong support vertex is a support vertex adjacent to at least two leaves and an end
support vertex is a support vertex such that all its neighbors, except possibly one, are leaves. For a
graph G, let L(G) = {v ∈ V(G) | degG(v) = 1} and Lv = N(v) ∩ L(G). The distance dG(u, v) between
two vertices u and v in a connected graph G is the length of a shortest u− v path in G. The diameter of
G, denoted by diam(G), is the maximum value among distances between all pair of vertices of G.
For a vertex v in a rooted tree T, let C(v) and D(v) denote the set of children and descendants of v,
respectively and let D[v] = D(v) ∪ {v}. Moreover, the depth of v, depth(v), is the largest distance
from v to a vertex in D(v). The maximal subtree rooted at v, denoted by Tv, consists of v and all its
descendants. We write Pn for the path of order n. A tree T is a double star if it contains exactly two
vertices that are not leaves. A double star with, respectively p and q leaves attached at each support
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vertex is denoted DSp,q. For a real-valued function f : V −→ R, the weight of f is w( f ) = ∑v∈V f (v),
and for S ⊆ V we define f (S) = ∑v∈S f (v). So w( f ) = f (V).

A dominating set (DS) in a graph G is a set of vertices S ⊆ V(G) such that any vertex of V − S is
adjacent to at least one vertex of S. A dominating set S of G is said to be a perfect dominating set (PDS)
if each vertex in V − S is adjacent to exactly one vertex in S. The minimum cardinality of a (perfect)
dominating set of a graph G is the (perfect) domination number γ(G) (γp(G)). Perfect domination was
introduced by Livingston and Stout in [1] and has been studied by several authors [2–6].

A function f : V(Γ)→ {0, 1, 2} is a Roman dominating function (RDF) on G if every vertex u ∈ V
for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. A perfect Roman dominating
function (PRDF) on a graph G is an RDF f such that every vertex assigned a 0 is adjacent to exactly
one vertex assigned a 2 under f . The minimum weight of a (perfect) RDF on a graph G is the (perfect)
Roman domination number γR(G) (γp

R(G)). A (perfect) RDF on G with weight γR(G) (γp
R(G)) is called

a γR(G)-function (γp
R(G)-function). An RDF f on a graph G = (V, E) can be represented by the

ordered partition (V0, V1, V2) of V, where Vi = {v ∈ V| f (v) = i} for i = 0, 1, 2. The concept of Roman
domination was introduced by Cockayne et al. in [7] and was inspired by the manuscript of the authors
of [8], and Stewart [9] about the defensive strategy of the Roman Empire decreed by Constantine I The
Great, while perfect Roman domination was introduced by Henning, Klostermeyer and MacGillivray
in [10] and has been studied in [11–13]. For more on Roman domination, we refer the reader to the
book chapters [14,15] and surveys [16–18].

It was shown in [10] that for any tree G of order n ≥ 3, γ
p
R(G) ≤ 4n

5 . Moreover, the authors have
characterized all trees attaining this upper bound. Note that the previous upper bound have been
improved by Henning and Klostermeyer [13] for cubic graphs of order n by showing that γ

p
R(G) ≤ 3n

4 .
It is worth mentioning that if S is a minimum (perfect) dominating set of a graph G, then clearly

(V − S, ∅, S) is a (perfect) RDF and thus

γR(G) ≤ 2γ(G) and γ
p
R(G) ≤ 2γp(G). (1)

On the other hand, if f = (V0, V1, V2) is a γR(G)-function, then V1 ∪V2 is a dominating set of G yielding

γ(G) ≤ γR(G). (2)

It is natural to ask whether the inequality (2) remains valid between γP(G) and γ
p
R(G) for any

graph G. The answer is negative as it can be seen by considering the graph H obtained from a double
star DSp,p, (p ≥ 3) with central vertices u, v by subdividing the edge uv with vertex w, and adding 2k
(k ≥ 3) new vertices, where k vertices are attached to both u and w and the remaining k vertices are
attached to both v and w (see Figure 1). Clearly, γp(H) = 2k + 3 while γ

p
R(H) = 5 and so the difference

γp(H)− γ
p
R(H) can be even very large.

u w v

x1

xk

y1

yk

Figure 1. The graph H.

Motivated by the above example, we shall show in this paper that γ
p
R(T) ≥ γp(T) + 1 for every

nontrivial tree T, and we characterize all trees attaining this bound.
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2. Preliminaries

We start by providing some useful definitions and observations throughout the paper.

Definition 1. For any graph G, let

WR,1
G = {u ∈ V | there exists a γ

p
R(G)-function f such that f (u) = 2},

WR,≤1
G = {u ∈ V | f (u) ≤ 1 for some γ

p
R(G)-function f },

WR,≥1
G = {u ∈ V | for each v ∈ NG(u), f (v) ≤ 1 for every γ

p
R(G)-function f },

WP,A
G = {u ∈ V | u belongs to every γp(G)-set}.

Definition 2. Let u be a vertex of a graph G. A set S is said to be an almost perfect dominating set (almost
PDS) with respect to u, (i) if each vertex x ∈ V \ (S ∪ {u}) has exactly one neighbor in S, and (ii) if u ∈ V \ S,
then u has at most one neighbor in S. Let

γp(G; u) = min{|S| : S is an almost PDS with respect to u}.

Trivially, every PDS of G is an almost PDS with respect to any vertex of G and thus γp(G; u) is
well defined. Hence γp(G; u) ≤ γp(G) for each vertex u ∈ V. Let

WAPD
G = {u ∈ V | γp(G; u) = γp(G)}.

The proof of the following two results are given in [12].

Observation 1. Let G be a graph.

1. Any strong support vertex belongs to WP,A
G .

2. Any support vertex adjacent to a strong support vertex, belongs to WP,A
G .

3. For any leaf u of G, there is a γ
p
R(G)-function f such that f (u) ≤ 1.

Proposition 1. Let G be a graph. G has a γ
p
R(G)-function that assigns 2 to every end strong support vertex.

Thus every end strong support vertex of a graph G belongs to WR,1
G .

The next result is a consequence of Observation 1 and Proposition 1.

Corollary 1. Let u be an end strong support vertex of a graph H. If G is the graph obtained from H by adding
a vertex x and an edge ux, then γp(G) = γp(H) and γ

p
R(G) = γ

p
R(H).

Proposition 2. Let H be a graph and u ∈ V(H). If G is a graph obtained from H by adding a path P2 : x1x2

attached at u by an edge ux1, then:

1. γp(G) ≤ γp(H) + 1 and γ
p
R(G) ≥ γ

p
R(H) + 1.

2. If u ∈WR,1
H ∪WR,≥1

H , then γ
p
R(G) = γ

p
R(H) + 1.

3. If u ∈WAPD
H , then γp(G) = γp(H) + 1.

Proof.

1. For a γp(H)-set S, let S′ = S ∪ {x1} if u ∈ S, and S′ = S ∪ {x2} if u 6∈ S. Clearly, S′ is a PDS of G
and thus γp(G) ≤ γp(H) + 1.

Now let f be a γ
p
R(G)-function. Obviously, f (x1) + f (x2) ≥ 1. If f (u) ≥ 1, then the function

f restricted to H is a PRDF on H yielding γ
p
R(G) ≥ γ

p
R(H) + 1. Thus assume that f (u) =

0. Then f (x1) + f (x2) = 2 and the function g : V(H) → {0, 1, 2} defined by g(u) = 1 and
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g(x) = f (x) for x ∈ V(H) \ {u} is a PRDF on H of weight γ
p
R(G) − 1. Hence in any case,

γ
p
R(G) ≥ γ

p
R(H) + 1.

2. Assume first that u ∈WR,1
H and let f be a γ

p
R(H)-function with f (u) = 2. Then f can be extended

to a PRDF of G by assigning a 1 to x2 and a 0 to x1 and thus γ
p
R(G) ≤ γ

p
R(H) + 1. The equality

follows by item 1. Assume now that u ∈WR,≥1
G′ and let f be a γ

p
R(H)-function. By the definition

of WR,≥1
H , we must have f (u) ≥ 1 to Roman dominate u. Now, if f (u) = 2, then using the same

argument as above we obtain γ
p
R(G) = γ

p
R(H) + 1. Hence assume that f (u) = 1. Then the

function g : V(G) → {0, 1, 2} defined by g(x1) = 2, g(u) = g(x2) = 0 and g(x) = f (x) for all
x ∈ V(H) \ {u} is a PRDF of G of weight γ

p
R(H) + 1. Therefore γ

p
R(G) ≤ γ

p
R(H) + 1, and the

equality follows by item 1.
3. Let S be a γp(G)-set. Clearly, |S ∩ {x1, x2}| ≥ 1 and S− {x1, x2} is an almost PDS of H with

respect to u. Since u ∈WAPD
H , we have |S− {x1, x2}| ≥ γp(G′; u) = γp(H). Therefore γp(G) =

|S| ≥ γp(H) + 1, and the equality follows from item 1. �

For a graph G and a vertex u of G, we denote by Gu
K1,3

the graph obtained from G by adding a star
K1,3 and joining one of its leaf to u.

Proposition 3. Let G be a graph and u a vertex of G.

1. γp(Gu
K1,3

) ≤ γp(G) + 2 and γ
p
R(G) + 2 ≤ γ

p
R(G

u
K1,3

).

2. If u ∈WP,A
G ∩WAPD

G , then γp(Gu
K1,3

) = γp(G) + 2.

3. If u ∈WR,≤1
G , then γ

p
R(G

u
K1,3

) = γ
p
R(G) + 2.

Proof. Let x be the center of the star K1,3 and x1 a leaf of K1,3 attached at u by an edge ux1.

1. For a γp(G)-set S, let S′ = S ∪ {x, x1} if u ∈ S, and S′ = S ∪ {x} for otherwise. Clearly, S′ is a
PDS of Gu

K1,3
and thus γp(Gu

K1,3
) ≤ γp(G) + 2.

Now, let f be a γ
p
R(G

u
K1,3

)-function. By Proposition 1, we may assume that f (x) = 2. If f (x1) ≤ 1,

then the function f restricted to G is a PRDF on G of weight at most γ
p
R(G

u
K1,3

)− 2. Thus, we
assume that f (x1) = 2. Then the function g : V(G) → {0, 1, 2} defined by g(u) = 1 and
g(x) = f (x) for all x ∈ V(G) \ {u} is a PRDF on G of weight γ

p
R(G

u
K1,3

) − 3. In any case,

γ
p
R(G) ≤ γ

p
R(G

u
K1,3

)− 2.

2. Let S be a γp(Gu
K1,3

)-set. By Observation 1-(1), we have x ∈ S. Now, if u ∈ S, then x1 ∈ S and
clearly S− {x, x1} is a PDS of G, implying that γp(Gu

K1,3
) ≥ γp(G) + 2. Thus, assume that u 6∈ S.

If x1 6∈ S, then S− {x} is a PDS of G that does not contain u and since u ∈WP,A
G we deduce that

|S−{x}| ≥ γp(G)+ 1. Hence γp(Gu
K1,3

) ≥ γp(G)+ 2. If x1 ∈ S, then S−{x, x1} is an almost PDS

of G and since u ∈WAPD
G we conclude that |S− {x, x1}| ≥ γp(G). Hence γp(Gu

K1,3
) ≥ γp(G) + 2.

Whatever the case, the equality follows from item 1.
3. Assume that u ∈ WR,≤1

G and let f be a γ
p
R(G)-function such that f (u) ≤ 1. Then f can be

extended to a PRDF on Gu
K1,3

by assigning a 2 to x and a 0 to every neighbor of x and thus

γ
p
R(G

u
K1,3

) ≤ γ
p
R(G) + 2. The equality follows from item 1. �

Proposition 4. Let G′ be a graph and let u be an end support vertex of G′ which is adjacent to a strong support
vertex v. If G is a graph obtained from G′ by adding a vertex x and an edge ux, then γp(G) = γp(G′) and
γ

p
R(G) ≥ γ

p
R(G

′). Moreover, if u ∈WR,1
G′ , then γ

p
R(G) = γ

p
R(G

′).

Proof. Let S be a γp(G′)-set. By Observation 1, v ∈ S. Thus u ∈ S for otherwise u would have two
neighbors in S. Hence S is a PDS of G and so γp(G) ≤ γp(G′). On the other hand, by Observation 1,
any γp(G)-set contains both u and v, and thus remains a PDS of G′. It follows that γp(G) ≥ γp(G′),
and the desired equality is obtained.



Mathematics 2020, 8, 966 5 of 13

Since u is an end strong support vertex in G, u ∈WR,1
G . By Proposition 1, there is a γ

p
R(G)-function

f such that f (u) = 2, and clearly f restricted to G′ is a PRDF on G′ yielding γ
p
R(G) ≥ γ

p
R(G

′).
Now, assume that u ∈WR,1

G′ and let g be a γ
p
R(G

′)-function with g(u) = 2. Then g can be extended
to a PRDF on G by assigning a 0 to x. Thus γ

p
R(G) ≤ γ

p
R(G

′), and the desired equality follows. �

Proposition 5. Let G′ be a graph and u a vertex of G′. If G is a graph obtained from G′ by adding a double star
DS2,2 attached at u by one of its leaves, then:

1. γp(G) ≤ γp(G′) + 3 and γ
p
R(G) ≥ γ

p
R(G

′) + 3.
2. If u ∈WR,1

G′ , then γ
p
R(G) = γ

p
R(G

′) + 3.

3. If u ∈WP,A
G′ ∩WAPD

G′ , then γp(G) = γp(G′) + 3.

Proof. Let x, y be the non-leaf vertices of the double star DS2,2, and let Lx = {x1, x2} and Ly = {y1, y2}.
We assume that x1u ∈ E(G).

1. For a γp(G′)-set S, let S′ = S ∪ {x, y} if u 6∈ S, and S′ = S ∪ {x1, x, y} if u ∈ S. Clearly, S′ is a
PDS of G and thus γp(G) ≤ γp(G′) + 3.

Consider now a γ
p
R(G)-function f such that f (y) = 2 (according to Proposition 1).

Clearly, f (x) + f (x2) ≥ 1. If f (x1) ≤ 1, then f restricted to G′ is a PRDF on G′ of weight at
most γ

p
R(G)− 3 and thus γ

p
R(G) ≥ γ

p
R(G

′) + 3. If f (x1) = 2, then f (u) = 0 and the function
g : V(G′)→ {0, 1, 2} defined by g(u) = 1 and g(w) = f (w) otherwise, is a PRDF onG′ of weight
at most γ

p
R(G)− 4 yielding γ

p
R(G) ≥ γ

p
R(G

′) + 4. In any case we have γ
p
R(G) ≥ γ

p
R(G

′) + 3.
2. Assume that u ∈WR,1

G′ and let f be a γ
p
R(G

′)-function such that f (u) = 2. Then f can be extended
to a PRDF on G by assigning a 2 to y, a 1 to x2 and a 0 to x, x1, y1, y2. Hence γ

p
R(G) ≤ γ

p
R(G

′) + 3,
and the desired equality follows from item 1.

3. Assume that u ∈ WP,A
G′ ∩WAPD

G′ , and let S be a γp(G)-set. By items 1 and 2 of Observation 1,
x, y ∈ S. If u ∈ S, then x1 ∈ S and thus S − {x, y, x1} is a PDS of G′, implying that γp(G) ≥
γp(G′) + 3. Hence, assume that u 6∈ S. If x1 6∈ S, then S− {x, y} is a PDS of G′ that does not
contain u. But since u ∈ W3

G′ we deduce that |S− {x, y}| ≥ γp(G′) + 1 which yields γp(G) ≥
γp(G′) + 3. Thus suppose that x1 ∈ S. Then S− {x, y, x1} is an almost PDS of G′, and since
u ∈ WAPD

G′ we conclude that |S− {x, y, x1}| ≥ γp(G′; u) = γp(G′). Hence γp(G) ≥ γp(G′) + 3,
and the desired equality is obtained by item 1.

Proposition 6. Let G′ be a graph and let u be an end strong support vertex of degree 3 whose non-leaf neighbor
is a support vertex, say v, of degree 3, where |Lv| = 1. Let G be a graph obtained from G′ by adding four vertices,
where two are attached to a leaf of u and the other two are attached to the leaf of v. Then γp(G) = γp(G′) + 2
and γ

p
R(G) = γ

p
R(G

′) + 2.

Proof. Let Lu = {x, x′} and Lv = {y}. Let x1, x2, y1 and y2 be the four added vertices, where
xx1, xx2, yy1, yy2 ∈ E(G). By items 1 and 2 of Observation 1, any γp(G′)-set contains u and v.
Clearly such a set can be extended to a PDS of G by adding x, y which yields γp(G) ≤ γp(G′) + 2.
On the other hand, let D be a γp(G)-set. Then by items 1 and 2 of Observation 1, we have x, u, y, v ∈ D,
and thus D \ {x, y} is a PDS of G′, implying that γp(G) ≥ γp(G′) + 2. Therefore γp(G) = γp(G′) + 2.

Next we shall show that γ
p
R(G) = γ

p
R(G

′) + 2. First we show that γ
p
R(G) ≤ γ

p
R(G

′) + 2. Since u is
an end strong support vertex of G′, let f be a γ

p
R(G

′)-function with f (u) = 2 (by Proposition 1) such
that f (v) is as small as possible. If f (v) ≤ 1, then f (y) = 1, and thus the function g : V(G)→ {0, 1, 2}
defined by g(x) = g(y) = 2, g(x′) = 1, g(u) = g(x1) = g(x2) = g(y1) = g(y2) = 0 and g(w) = f (w)

otherwise, is a PRDF on G. Hence γ
p
R(G) ≤ γ

p
R(G

′) + 2. If f (v) = 2, then by our choice of f , we have
f (z) = 0 for any z ∈ N(v) \ {u} and thus the function h : V(G) → {0, 1, 2} defined by h(z) = 1 for
z ∈ N(v) \ {u, y} and h(x′) = 1, h(x) = h(y) = 2, h(u) = h(v) = h(x1) = h(x2) = h(y1) = h(y2) = 0
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and h(w) = f (w) otherwise, is a PRDF on G yielding γ
p
R(G) ≤ γ

p
R(G

′)+ 2. Hence γ
p
R(G) ≤ γ

p
R(G

′)+ 2.
Now we show that γ

p
R(G) ≥ γ

p
R(G

′) + 2. By Proposition 1, let g be a γ
p
R(G)-function such that

g(x) = g(y) = 2. It can be seen that g(x′) = 1. If f (v) = 0, then the function h : V(G′) → {0, 1, 2}
defined by h(u) = 2, h(y) = 1, h(x) = h(x′) = 0 and h(w) = g(w) otherwise, is a PRDF on G′ of weight
at most γ

p
R(G)− 2. If f (v) ≥ 1, then the function h : V(G′) → {0, 1, 2} defined by h(u) = h(v) = 2,

h(x) = h(x′) = h(y) = 0 and h(w) = g(w) otherwise, is a PRDF on G′ of weight at most γ
p
R(G)− 2.

In any case, γ
p
R(G) ≥ γ

p
R(G

′) + 2, and the equality follows.

3. The Family T

In this section, we define the family T of unlabeled trees T that can be obtained from a sequence
T1, T2, . . . , Tk (k ≥ 1) of trees such that T1 ∈ {P2, P3} and T = Tk. If k ≥ 2, then Ti+1 is obtained
recursively from Ti by one of the following operations.

Operation O1: If u ∈ V(Ti) is an end strong support vertex, then O1 adds a vertex x attached at u by
an edge ux to obtain Ti+1.

Operation O2: If u ∈ (WR,1
Ti
∪WR,≥1

Ti
) ∩WAPD

Ti
, then O2 adds a path P2 = x1x2 attached at u by an

edge ux1 to obtain Ti+1.

Operation O3: If u ∈WR,≤1
Ti
∩WP,A

Ti
∩WAPD

Ti
, then O3 adds a star K1,3 centered at x by attaching one

of its leaves, say x1, to u to obtain Ti+1.

Operation O4: If u ∈ WR,1
Ti

is an end support vertex which is adjacent to a strong support vertex,
then O4 adds a vertex x attached at u by an edge ux to obtain Ti+1.

Operation O5: If u ∈WR,1
Ti
∩WP,A

Ti
∩WAPD

Ti
, then O5 adds a double star DS2,2 by attaching one of its

leaves, say x1, to u to obtain Ti+1.

Operation O6: If u ∈ V(Ti) is an end strong support vertex of degree 3 with x ∈ Lu such that u is
adjacent to a support vertex v of degree 3 with Lv = {y}, then O6 adds four vertices x1, x2, y1, y2

attached at x and y by edges xx1, xx2, yy1, yy2 to obtain Ti+1.

Lemma 1. If Ti is a tree with γ
p
R(Ti) = γp(Ti) + 1 and Ti+1 is a tree obtained from Ti by one of the Operations

O1, . . . ,O6, then γ
p
R(Ti+1) = γp(Ti+1) + 1.

Proof. If Ti+1 is obtained from Ti by Operation O1, then by Corollary 1 and the assumption γ
p
R(Ti) =

γp(Ti) + 1, we have γ
p
R(Ti+1) = γ

p
R(Ti) = γp(Ti) + 1 = γp(Ti+1) + 1. If Ti+1 is obtained from Ti

by Operation O2, then as above the result follows from Proposition 2 (items 2, 3 and 4). If Ti+1 is
obtained from Ti by Operation O3, then the result follows from Proposition 3 (items 2 and 3). If Ti+1 is
obtained from Ti by Operation O4, then the result follows from Proposition 4. If Ti+1 is obtained from
Ti by Operation O5, then the result follows from Proposition 5. Finally, if Ti+1 is obtained from Ti by
Operation O6, then the result follows from Proposition 6.

In the rest of the paper, we shall prove our main result:

Theorem 1. For any tree T of order n ≥ 2,

γ
p
R(T) ≥ γp(T) + 1,

with equality if and only if T ∈ T .

4. Proof of Theorem 1

Lemma 2. If T ∈ T , then γ
p
R(T) = γp(T) + 1.

Proof. Let T be a tree of T . Then there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1) such that
T1 ∈ {P2, P3}, and if k ≥ 2, then Ti+1 can be obtained from Ti by one of the aforementioned operations.
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We proceed by induction on the number of operations used to construct T. If k = 1, then T ∈ {P2, P3}
and clearly γ

p
R(T) = γp(T) + 1. This establishes our basis case. Let k ≥ 2 and assume that the result

holds for each tree T ∈ T which can be obtained from a sequence of operations of length k− 1 and let
T′ = Tk−1. By the induction hypothesis, γ

p
R(T

′) = γp(T′) + 1. Since T = Tk is obtained from T′ by one
of the Operations Oi (i ∈ {1, 2, . . . , 6}) , we conclude from Lemma 1 that γ

p
R(T) = γp(T) + 1.

Theorem 2. For any tree T of order n ≥ 2,

γ
p
R(T) ≥ γp(T) + 1,

with equality only if T ∈ T .

Proof. We use an induction on n. If n ∈ {2, 3}, then T ∈ {P2, P3}, where γ
p
R(T) = 2 = γp(T) + 1 and

T ∈ T . If n = 4 and diam(T) = 2, then T = K1,3, where γ
p
R(T) = 2 = γp(T) + 1 and T ∈ T because it

can be obtained from P3 by applying Operation O1. If n = 4 and diam(T) = 3, then T = P4, where
γ

p
R(T) = 3 = γp(T) + 1 and clearly T ∈ T since it can be obtained from P2 by OperationO2. Let n ≥ 5

and assume that every tree T′ of order n′ with 2 ≤ n′ < n satisfies γ
p
R(T

′) ≥ γp(T′) + 1 with equality
only if T′ ∈ T .

Let T be a tree of order n. If diam(T) = 2, then T is a star, where γ
p
R(T) = 2 = γp(T) +

1 and T ∈ T because T it can be obtained from P3 by frequently use of Operation O1. Hence
assume that diam(T) = 3, and thus T is a double star DSp,q, (q ≥ p ≥ 1). If T = DS1,q (q ≥ 2),
then γ

p
R(T) = 3 = γp(T) + 1 and T ∈ T since it is obtained from P3 by applying Operation O2.

If T = DSp,q, (q ≥ p ≥ 2), then γp(T) = 2, γ
p
R(T) = 4 and so γ

p
R(T) > γp(T) + 1. Henceforth,

we assume that diam(T) ≥ 4. Let v1v2 . . . vk (k ≥ 5) be a diametrical path in T such that degT(v2) is
as large as possible. Root T at vk and consider the following cases.

Case 1. degT(v2) ≥ 4.
Let T′ = T − v1. By Corollary 1 and the induction hypothesis on T′, we obtain

γ
p
R(T) = γ

p
R(T

′) ≥ γp(T′) + 1 = γp(T) + 1.

Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain. In particular,

γ
p
R(T

′) = γp(T′) + 1. By induction on T′, we have T′ ∈ T . It follows that T ∈ T since it can be
obtained from T′ by applying operation O1.

Case 2. degT(v2) = degT(v3) = 2.
Let T′ = T − Tv3 . For a γp(T′)-set S, let S′ = S ∪ {v1} if v4 ∈ S and S′ = S ∪ {v2} for otherwise.
Clearly S′ is a PDS of T and thus γp(T) ≤ γp(T′) + 1. Consider now a γ

p
R(T)-function f . If f (v3) ∈

{0, 1}, then f (v1) + f (v2) = 2 and the function f , restricted to T′ is a PRDF on T′ of weight at most
γ

p
R(T)− 2 . If f (v3) = 2, then f (v4) = 0 and the function g : V(T′) → {0, 1, 2} defined by g(v4) = 1

and g(z) = f (z) otherwise, is a PRDF on T′. In any case, γ
p
R(T) ≥ γ

p
R(T

′) + 2. By the induction
hypothesis on T′, we obtain

γ
p
R(T) ≥ γ

p
R(T

′) + 2 ≥ γp(T′) + 1 + 2 ≥ γp(T)− 1 + 3 > γp(T) + 1.

Case 3. degT(v2) = 2 and degT(v3) ≥ 3.

Let T′ = T − Tv2 . By Proposition 2, we have γp(T) ≤ γp(T′) + 1 and γ
p
R(T) ≥ γ

p
R(T

′) + 1. It follows
from the induction hypothesis that

γ
p
R(T) ≥ γ

p
R(T

′) + 1 ≥ γp(T′) + 1 + 1 ≥ γp(T) + 1.

Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain. In particular,

γp(T) = γp(T′) + 1, γ
p
R(T) = γ

p
R(T

′) + 1 and γ
p
R(T

′) = γp(T′) + 1. By induction on T′, we deduce
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that T′ ∈ T . Next, we shall show that v3 ∈ (WR,1
T′ ∪WR,≥1

T′ ) ∩WAPD
T′ . Let f be a γ

p
R(T)-function.

If f (v3) = 2, then f (v1) = 1 and f (v2) = 0 and the function f |V(T′) is a γ
p
R(T

′)-function with f (v3) = 2

and hence v3 ∈ WR,1
T′ . Hence, assume that f (v3) ≤ 1. Then f (v1) + f (v2) = 2. If f (v2) ≤ 1 or

f (v2) = 2 and f (v3) = 1, then the function f restricted to T′ is a PRDF on T′ of weight γ
p
R(T)− 2,

contradicting the fact γ
p
R(T) = γ

p
R(T

′) + 1. Hence we assume f (v2) = 2 and f (v3) = 0. Then the
function g : V(T′)→ {0, 1, 2} defined by g(v3) = 1 and g(x) = f (x) otherwise, is a γ

p
R(T

′)-function
and so v3 ∈ WR,≥1

T′ . Hence v3 ∈ WR,1
T′ ∪WR,≥1

T′ . It remains to show that v3 ∈ WAPD
T′ . Suppose that

v3 6∈ W5
T′ and let S be an almost PDS of T′ of size less that γp(T′). Clearly, v3 6∈ S and v3 has no

neighbor in S. Therefore, S ∪ {v2} is a PDS of T of size at most γp(T′) = γp(T)− 1, a contradiction.
Hence v3 ∈WAPD

T′ . It follows that T ∈ T since it can be obtained from T′ by Operation O2.

Case 4. degT(v2) = 3.
Let Lv2 = {v1, w}. According to Cases 1, 2 and 3, we may assume that any end support vertex on a
diametrical path has degree 3. Consider the following subcases.

Subcase 4.1. degT(v3) = 2.

Let T′ = T − Tv3 . By Proposition 3-(1) and the induction hypothesis we have:

γ
p
R(T) ≥ γ

p
R(T

′) + 2 ≥ γp(T′) + 1 + 2 ≥ γp(T) + 1.

Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain. In particular,

γ
p
R(T) = γ

p
R(T

′) + 2, γp(T) = γp(T′) + 2 and γ
p
R(T

′) = γp(T′) + 1. It follows from the induction
hypothesis that T′ ∈ T . In the next, we shall show that v4 ∈WR,≤1

T′ ∩WP,A
T′ ∩WAPD

T′ .
Suppose that v4 6∈ WP,A

T′ and let S be a γp(T′)-set that does not contain v4. Then S ∪ {v2} is a
PDS of T, contradicting the fact γp(T) = γp(T′) + 2. Hence v4 ∈WP,A

T′ . Suppose now that v4 6∈WAPD
T′

and let D be an almost PDS of T′ with respect to v4 such that |D| < γp(T′). Then v4 6∈ D and v4 has
no neighbor in D, and thus D ∪ {v2, v3} is a PDS of T of cardinality less γp(T′) + 2, a contradiction.
Hence v4 ∈ WAPD

T′ . It remains to show that v4 ∈ WR,≤1
T′ . By Proposition 1, let f be a γ

p
R(T)-function

such that f (v2) = 2. If f (v4) = 2, then we must have f (v3) ≥ 1. But f restricted to T′ is a PRDF on
T′ of weight at most γ

p
R(T)− 3, contradicting γ

p
R(T) = γ

p
R(T

′) + 2. Hence f (v4) ≤ 1. If f (v4) = 0
and f (v3) = 2, then the function g : V(T′) → {0, 1, 2} defined by g(v4) = 1 and g(x) = f (x)
otherwise, is a PRDF of T′ of weight at most γ

p
R(T)− 3, a contradiction as above. Thus f (v4) = 1 or

f (v4) = 0 and f (v3) ≤ 1. Then f restricted to T′ is a γ
p
R(T

′)-function showing that v4 ∈WR,≤1
T′ . Hence

v4 ∈WR,≤1
T′ ∩WP,A

T′ ∩WAPD
T′ . Therefore, T ∈ T because it can be obtained from T′ by Operation O3.

Subcase 4.2. degT(v3) ≥ 3.

We distinguish between some situations.

(a) v3 is a strong support vertex.
Let T′ = T − v1. By Proposition 4 and the induction hypothesis we have:

γ
p
R(T) ≥ γ

p
R(T

′) ≥ γp(T′) + 1 = γp(T) + 1.

Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain.

In particular, γ
p
R(T) = γ

p
R(T

′), γp(T) = γp(T′) and γ
p
R(T

′) = γp(T′) + 1. By the
induction hypothesis, T′ ∈ T . To show v2 ∈ WR,1

T′ , let f be a γ
p
R(T)-function such that

f (v2) = 2 (by Proposition 1). Since γ
p
R(T) = γ

p
R(T

′), f is also a γ
p
R(T

′)-function with f (v2) = 2,
implying that v2 ∈WR,1

T′ . Therefore T ∈ T because it can be obtained from T′ by Operation O4.
(b) v3 has two children x, y with depth one, different from v2.

Then u and w are both strong support vertices of degree 3. Let T′ = T − Tv2 . By Observation 1,
any γp(T′)-set S contains x and y and thus v3 ∈ S. Hence S ∪ {v2} is a PDS of T yielding
γp(T) ≤ γp(T′) + 1. Now, let f be a γ

p
R(T) function such that f (v2) = 2 and f (x) = 2
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(by Proposition 1). Then f (v3) ≥ 1. It follows that the function f restricted to T′ is a PRDF on T′

of weight γ
p
R(T)− 2, and hence γ

p
R(T) ≥ γ

p
R(T

′) + 2. By the induction hypothesis we have

γ
p
R(T) ≥ γ

p
R(T

′) + 2 ≥ γp(T′) + 3 ≥ γp(T) + 2 > γp(T) + 1.

(c) v3 is a support vertex and has a child u with depth one different from v2.
Let w1 be the unique leaf adjacent to v3. Note that u is a strong support vertices of degree 3.
Let T′ = T − Tv2 . If S is a γp(T′)-set, then by Observation 1-(2), v3 ∈ S and thus S ∪ {v2} is a
PDS of T yielding γp(T) ≤ γp(T′) + 1. By Proposition 1, let f be a γ

p
R(T)-function such that

f (v2) = 2 and f (u) = 2. By the definition of perfect Roman dominating functions, we have
f (v3) ≥ 1. Then, the function f restricted to T′ is a PRDF on T′ of weight γ

p
R(T)− 2 and thus

γ
p
R(T) ≥ γ

p
R(T

′) + 2. It follows from the induction hypothesis that

γ
p
R(T) ≥ γ

p
R(T

′) + 2 ≥ γp(T′) + 3 ≥ γp(T) + 2 > γp(T) + 1.

According to (a), (b) and (c), we can assume for the next that degT(v3) = 3.
(d) degT(v3) = 3 and v3 has a child x with depth one different from v2.

Note that x is a strong support vertices of degree 3. Let Lx = {x1, x2} and let T′ be the
tree obtained from T by removing the set of vertices {v1, v2, w, x, x1, x2}. For a γp(T′)-set S,
let S′ = S ∪ {v2, x} if v3 ∈ S and S′ = S ∪ {v2, v3, x} when v3 6∈ S. Clearly, S′ is a PDS of
T and so γp(T) ≤ γp(T′) + 3. Now let f be a γ

p
R(T)-function such that f (v2) = f (x) = 2.

Then f (v3) ≥ 1 and the function f restricted to T′ is a PRDF on T′ of weight at most γ
p
R(T)− 4.

By the induction hypothesis we have:

γ
p
R(T) ≥ γ

p
R(T

′) + 4 ≥ γp(T′) + 1 + 4 ≥ γp(T)− 3 + 5 > γp(T) + 1.

(e) degT(v3) = 3 and v3 is adjacent to exactly one leaf w′.
If v4 has a child s with depth one and degree two, then let T′ be the tree obtained from T by
removing s and its unique leaf. This case can be treated in the same way as in Case 3. Moreover,
if v4 has a child s with depth one and degree at least four, then let T′ be the tree obtained from T
by removing a leaf neighbor of s. This case can be treated in the same way as in Case 1. Hence,
we may assume that each child of v4 is a leaf or a vertex with depth one and degree 3 or a vertex
with depth two whose maximal subtree is isomorphic to Tv3 . First assume that degT(v4) ≥ 4,
and let T = T − Tv3 . Clearly, any γp(T′)-set contains v4 and such a set can be extended to a
PDS of T by adding v2, v3. Hence γp(T) ≤ γp(T′) + 2. Now let f be a γ

p
R(T)-function such that

f (v2) = 2. Clearly, f (v3) + f (w′) ≥ 1. If f (v3) ≤ 1 or f (v3) = 2 and f (v4) ≥ 1, then the function
f restricted to T′ is a PRDF on T′ and thus γ

p
R(T) ≥ γ

p
R(T

′) + 3. Hence assume that f (v3) = 2
and f (v4) = 0. Then the function g : V(T′) → {0, 1, 2} defined by g(v4) = 1 and g(u) = f (u)
otherwise, is a PRDF of T′ of weight γ

p
R(T)− 3 and thus γ

p
R(T) ≥ γ

p
R(T

′) + 3. By the induction
hypothesis we have:

γ
p
R(T) ≥ γ

p
R(T

′) + 3 ≥ γp(T′) + 1 + 3 ≥ γp(T)− 2 + 4 > γp(T) + 1.

From now on, we can assume that degT(v4) ≤ 3. We examine different cases.

(e.1.) v4 has a child x of degree 3 and depth 1.

Let Lx = {z1, z2} and let T′ be the tree obtained from T by removing the set {v1, w, z1, z2}.
By Proposition 6, we have γp(T) = γp(T′) + 2 and γ

p
R(T) = γ

p
R(T

′) + 2. We deduce from
the induction hypothesis that

γ
p
R(T) = γ

p
R(T

′) + 2 ≥ γp(T′) + 1 + 2 = γp(T)− 2 + 3 = γp(T) + 1.
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Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain.

In particular, γ
p
R(T

′) = γp(T′) + 1. By induction on T′, we have T′ ∈ T . Therefore T ∈ T
since it can be obtained from T′ by Operation O6.

(e.2.) v4 has a child v′3 with depth two.
Note that Tv′3

and Tv3 are isomorphic. Let T′ = T− (Tv3 ∪ Tv′3
), and observe that v4 is a leaf

in T′. Since any γp(T′)-set can be extended to a PDS of T by adding v4 and the support
vertices of Tv3 ∪ Tv′3

we obtain γp(T) ≤ γp(T′) + 5. Moreover, as above we can see that

γ
p
R(T) ≥ γ

p
R(T

′) + 6. Now, by induction hypothesis we obtain:

γ
p
R(T) ≥ γ

p
R(T

′) + 6 ≥ γp(T′) + 1 + 6 ≥ γp(T)− 5 + 7 > γp(T) + 1.

(e.3.) degT(v4) = 2.
Let T′ = T − Tv4 . If V(T′) = {v5}, then it can be seen that T is tree with γ

p
R(T) = 5

and γp(T) = 3, implying that γ
p
R(T) > γp(T) + 1. Hence we assume that T′ is nontrivial.

By Proposition 5 and by the inductive hypothesis we have:

γ
p
R(T) ≥ γ

p
R(T

′) + 3 ≥ γp(T′) + 1 + 3 ≥ γp(T)− 3 + 4 = γp(T) + 1.

Further if γ
p
R(T) = γp(T) + 1, then we have equality throughout this inequality chain.

In particular, γ
p
R(T) = γ

p
R(T

′) + 3, γp(T) = γp(T′) + 3 and γ
p
R(T

′) = γp(T′) + 1.
By induction on T′, we have T′ ∈ T . Next, we shall show that v5 ∈ WR,1

T′ ∩WP,A
T′ ∩WAPD

T′ .
Suppose that v5 6∈WP,A

T′ and let S be a γp(T′)-set that does not contain v5. Then S ∪ {v2, v3}
is a PDS of T contradicting γp(T′) = γp(T′) + 3. Hence v5 ∈ WP,A

T′ . Suppose that
v5 6∈ WAPD

T′ and let S be an almost PDS of T′ such that |S| ≤ γp(T′)− 1. Clearly, v5 6∈ S
and v5 has no neighbor in S. It follows that S ∪ {v4, v3, v2} is a PDS of T of size
|S| + 3 ≤ γp(T) − 1, a contradiction. Thus v5 ∈ WAPD

T′ . Next we show that v5 ∈ WR,1
T′ .

Let f be a γ
p
R(T)-function such that f (v2) = 2. To Roman dominate w′, we must have

either f (w′) = 1 or f (v3) = 2. We claim that f (v4) ≤ 1. Suppose, to the contrary,
that f (v4) = 2. By definition of perfect Roman dominating functions, we may assume that
f (v3) = 2. But then the function g : V(T′)→ {0, 1, 2} defined by g(v5) = 1 and g(x) = f (x)
otherwise, is a PRDF of T′ of weight γ

p
R(T

′) − 5 contradicting γ
p
R(T) = γ

p
R(T

′) + 3.
Hence f (v4) ≤ 1. It follows that the function f restricted to T′ is a PRDF of T′ of weight at
most γ

p
R(T)− 3 for which we conclude from γ

p
R(T) = γ

p
R(T

′) + 3 that f (v3) = f (v4) = 0
and f (w′) = 1. Hence to Roman dominate v4, we must have f (v5) = 2 and thus
function f restricted to T′ is a γ

p
R(T

′)-function that assigns a a 2 to v5. Hence v5 ∈ WR,1
T′ ,

and thus v5 ∈ WR,1
T′ ∩WP,A

T′ ∩WAPD
T′ . Therefore, T ∈ T since it can be obtained from T′ by

Operation O5.

(e.4.) degT(v4) = 3 and v4 has a child z with depth 0.
Seeing the above Cases and Subcases as we did in the beginning of Case (e), we may assume
that any child of v5 is a leaf, or an end strong support vertex of degree 3, or a vertex with
depth 2 whose maximal subtree is isomorphic to Tv3 , or a vertex with depth 3 whose maximal
subtree is isomorphic to Tv4 . Assume first that degT(v5) ≥ 4, and let T′ = T−Tv4 . Clearly, v5

belongs to any γp(T′)-set and such a set γp(T′)-set can be extended to a PDS of T by adding
v2, v3, v4, implying that γp(T) ≤ γp(T′) + 3. Next we show that γ

p
R(T) ≥ γ

p
R(T

′) + 4. Let f
be a γ

p
R(T)-function such that f (v2) = 2. Clearly f (v3) + f (w′) ≥ 1 and f (v4) + f (z) ≥ 1.

If f (v4) ≤ 1 or f (v5) ≥ 1, then the function f restricted to T′ is a PRDF on T′ yielding
γ

p
R(T) ≥ γ

p
R(T

′) + 4. Hence assume that f (v4) = 2 and f (v5) = 0. Then the function



Mathematics 2020, 8, 966 11 of 13

g : V(T′) → {0, 1, 2} defined by g(v5) = 1 and g(u) = f (u) otherwise, is a PRDF of T′

yielding γ
p
R(T) ≥ γ

p
R(T

′) + 4. By induction on T′, it follows that

γ
p
R(T) ≥ γ

p
R(T

′) + 4 ≥ γp(T′) + 5 ≥ γp(T) + 2 > γp(T) + 1.

For the next, we assume that degT(v5) ≤ 3. If degT(v5) = 1, then it can be seen that
T is a tree with γ

p
R(T) = 6, γp(T) and so γ

p
R(T) > γp(T) + 1. Hence we assume that

degT(v5) ∈ {2, 3}. Consider the following situations.

(e.4.1.) degT(v5) = 2.
Let T′ = T − Tv5 . If V(T′) = {v6}, then T is a tree with γ

p
R(T) = 6 and γp(T) = 4,

yielding γ
p
R(T) > γp(T) + 1. Hence, assume that T′ is nontrivial. For a γp(T′)-set S,

let S′ = S ∪ {v2, v3, v4, v5} if v6 ∈ S, and S′ = S ∪ {v2, v3, v4} if v6 6∈ S. Then S′ is a PDS of
T, implying that γp(T) ≤ γp(T′) + 4. Moreover, it is easy to see that γ

p
R(T) ≥ γ

p
R(T

′) + 5.
By induction on T′, we obtain γ

p
R(T) > γp(T) + 1.

(e.4.3.) degT(v5) = 3 and v5 has a child v′4 with depth 3.
Then Tv4 and Tv′4

are isomorphic. If u is a vertex in Tv4 , then let u′ be the vertex of Tv′4
corresponding to u in Tv4 . Let T = T − (Tv4 ∪ Tv′4

). Clearly, any γp(T′)-set can be extended
to a PDS of T by adding v5, v2, v3, v4, v′2, v′3, v′4 and thus γp(T) ≤ γp(T′) + 7. Moreover, it is
not hard to see that γ

p
R(T) ≥ γ

p
R(T

′) + 8. By induction on T′, we obtain γ
p
R(T) > γp(T) + 1.

(e.4.4.) degT(v5) = 3 and v5 has a children y with depth 1 and degree 3.
Let T′ = T − (Tv4 ∪ Ty). Clearly, any γp(T′)-set can be extended to a PDS of T by adding
v5, v2, v3, v4, y and thus γp(T) ≤ γp(T′) + 5. Next, we show that γ

p
R(T) ≥ γ

p
R(T

′) + 6.
Let f be a γ

p
R(T)-function such that f (v2) = 2 and f (y) = 2 (by Proposition 1).

Clearly f (v3) + f (w′) ≥ 1 and f (v4) + f (z) ≥ 1. If f (v5) ≥ 1, then the function f restricted
to T′ is a PRDF on T′ yielding γ

p
R(T) ≥ γ

p
R(T

′) + 6. Thus, let f (v5) = 0. Then to Roman
dominate z, v4, w′, we must have f (z) + f (v4) + f (v3) + f (w′) ≥ 4. Then the function
g : V(T′) → {0, 1, 2} defined by g(v5) = 1 and g(u) = f (u) otherwise, is a PRDF on T′

yielding γ
p
R(T) ≥ γ

p
R(T

′) + 6. It follows from the induction hypothesis that

γ
p
R(T) ≥ γ

p
R(T

′) + 6 ≥ γp(T′) + 7 ≥ γp(T) + 2 > γp(T) + 1.

(e.4.5.) degT(v5) = 3 and v5 has a child v′3 with depth 2 such that Tv′3
∼= Tv3 .

If u is a vertex in Tv3 , then let u′ be the vertex of Tv′3
corresponding to u in Tv3 . Let

T = T − (Tv4 ∪ Tv′3
). Clearly, any γp(T′)-set can be extended to a PDS of T by adding

v5, v2, v3, v4, v′2, v′3 and so γp(T) ≤ γp(T′) + 6. Moreover, it is not hard to see that
γ

p
R(T) ≥ γ

p
R(T

′) + 7. By the induction hypothesis we obtain γ
p
R(T) > γp(T) + 1.

(e.4.6.) degT(v5) = 3 and v5 has a children z′ with depth 0.
If V(T′) = {v6}, then T is a tree with γ

p
R(T) = 6 and γp(T) = 4, yielding γ

p
R(T) > γp(T)+ 1.

Hence we assume that degT(v6) ≥ 2. Suppose first that degT(v6) = 2 and let T′ = T− Tv6 .
If V(T′) = {v7}, then T is a tree with γ

p
R(T) ≥ 7 and γp(T) = 5, yielding γ

p
R(T) > γp(T)+ 1.

Hence assume that T′ is nontrivial. Clearly, any γp(T′)-set can be extended to a PDS of T
by adding v2, v3, v4, v5, v6 and thus γp(T) ≤ γp(T′) + 5. On the other hand, it is not hard to
see that γ

p
R(T) ≥ γ

p
R(T

′) + 7. By the induction hypothesis we obtain γ
p
R(T) > γp(T) + 1.

Assume now that degT(v6) ≥ 3. By above Cases and Subcases, we may assume that any
child of v6 is a leaf, or a vertex with depth j whose maximal subtree is isomorphic to
Tvj+1 for j = 2, 3, 4. Let T′ be a tree obtained from T by removing v3, w′, v4, z, v5, z′ and
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joining v2 to v6. Clearly, any γp(T′)-set contains v2, v6 and such a set can be extended
to a PDS of T by v3, v4, v5 yielding γp(T) ≤ γp(T′) + 3. Now, let f be a γ

p
R(T)-function,

and let r = f (v3) + f (w′) + f (v4) + f (z) + f (v5) + f (z′). To Roman dominate the vertices
v3, w′, v4, z, v5, z′, we must have r ≥ 5 when f (v5) ≤ 1 or r = 4 when f (v5) = 2. If r = 4
or r ≥ 5 and f (v6) ≥ 1, then the function f restricted to T′ is a PRDF on T′ implying
that γ

p
R(T) ≥ γ

p
R(T

′) + 4. Hence assume that r ≥ 5 and f (v6) = 0. Then the function
h : V(T′) → {0, 1, 2} defined by h(v6) = 1 and h(x) = f (x) otherwise, is a PRDF on T′

yielding γ
p
R(T) ≥ γ

p
R(T

′) + 4. By the induction hypothesis we obtain

γ
p
R(T) ≥ γ

p
R(T

′) + 4 ≥ γp(T′) + 1 + 4 ≥ γp(T)− 3 + 5 > γp(T) + 1,

and the proof is complete.

According to Lemma 2 and Theorem 2, we have proven Theorem 1.
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