Metacognitive Knowledge and Mathematical Intelligence—Two Significant Factors Influencing School Performance
Abstract
:1. Introduction
1.1. Metacognitive Knowledge
1.2. Mathematical Intelligence
1.3. The Connection between Intelligence and Metacognition
2. Methodology
2.1. Aims
- (1)
- What is the connection between the grade 7 pupils’ metacognitive knowledge and mathematical intelligence?
- (2)
- How can metacognitive knowledge and mathematical intelligence influence the grade 7 pupils’ school performance?
2.2. Research Sample
2.3. Tool for Researching Metacognitive Knowledge
2.4. Tool for Investigating Mathematical Intelligence
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morosanova, V.I.; Fomina, T.G.; Kovas, Y.; Bogdanova, O.Y. Cognitive and regulatory characteristics and mathematical performance in high school students. Personal. Individ. Differ. 2016, 90, 177–186. [Google Scholar] [CrossRef]
- Eisenmann, P.; Novotná, J.; Přibyl, J.; Břehovský, J. The development of a culture of problem solving with secondary students through heuristic strategies. Math. Ed. Res. J. 2015, 27, 535–562. [Google Scholar] [CrossRef]
- Sriraman, B. Mathematical intelligence. Encycl. Gift. Creat. Talent. 2009, 2, 544–547. [Google Scholar]
- Özsoy, G. An investigation of the relationship between metacognition and mathematics achievement. Asia Pac. Educ. Rev. 2011, 12, 227–235. [Google Scholar] [CrossRef]
- Vo, V.A.; Li, R.; Kornell, N.; Pouget, A.; Cantlon, J.F. Young Children Bet on Their Numerical Skills:Metacognition in the Numerical Domain. Psychol. Sci. 2014, 25, 1712–1721. [Google Scholar] [CrossRef] [Green Version]
- Cornoldi, C.; Carretti, B.; Drusi, S.; Tencati, C. Improving problem solving in primary school students: The effect of a training programme focusing on metacognition and working memory. Br. J. Educ. Psychol. 2015, 85, 424–439. [Google Scholar] [CrossRef]
- Van der Stel, M.; Veenman, M.V.J.; Deelen, K.; Haenen, J. The increasing role of metacognitive skills in math: A cross-sectional study from a developmental perspective. ZDM 2010, 42, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Rottier, K.L. Metacognition and Mathematics During the 5 to 7 Year Shift; Illinois Institute of Technology: Chicago, IL, USA, 2003. [Google Scholar]
- Lucangeli, D.; Coi, G.; Bosco, P. Metacognitive awareness in good and poor math problem solvers. Learn. Disabil. Res. Pract. 1997, 12, 209–212. [Google Scholar]
- Carr, M.; Jessup, D.L. Cognitive and metacognitive predictors of mathematics strategy use. Learn. Individ. Differ. 1995, 7, 235–247. [Google Scholar] [CrossRef]
- Larkin, S. Socially mediated metacognition and learning to write. Think. Ski. Creat. 2009, 4, 149–159. [Google Scholar] [CrossRef]
- Schneider, W.; Artelt, C. Metacognition and mathematics education. ZDM 2010, 42, 149–161. [Google Scholar] [CrossRef]
- Vomáčková, H.; Říčan, J.; Šlégl, J.; Chytrý, V.; Ladislav, Z. Výzkumný pohled na inkluzi a její determinanty; Univerzita JE Purkyně: Ústí nad Labem, Czech Republic, 2015. [Google Scholar]
- Poon, C.L.; Lam, K.W.; Chan, M.; Chng, M.; Kwek, D.; Tan, S. Preparing Students for the Twenty-First Century: A Snapshot of Singapore’s Approach. In Educating for the 21st Century: Perspectives, Policies and Practices from Around the World; Choo, S., Sawch, D., Villanueva, A., Vinz, R., Eds.; Springer: Singapore, 2017; pp. 225–241. [Google Scholar]
- Kohen, Z.; Kramarski, B. Promoting Mathematics Teachers’ Pedagogical Metacognition: A Theoretical-Practical Model and Case Study. In Cognition, Metacognition, and Culture in STEM Education: Learning, Teaching and Assessment; Dori, Y.J., Mevarech, Z.R., Baker, D.R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 279–305. [Google Scholar]
- Duchovičová, J.; Tomšík, R. Managerial Competencies of a Teacher in the Context of Learners’ Critical Thinking Development: Exploratory Factor Analysis of a Research Tool and the Results of the Research. TEM J. Technol. Educ. Manag. Inform. 2018, 7, 335–347. [Google Scholar]
- Perry, J.; Lundie, D.; Golder, G. Metacognition in schools: What does the literature suggest about the effectiveness of teaching metacognition in schools? Educ. Rev. 2019, 71, 483–500. [Google Scholar] [CrossRef] [Green Version]
- Swanson, H.L. Influence of metacognitive knowledge and aptitude on problem solving. J. Educ. Psychol. 1990, 82, 306–314. [Google Scholar] [CrossRef]
- Howard, B.; McGee, S.; Shia, R.; Hong, N. Metacognitive Self-Regulation and Problem-Solving: Expanding the Theory Base through Factor Analysis; American Educational Research Assotiation: New Oreleans, LA, USA, 2000. [Google Scholar]
- Rozencwajg, P. Metacognitive factors in scientific problem-solving strategies. Eur. J. Psychol. Educ. 2003, 18, 281–294. [Google Scholar] [CrossRef]
- Gonzalez-Castro, P.; Cueli, M.; Cabeza, L.; Alvarez-Garcia, D.; Rodriguez, C. Improving basic math skills through integrated dynamic representation strategies. Psicothema 2014, 26, 378–384. [Google Scholar]
- Schoenfeld, A.H. Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In Handbook of Research on Mathematics Teaching and Learning; Grouws, D., Ed.; Macmillan: New York, NY, USA, 1992. [Google Scholar]
- Hensberry, K.K.R.; Jacobbe, T. The effects of Polya’s heuristic and diary writing on children’s problem solving. Math. Ed. Res. J. 2012, 24, 59–85. [Google Scholar] [CrossRef]
- Jeřábek, J.; Lisnerová, R.; Smejkalová, A.; Tupý, J. Rámcový vzdělávací program pro základní vzdělávání:(verze platná od 1. 9. 2013) úplné znění upraveného RVP ZV. Available online: www.nuv.cz (accessed on 23 April 2020).
- NCTM. Principles and Standards for School Mathematics; The National Council of Teachers of Mathematics, Inc.: Reston, VA, USA, 2000. [Google Scholar]
- Grofčíková, S.; Duchovičová, J.; Fenyvesiová, L. Development of future teachers’ critical thinking through pedagogical disciplines Slavon. Pedagog. Stud. J. Sci. Educ. J. 2018, 7, 101–109. [Google Scholar]
- Kilpatrick, J.; Swafford, J.; Findell, B. The strands of mathematical proficiency. In Adding It up: Helping Children Learn Mathematics; Council, N.R., Ed.; The National Academies Press: Washington, DC, USA, 2001; pp. 115–154. [Google Scholar]
- Veenman, M.V.J.; Van Hout-Wolters, B.H.A.M.; Afflerbach, P. Metacognition and learning: Conceptual and methodological considerations. Metacogn. Learn. 2006, 1, 3–14. [Google Scholar] [CrossRef]
- Tobias, S.; Everson, H.T. Knowing What You Know and What You Don’t: Further Research on Metacognitive Knowledge Monitoring; Research Report No. 2002-3; College Entrance Examination Board: New York, NY, USA, 2002. [Google Scholar]
- Kramarski, B.; Mevarech, Z.R. Enhancing Mathematical Reasoning in the Classroom: The Effects of Cooperative Learning and Metacognitive Training. Am. Educ. Res. J. 2003, 40, 281–310. [Google Scholar] [CrossRef] [Green Version]
- Desoete, A.; De Craene, B. Metacognition and mathematics education: An overview. ZDM 2019, 51, 565–575. [Google Scholar] [CrossRef]
- Garofalo, J.; Lester, F.K. Metacognition, Cognitive Monitoring, and Mathematical Performance. J. Res. Math. Educ. 1985, 16, 163–176. [Google Scholar] [CrossRef]
- Schoenfeld, A.H. Mathematical Problem Solving; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Schoenfeld, A.H. What’s all the fuss about metacognition. Cogn. Sci. Math. Educ. 1987, 189, 215. [Google Scholar]
- Carr, M. The importance of metacognition for conceptual change and strategy use in mathematics. In Metacognition Strategy Use Instruction; Guilford Press: New York, NY, USA, 2010; pp. 176–197. [Google Scholar]
- Azevedo, R. Theoretical, conceptual, methodological, and instructional issues in research on metacognition and self-regulated learning: A discussion. Metacogn. Learn. 2009, 4, 87–95. [Google Scholar] [CrossRef]
- Kuhn, D. A Developmental Model of Critical Thinking. Educ. Res. 1999, 28, 16–46. [Google Scholar] [CrossRef]
- Jacobs, J.E.; Paris, S.G. Children’s Metacognition About Reading: Issues in Definition, Measurement, and Instruction. Educ. Psychol. 1987, 22, 255–278. [Google Scholar]
- McCormick, C.B. Metacognition and learning. In Handbook of Psychology: Volume 7—Eduacational Psychology; Weiner, I.B., Reynolds, W.M., Miller, G.E., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; pp. 79–102. [Google Scholar]
- Borkowski, J.G.; Milstead, M.; Hale, C. Components of children’s metamemory: Implications for strategy generalization. In Memory Development: Universal Changes and Individual Differences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 73–100. [Google Scholar]
- Sperling, R.A.; Howard, B.C.; Miller, L.A.; Murphy, C. Measures of Children’s Knowledge and Regulation of Cognition. Contemp. Educ. Psychol. 2002, 27, 51–79. [Google Scholar] [CrossRef] [Green Version]
- Wirth, J.; Leutner, D. Self-regulated learning as a competence: Implications of theoretical models for assessment methods. Z. Für Psychol. J. Psychol. 2008, 216, 102–110. [Google Scholar] [CrossRef]
- Schlagmüller, M.; Schneider, W. Würzburger Lesestrategie-Wissenstest für die Klassen 7–12. In Ein Verfahren zur Erfassung Metakognitiver Kompetenzen bei der Verarbeitung von Texten; Hogrefe: Göttingen, Germany, 2007. [Google Scholar]
- Artelt, C.; Beinicke, A.; Schlagmüller, M.; Schneider, W. Diagnose von Strategiewissen beim Textverstehen. Z. Für Entwickl. und Pädagogische Psychol. 2009, 41, 96–103. [Google Scholar] [CrossRef]
- Thillmann, H.; Gößling, J.; Marschner, J.; Wirth, J.; Leutner, D. Metacognitive Knowledge About and Metacognitive Regulation of Strategy Use in Self-Regulated Scientific Discovery Learning: New Methods of Assessment in Computer-Based Learning Environments. In International Handbook of Metacognition and Learning Technologies; Azevedo, R., Aleven, V., Eds.; Springer: New York, NY, USA, 2013; pp. 575–588. [Google Scholar]
- Carr, M.; Alexander, J.; Folds-Bennett, T. Metacognition and mathematics strategy use. Appl. Cogn. Psychol. 1994, 8, 583–595. [Google Scholar] [CrossRef]
- Teong, S.K. The effect of metacognitive training on mathematical word-problem solving. J. Comput. Assist. Learn. 2003, 19, 46–55. [Google Scholar] [CrossRef]
- Lester, F.K.; Garofalo, J.; Kroll, D.L. Self-Confidence, Interest, Beliefs, and Metacognition: Key Influences on Problem-Solving Behavior. In Affect and Mathematical Problem Solving: A New Perspective; McLeod, D.B., Adams, V.M., Eds.; Springer: New York, NY, USA, 1989; pp. 75–88. [Google Scholar]
- Perrenet, J.C.; Wolters, M.A. The art of checking: A case study of students’ erroneous checking behavior in introductory algebra. J. Math. Behav. 1994, 13, 335–358. [Google Scholar] [CrossRef]
- Wenke, D.; Frensch, P.A.; Funke, J. Complex problem solving and intelligence: Empirical relation and causal direction. In Cognition and Intelligence: Identifying the Mechanisms of the Mind; Sternberg, R.J., Pretz, J.E., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 160–187. [Google Scholar]
- Eysenck, H.J. The structure and measurement of intelligence. Naturwissenschaften 1981, 68, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Cihlář, J.; Eisenmann, P.; Hejnová, E.; Přibyl, J. Pupils’ abilities to solve problems in mathematics and physics and their school performance. In Proceedings of the 15th International Conference Efficiency and Responsibility in Education 2018, Prague, Czech Republic, 7–8 June 2018; pp. 29–35. [Google Scholar]
- Shearer, C.B. A resting state functional connectivity analysis of human intelligence: Broad theoretical and practical implications for multiple intelligences theory. Psychol. Neurosci. 2020. [Google Scholar] [CrossRef]
- Juter, K.; Sriraman, B. Does High Achieving in Mathematics = Gifted and/or Creative in Mathematics? In The Elements of Creativity and Giftedness in Mathematics; Sriraman, B., Lee, K.H., Eds.; SensePublishers: Rotterdam, The Netherlands, 2011; pp. 45–65. [Google Scholar]
- Wahl, H.M. Math for Humans: Teaching Math through 8 Intelligences; LivnLern Press: Langley, WA, USA, 1999. [Google Scholar]
- Gardner, H. The Theory of Multiple Intelligences; Heinemann: Portsmouth, NH, USA, 1983. [Google Scholar]
- Gardener, H.; Gardner, H. Intelligence Reframed: Multiple Intelligences for the 21st Century; Basic Books: New York, NY, USA, 1999. [Google Scholar]
- Veenman, M.V.J.; Spaans, M.A. Relation between intellectual and metacognitive skills: Age and task differences. Learn. Individ. Differ. 2005, 15, 159–176. [Google Scholar] [CrossRef]
- Skemp, R.R. Intelligence, Learning, and Action: A Foundation for Theory and Practice in Education; Wiley: Hoboken, NJ, USA, 1979. [Google Scholar]
- Piaget, J. The Grasp of Consciousness: Action and Concept in the Young Child. (Trans by S. Wedgwood); Harvard University Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Schraw, G. Promoting General Metacognitive Awareness. Instr. Sci. 1998, 26, 113–125. [Google Scholar] [CrossRef]
- Veenman, M.V.J.; Wilhelm, P.; Beishuizen, J.J. The relation between intellectual and metacognitive skills from a developmental perspective. Learn. Instr. 2004, 14, 89–109. [Google Scholar] [CrossRef]
- Piaget, J.; Cook, M. The Origins of Intelligence in Children; International Universities Press: New York, NY, USA, 1952; Volume 8. [Google Scholar]
- Inhelder, B.; Piaget, J. The Growth of Logical Thinking from Childhood to Adolescence: An Essay on the Construction of Formal Operational Structures (Developmental Psychology); Basic Books: New York, NY, USA, 1958. [Google Scholar]
- Kuzle, A. Assessing metacognition of grade 2 and grade 4 students using an adaptation of multi-method interview approach during mathematics problem-solving. Math. Ed. Res. J. 2018, 30, 185–207. [Google Scholar] [CrossRef]
- Veenman, M.V.J. The role of intelectual and metacognitive skills in math problem solving. In Metacognition in Mathematics Education; Desoete, A., Veenman, M., Eds.; Nova Science: Haupauge, NY, USA, 2006; pp. 35–50. [Google Scholar]
- Berk, L. Child Development, 6th ed.; Allyra and Bacon: Boston, MA, USA, 2003. [Google Scholar]
- Cross, D.R.; Paris, S.G. Developmental and intructional analysis of children’s metacognition and reading comprehention. J. Educ. Psychol. 1988, 80, 131–142. [Google Scholar]
- Whitebread, D.; Bingham, S.; Grau, V.; Pino Pasternak, D.; Sangster, C. Development of Metacognition and Self-Regulated Learning in Young Children: Role of Collaborative and Peer-Assisted Learning. J. Cogn. Educ. Psych. 2007, 6, 433–455. [Google Scholar] [CrossRef]
- Sternberg, R.J.; Rifkin, B. The development of analogical reasoning processes. J. Exp. Child Psychol. 1979, 27, 195–232. [Google Scholar] [CrossRef]
- Hejný, M. Exploring the cognitive dimension of teaching mathematics through scheme-oriented approach to education. Orb. Sch. 2012, 6, 41–55. [Google Scholar] [CrossRef]
- Götz, L.; Lingel, K.; Artelt, C.; Schneider, W. Mathematisches Strategie wissen für 5. und 6. Klassen (MAESTRA 5-6); Hogrefe: Göttingen, Germany, 2013. [Google Scholar]
- Lingel, K.; Götz, L.; Artelt, C.; Schneider, W. Mathematisches Strategiewissen für 5. und 6. Klassen: MAESTRA 5-6+. Hogrefe-Schultests. [Mathematical Strategy Knowledge for 5th and 6th Classes: MAESTRA 5-6 +. Hogrefe-school tests].; Hogrefe: Göttingen, Germany, 2014. [Google Scholar]
- Chytrý, V.; Pešout, O.; Říčan, J. Preference Metakognitivních Strategií na Pozadí Úkolových Situací v Matematice u Žáků Druhého Stupně ZŠ; UJEP: Ústí nad Labem, Czech Republic, 2014. [Google Scholar]
- Polya, G. How to Solve it: A New Aspect of Mathematical Methods; Doubleday: New York, NY, USA, 1957. [Google Scholar]
- Polit, D.F.; Beck, C.T. Nursing Research: Principles and Methods; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- Vandenberg, S.G.; Kuse, A.R. Mental Rotations, a Group Test of Three-Dimensional Spatial Visualization. Percept. Mot. Ski. 1978, 47, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Torrance, E.P. Norms Technical Manual: Torrance Tests of Creative Thinking; Ginn and Company: Lexington, MA, USA, 1974. [Google Scholar]
- Eysenck, H.J. Intelligence: A New Look; Transaction Publishers: Piscataway, NJ, USA, 1998. [Google Scholar]
- Cronbach, L.J.; Meehl, P.E. Construct validity in psychological tests. Psychol. Bull. 1955, 52, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGartland Rubio, D. Alpha reliability. In Encyclopedia of Social Measurement (59–63); Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Shoukri, M.M.; Cihon, C. Statistical Methods for Health Sciences; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple Comparisons Using Rank Sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Chráska, M. Metody pedagogického výzkumu [Methods of Educational Research]; Grada Publishing: Prague, Czech Republic, 2007. [Google Scholar]
- van Aalderen-Smeets, S.; van der Molen, J.W. Measuring Primary Teachers’ Attitudes Toward Teaching Science: Development of the Dimensions of Attitude Toward Science (DAS) Instrument. Int. J. Sci. Educ. 2013, 35, 577–600. [Google Scholar] [CrossRef]
- Downing, K.; Kwong, T.; Chan, S.-W.; Lam, T.-F.; Downing, W.-K. Problem-based learning and the development of metacognition. High. Educ. 2009, 57, 609–621. [Google Scholar] [CrossRef]
- Brown, A.L.; Palincsar, A.S. Inducing Strategic Learning from Texts by Means of Informed, Self-Control Training; Center for the Study of Reading Technical Report No. 262; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1982. [Google Scholar]
- Crowley, K.; Shrager, J.; Siegler, R.S. Strategy Discovery as a Competitive Negotiation between Metacognitive and Associative Mechanisms. Dev. Rev. 1997, 17, 462–489. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, D. Does Memory Development Belong on an Endangered Topic List? Child Dev. 2000, 71, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Veenman, M.V.J.; Verheij, J. Technical students’ metacognitive skills: Relating general vs. specific metacognitive skills to study success. Learn. Individ. Differ. 2003, 13, 259–272. [Google Scholar] [CrossRef]
- Veenman, M.V.J.; Kok, R.; Blöte, A.W. The relation between intellectual and metacognitive skills in early adolescence. Instr. Sci. 2005, 33, 193–211. [Google Scholar] [CrossRef]
- Lara Nieto-Márquez, N.; Baldominos, A.; Pérez-Nieto, M.Á. Digital Teaching Materials and Their Relationship with the Metacognitive Skills of Students in Primary Education. Educ. Sci. 2020, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Schneider, W. The Development of Metacognitive Knowledge in Children and Adolescents: Major Trends and Implications for Education. Mind Brain Educ. 2008, 2, 114–121. [Google Scholar] [CrossRef]
- Neuenhaus, N. Metakognition und Leistung. Eine Längschnittuntersuchung in den Bereichen Lesen und Englisch bei Schülerinnen und Schülern der fünften und sechsten Jahrgangsstufe. Ph.D. Thesis, Bamberg University, Bamberg, Germany, 2011. [Google Scholar]
- Lai, E.R. Metacognition: A literature review. Always Learn. Pearson Res. Rep. 2011, 24. Available online: http://images.pearsonassessments.com/images/tmrs/metacognition_literature_review_final.pdf (accessed on 15 March 2020).
- Boaler, J. Mathematical mindsets: Unleashing students’ potential through creative math. In Inspiring Messages and Innovative Teaching; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Petty, G. Moderní vyučování [Modern teaching]; Portál: Prague, Czech Republic, 1996. [Google Scholar]
- Helus, Z.; Pavelková, I. Vedení žáků ke vzdělávací autoregulaci a humanizaci školy. Pedagogika 1992, 42, 197–208. [Google Scholar]
- Švecová, V. Mathematics Anxiety and Other Psycho Didactic Aspects in University Students. J. Educ. Soc. Policy 2018, 5, 246–250. [Google Scholar] [CrossRef]
- Paris, S.G.; Winograd, P. How metacognition can promote academic learning and instruction. In Dimensions of Thinking and Cognitive Instruction; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1990; pp. 15–51. [Google Scholar]
- Říčan, J.; Chytrý, V. Metakognice a Metakognitivní Strategie Jako Teoretické a Výzkumné Konstrukty a Jejich Uplatnění v Moderní Pedagogické Praxi; UJEP: Ústí nad Labem, Czech Republic, 2016. [Google Scholar]
- Páleníková, K.; Bugárová, M. Aktivity na rozvoj geometrických predstáv žiakov mladšieho školského veku [Activities for the development of geometric conceptions of pupils in primary education]. Online J. Prim. Presch. Educ. 2018, 2, 23–32. [Google Scholar]
- Vallo, D.; Rumanova, L.; Duris, V. Spatial Imagination Development through Planar Section of Cube Buildings in Educational Process. Procedia Soc. Behav. Sci. 2015, 191, 2146–2151. [Google Scholar] [CrossRef] [Green Version]
- van Hiele, P.M. Developing Geometric Thinking through Activities That Begin with Play. Teach. Child. Math. 1999, 5, 310–316. [Google Scholar]
- Wilkie, K.J.; Clarke, D.M. Developing students’ functional thinking in algebra through different visualisations of a growing pattern’s structure. Math. Ed. Res. J. 2016, 28, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Eisenmann, P. A contribution to the development of functional thinking of pupils and students. Teach. Math. 2009, XII, 73–81. [Google Scholar]
- Katz, K.U.; Katz, M.G. Zooming in on infinitesimal 1–.9.. in a post-triumvirate era. Educ. Stud. Math. 2010, 74, 259–273. [Google Scholar] [CrossRef] [Green Version]
- Cihlář, J.; Eisenmann, P.; Krátká, M. Omega Position–A specific phase of perceiving the notion of infinity. Sci. Educ. 2015, 6, 51–73. [Google Scholar]
- Čeretková, S.; Bulková, K.; Jenisová, Z.; Kramáreková, H.; Lovászová, G.; Nemčíková, M.; Rampašeková, Z.; Sandanusová, A.; Schlarmannová, J.; Valovičová, Ľ. Stratégie Tvorivého a Kritického Myslenia v Príprave Učiteľov Prírodovedných Predmetov, Matematiky a Informatiky= Creative and Critical Thinking Strategies in Training Future Teachers of Natural Sciences, Mathematics, and Computer Science; Univerzita Konštantína Filozofa v Nitre: Nitra, Slovakia, 2017. [Google Scholar]
While Solving a Demanding Calculation, Several Steps Are Required There. In One of Them, You Do Not Know How to Continue. What Can Help You in Such a Situation? | Grade | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
A | I start again from the beginning and think about other ways how to solve the task. | ||||||
B | I ask my parents, siblings or schoolmates for help. | ||||||
C | I consider whether I made a mistake in the previous steps. | ||||||
D | I calculate what I am able to do, and start another task. | ||||||
E | I am curious what type of a partial-result I need so that I would be able to calculate and reach the final result. | ||||||
F | I jump to the step I am able to solve not to losing time. | ||||||
Note. Grade scale: 1 means the best solution, 6 means the worst way of task-solving in my opinion. |
Quadrant | Gender | School Subject | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Biology | Physics | Geography | Mathematics | |||||||||
27 | 27 | 1.90 | 2 | 1 | 2.02 | 2 | 2 | 1.96 | 2 | 1 | 2.47 | 2 | 3 | |
19 | 15 | 1.47 | 1 | 1 | 1.44 | 1 | 1 | 1.41 | 1 | 1 | 1.72 | 2 | 1 | |
38 | 30 | 1.69 | 1.5 | 1 | 1.67 | 2 | 2 | 1.67 | 1 | 1 | 1.86 | 2 | 2 | |
53 | 54 | 2.31 | 2 | 2 | 2.51 | 2 | 2 | 2.29 | 2 | 3 | 2.64 | 3 | 2 | |
721 | 4.53 | *** | 583 | 5.28 | *** | 702 | 4.59 | *** | 762 | 4.40 | *** |
Metacognitive Knowledge | Mathematical Intelligence | ||||||||
---|---|---|---|---|---|---|---|---|---|
16.90 | 2.75 | 17.12 | 6.56 | 6.71 | 6.92 | 7.46 | 2.12 | ||
16.00 | 3.00 | 16.00 | 6.00 | 7.00 | 7.00 | 8.00 | 2.00 | ||
14.00 | 4.00 | 14.00 | 5.00 | 2.00 | 5.00 | 9.00 | 2.00 | ||
SD | 3.01 | 1.74 | 3.08 | 1.48 | 3.80 | 1.56 | 3.68 | 1.24 | |
----- | 0.964 | <0.001 | <0.001 | ----- | <0.001 | <0.001 | 0.520 | ||
0.964 | ----- | <0.001 | <0.001 | <0.001 | ----- | 0.896 | <0.001 | ||
<0.001 | <0.001 | ----- | 0.884 | <0.001 | 0.896 | ----- | <0.001 | ||
<0.001 | <0.001 | 0.884 | ----- | 0.520 | <0.001 | <0.001 | ----- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chytrý, V.; Říčan, J.; Eisenmann, P.; Medová, J. Metacognitive Knowledge and Mathematical Intelligence—Two Significant Factors Influencing School Performance. Mathematics 2020, 8, 969. https://doi.org/10.3390/math8060969
Chytrý V, Říčan J, Eisenmann P, Medová J. Metacognitive Knowledge and Mathematical Intelligence—Two Significant Factors Influencing School Performance. Mathematics. 2020; 8(6):969. https://doi.org/10.3390/math8060969
Chicago/Turabian StyleChytrý, Vlastimil, Jaroslav Říčan, Petr Eisenmann, and Janka Medová. 2020. "Metacognitive Knowledge and Mathematical Intelligence—Two Significant Factors Influencing School Performance" Mathematics 8, no. 6: 969. https://doi.org/10.3390/math8060969
APA StyleChytrý, V., Říčan, J., Eisenmann, P., & Medová, J. (2020). Metacognitive Knowledge and Mathematical Intelligence—Two Significant Factors Influencing School Performance. Mathematics, 8(6), 969. https://doi.org/10.3390/math8060969