The Four-Parameters Wright Function of the Second kind and its Applications in FC
Abstract
:1. Introduction
2. The Four-Parameters Wright Function
3. Applications of the Four-Parameters Wright Function of the Second Kind
3.1. Scale-Invariant Solutions to the One-Dimensional Time-Fractional Diffusion-Wave Equation
3.2. Subordination Formula for the Multi-Dimensional Space-Time-Fractional Diffusion Equations
3.3. FDEs with the Left- and Right-Hand Sided Erdélyi-Kober Fractional Derivatives
Funding
Conflicts of Interest
References
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series. More Special Functions; Gordon and Breach: New York, NY, USA, 1989; Volume 3. [Google Scholar]
- Meijer, C.S. On the G-function. I, II, III, IV, V, VI, VII, VIII. Proc. Nederl. Akad. Wet. 1946, 49, 227–237, 344–356, 457–469, 632–641, 765–772, 936–943, 1063–1072, 1165–1175. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin, Germany, 2014. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; J. Wiley: New York, NY, USA, 1994. [Google Scholar]
- Luchko, Y. The Wright function and its applications. In Handbook of Fractional Calculus with Applications. Vol. 1: Basic Theory; Kochubei, A., Luchko, Y., Eds.; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 241–268. [Google Scholar]
- Paris, R.B. Asymptotics of the special functions of fractional calculus. In Handbook of Fractional Calculus with Applications. Vol. 1: Basic Theory; Kochubei, A., Luchko, Y., Eds.; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 297–326. [Google Scholar]
- Srivastava, H.M.; Gupta, K.C.; Goyal, S.P. The H-functions of One and Two Variables with Applications; South Asian Publishers: New Delhi, India, 1982. [Google Scholar]
- Gorenflo, R.; Mainardi, F.; Rogosin, S. Mittag-Leffler function: Properties and applications. In Handbook of Fractional Calculus with Applications. Vol.1: Basic Theory; Kochubei, A., Luchko, Y., Eds.; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 269–298. [Google Scholar]
- Buckwar, E.; Luchko, Y. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 1998, 227, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Consiglio, A.; Mainardi, F. The Wright function of the second kind in mathematical physics. Mathematics 2020, 8, 884. [Google Scholar]
- Das, S.; Mehrez, K. Geometric properties of the four parameters Wright function. arXiv 2020, arXiv:2005.01354v1. [Google Scholar]
- Djrbashian, M.M. On integral transforms generated by the generalized Mittag-Leffler function. Izv. Akad. Nauk Armjan. SSR. 1960, 13, 21–63. (In Russian) [Google Scholar]
- Gajic, L.; Stankovic, B. Some properties of Wright’s function. Publ. de l’Institut Mathèmatique, Beograd, Nouvelle Sèr. 1976, 20, 91–98. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 1999, 2, 383–414. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Computat. Appl. Math. 2000, 11, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Saigo, M.; Trujillo, J.J. On the generalized Wright function. Fract. Calc. Appl. Anal. 2002, 5, 437–460. [Google Scholar]
- Luchko, Y. On the asymptotics of zeros of the Wright function. Zeitschrift für Analysis und ihre Anwendungen 2000, 19, 597–622. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y.; Gorenflo, R. Scale-invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal. 1998, 1, 63–78. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Mainardi, F.; Pagnini, G. The Wright functions as solutions of the time-fractional diffusion equations. Appl. Math. Comp. 2003, 141, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Pagnini, G. The role of the Fox-Wright functions in fractional sub-diffusion of distributed order. J. Comput. App. Math. 2007, 207, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Mehrez, K. New Integral representations for the Fox-Wright functions and its applications. arXiv 2017, arXiv:1711.08368. [Google Scholar] [CrossRef] [Green Version]
- Mehrez, K. Monotonicity patterns and functional inequalities for classical and generalized Wright functions. arXiv 2017, arXiv:1708.00461. [Google Scholar] [CrossRef] [Green Version]
- Mehrez, K.; Sitnik, S.M. Functional inequalities for Fox-Wright functions. arXiv 2017, arXiv:1708.06611. [Google Scholar] [CrossRef] [Green Version]
- Stankovic, B. On the function of E.M. Wright. Publications De l’Institut Mathèmatique 1970, 10, 113–124. [Google Scholar]
- Wright, E.M. On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 1933, 8, 71–79. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized Bessel function. Proc. London Math. Soc. (Ser. II) 1935, 38, 257–270. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 287–293. [Google Scholar] [CrossRef]
- Wright, E.M. The generalized Bessel function of order greater than one. Quart. J. Math. Oxford Ser. 1940, 11, 36–48. [Google Scholar] [CrossRef]
- Fox, C. The asymptotic expansion of generalized hypergeometric functions. Proc. Lond. Math. Soc. 1928, 27, 389–400. [Google Scholar] [CrossRef]
- Gorenflo, R.; Luchko, Y.; Srivastava, H.M. Operational method for solving integral equations with Gauss’s hypergeometric function as a kernel. Int. J. Math. Stat. Sci. 1997, 6, 179–200. [Google Scholar]
- Hanna, L.A.-M.; Al-Kandari, M.; Luchko, Y. Operational method for solving fractional differential equations with the left-and right-hand sided Erdélyi-Kober fractional derivatives. Fract. Calc. Appl. Anal. 2020, 23, 103–125. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y. Subordination principles for the multi-dimensional space-time-fractional diffusion- wave equation. Theor. Probab. Math. Statist. 2019, 98, 127–147. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Marichev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions. Theory and Algorithmic Tables; Ellis Horwood: Chichester, UK, 1983. [Google Scholar]
- Mainardi, F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Saichev, A.; Zaslavsky, G. Fractional kinetic equations: Solutions and applications. Chaos 1997, 7, 753–764. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Kwaśnicki, M. Fractional Laplace operator and its properties. In Handbook of Fractional Calculus with Applications. Vol. 1: Basic Theory; Kochubei, A., Luchko, Y., Eds.; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 159–194. [Google Scholar]
- Bazhlekova, E. Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 2000, 3, 213–230. [Google Scholar]
- Bajlekova, E. Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2001. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luchko, Y. The Four-Parameters Wright Function of the Second kind and its Applications in FC. Mathematics 2020, 8, 970. https://doi.org/10.3390/math8060970
Luchko Y. The Four-Parameters Wright Function of the Second kind and its Applications in FC. Mathematics. 2020; 8(6):970. https://doi.org/10.3390/math8060970
Chicago/Turabian StyleLuchko, Yuri. 2020. "The Four-Parameters Wright Function of the Second kind and its Applications in FC" Mathematics 8, no. 6: 970. https://doi.org/10.3390/math8060970
APA StyleLuchko, Y. (2020). The Four-Parameters Wright Function of the Second kind and its Applications in FC. Mathematics, 8(6), 970. https://doi.org/10.3390/math8060970