
mathematics

Review

The Four-Parameters Wright Function of the Second
kind and its Applications in FC

Yuri Luchko

Department of Mathematics, Physics, and Chemistry, Beuth Technical University of Applied Sciences Berlin,
Luxemburger Str. 10, 13353 Berlin, Germany; luchko@beuth-hochschule.de

Received: 20 May 2020; Accepted: 10 June 2020; Published: 12 June 2020
����������
�������

Abstract: In this survey paper, we present both some basic properties of the four-parameters
Wright function and its applications in Fractional Calculus. For applications in Fractional Calculus,
the four-parameters Wright function of the second kind is especially important. In the paper, three case
studies illustrating a wide spectrum of its applications are presented. The first case study deals with
the scale-invariant solutions to a one-dimensional time-fractional diffusion-wave equation that
can be represented in terms of the Wright function of the second kind and the four-parameters
Wright function of the second kind. In the second case study, we consider a subordination formula
for the solutions to a multi-dimensional space-time-fractional diffusion equation with different
orders of the fractional derivatives. The kernel of the subordination integral is a special case of the
four-parameters Wright function of the second kind. Finally, in the third case study, we shortly
present an application of an operational calculus for a composed Erdélyi-Kober fractional operator
for solving some initial-value problems for the fractional differential equations with the left- and
right-hand sided Erdélyi-Kober fractional derivatives. In particular, we present an example with an
explicit solution in terms of the four-parameters Wright function of the second kind.

Keywords: four-parameters Wright function of the second kind; one-dimensional time-fractional
diffusion-wave equation; scale-invariant solutions; multi-dimensional space-time-fractional diffusion
equation; subordination formula; left- and right-hand sided Erdélyi-Kober fractional derivatives
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1. Introduction

In calculus, differential equations, and mathematical physics both elementary and most of the
special functions can be expressed in terms of the so-called generalized hypergeometric function pFq

that is defined as the following series (in the case it converges):

pFq
(
a1, . . . , ap; b1, . . . , bq; z

)
:=

∞

∑
k=0

∏
p
n=1(an)k

∏
q
n=1(bn)k

zk

k!
(1)

with the Pochhammer symbol (z)k, k ∈ N given by the formula

(z)k =
Γ(z + k)

Γ(k)
=

k−1

∏
n=0

(z + n).

In particular, all elementary functions can be represented in terms of the famous hypergeometric
Gauss function 2F1. Other particular cases and properties of the generalized hypergeometric function
can be found in [1].
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If p ≤ q, the series at the right-hand side of the formula (1) is absolutely convergent for all values
of z ∈ C. For p = q + 1, the series converges for |z| < 1 and for |z| = 1 under some additional
conditions. If p > q + 1, the series is divergent.

To overcome this restriction and to somehow define the function pFq in the case p > q + 1, in [2]
Meijer introduced a very general special function presently known in the literature as the G-function.
For definition, properties, and particular cases of the G-function we refer the readers to [1].

However, it turned out that the special functions of Fractional Calculus (FC) belong in general
neither to particular cases of the generalized hypergeometric function pFq nor to particular cases of the
Meijer G-function. They are particular cases of the more general generalized Wright or Fox-Wright
functions or the Fox H-function ([1,3–7]).

The probably most used and important special functions of FC are the Mittag–Leffler function and
its generalizations and the Wright function and its generalizations. For the theory of the Mitag-Leffler
type functions and their applications we refer the readers to the book [3] and the recent survey [8]
(see also numerous references therein). As to the Wright function and its generalizations, parts of their
theory and some applications were presented in [5,6,9–29].

In this paper, the focus is on the four-parameters Wright function and its applications in FC.
Depending on the signs of the parameters, we distinguish between the four-parameters Wright
function of the first kind and of the second kind. The four-parameters Wright function of the first kind
was first considered by Fox in [30] and by Wright in [28] (more precisely, this function was a particular
case of the generalized Fox-Wright function that satisfies some conditions). In [12], the four-parameters
Wright function of the first kind was employed as a kernel of an integral transform. It is the first
application of this function known to the author. Another useful application of the four-parameters
Wright function of the first kind was presented in [31], where the authors developed an operational
calculus for an integral operator with the Gauss hypergeometric function as the kernel. This operational
calculus was then used for derivation of the exact solutions of some integral equations of Volterra-type
with the Gauss hypergeometric function in the kernel in terms of the four-parameters Wright function
of the first kind.

As to the four-parameters Wright function of the second kind, it was first introduced in Luchko
and Gorenflo [18]. Luchko and Gorenflo also provided some important properties of this function
including its integral representation via the Mittag–Leffler function and its asymptotic behavior.
Moreover, they applied the four-parameters Wright function of the second kind for derivation of
the explicit analytical scale-invariant solutions to a one-dimensional space-time fractional diffusion
equation. In this paper, some important results from [18] and the subsequent publications [5,15,32,33]
will be revisited.

The rest of the paper is organized as follows: In the 2nd Section, we introduce the Wright function,
the four-parameters Wright function, and the generalized Wright or Fox-Wright function and provide
some of their important properties with the special focus on the four-parameters Wright function of the
second kind. In the 3rd Section, three examples of applications of the four-parameters Wright function
of the second kind in FC are presented. The first example deals with analysis of the scale-invariant
solutions to a one-dimensional time-fractional diffusion-wave equation ([14,15]). It turns out that
they can be represented in terms of the Wright function of the second kind and the four-parameters
Wright function of the second kind. The second example is devoted to a subordination formula for
the solutions to a multi-dimensional space-time-fractional diffusion equation with different orders
of the fractional derivatives ([33]). The kernel of the subordination integral is a special case of the
four-parameters Wright function of the second kind that is non-negative and can be interpreted as a
probability density function. In the third example, we present an application of the operational method
suggested in [32] for derivation of solution to an initial-value problem for a fractional differential
equation with the left- and right-hand sided Erdélyi-Kober fractional derivatives in terms of the
four-parameters Wright function of the second kind.
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2. The Four-Parameters Wright Function

The generalized hypergeometric function pΨq presently known as the generalized Wright or
Fox-Wright function was introduced and investigated by Fox in [30] and by Wright in [28]. It is defined
by the convergent series

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1) . . . (bq, Bq)
; z
]

:=
∞

∑
k=0

∏
p
i=1 Γ(ai + Aik)

∏
q
i=1 Γ(bi + Bik)

zk

k!
, z ∈ C (2)

with ai ∈ R, Ai > 0, i = 1, . . . , p, bi ∈ R, Bi > 0, i = 1, . . . , q. In the case Ai = 1, i = 1, . . . , p,
Bi = 1, i = 1, . . . , q, the generalized Wright function coincides with the generalized hypergeometric
function (1) up to a constant factor. Even more, in the case of the positive rational parameters Ai ∈ Q,
i = 1, . . . , p, Bi ∈ Q, i = 1, . . . , q, the generalized Wright function can be represented as a final sum of
the generalized hypergeometric functions with the power functions weights. Say, in the case p = 0,
q = 1, and B1 = n

m ∈ Q, n, m > 0, we have the following representation ([14]):

0Ψ1

[
−

(β, n
m )

; z
]
=

m−1

∑
p=0

zp

p!Γ(β + n
m p) 0Fn+m−1

(
−; ∆(n,

β

n
+

p
m
), ∆∗(m,

p + 1
m

);
zm

mmnn

)
, (3)

where ∆(k, a) and ∆∗(k, a) are defined by

∆(k, a) = {a, a +
1
k

, . . . , a +
k− 1

k
}, ∆∗(k, a) = ∆(k, a) \ {1}.

In the case of the formula (3), the set ∆∗(k, a) is correctly defined since 1 is an element of any set
∆(m, p+1

m ), 0 ≤ p ≤ m− 1. The method employed in [14] for derivation of the formula (3) can be
also applied to obtain similar but of course even more complicated representations for the function
pΨq with the positive rational parameters Ai ∈ Q, i = 1, . . . , p, Bi ∈ Q, i = 1, . . . , q in terms of the

generalized hypergeometric function (1).
It is worth mentioning that both in [28,30], the parameters Ai and Bi were supposed to be positive

real numbers. However, in [29], Wright considered a particular case of the function pΨq with p = 0
and q = 1 and the coefficient B1 being any real number greater than -1. Presently this function is called
the Wright function. Following Wright, it is denoted by φ(ρ, β; z):

φ(ρ, β; z) := 0Ψ1

[
−

(β, ρ)
; z
]
=

∞

∑
k=0

zk

k!Γ(β + ρk)
, z ∈ C, ρ > −1, β ∈ C. (4)

For ρ > −1, the series at the right-hand side of the formula (4) is convergent for all z ∈ C. It is
also convergent for ρ = −1 and |z| < 1 and for ρ = −1 and |z| = 1 under the condition <(β) > 1.
However, the Wright function is an entire function only in the case ρ > −1 and thus this condition is
usually included into its definition.

In [3,19], the function (4) with the positive parameter ρ was called the Wright function of the first
kind, whereas in the case of the negative parameter ρ (0 > ρ > −1) it was called the Wright function
of the second kind. In the case ρ = 0, the Wright function is reduced to the exponential function:

φ(0, β; z) =
∞

∑
k=0

zk

k!Γ(β)
=

ez

Γ(β)
. (5)

In analogy to the Wright function (4), the generalized Wright function (2) can be considered also
in the case, some or even all of the parameters Ai and Bi are negative numbers. The well-known
asymptotic behavior of the Euler Gamma-function allows determination of the convergence radius of
the series at the right-hand side of (2): it is absolutely convergent for all z ∈ C under the condition



Mathematics 2020, 8, 970 4 of 16

∆ > −1, where ∆ is determined by the parameters of the generalized Wright function as follows
(see, e.g., [3,16,34]):

∆ =
q

∑
i=1

Bi −
p

∑
i=1

Ai, δ =
p

∏
i=1
|Ai|−Ai

q

∏
i=1
|Bi|Bi , µ =

q

∑
i=1

bi −
p

∑
i=1

ai +
p− q

2
. (6)

In the case ∆ > −1, the function (2) is an entire function. However, in the case ∆ = −1, the series
at the right-hand side of (2) is also absolutely convergent for |z| < δ and for |z| = δ under the condition
<(µ) > 1/2 (see [34] for details).

In this paper, we mainly deal with another important particular case of the generalized Wright
function (2), specifically with the so-called four-parameters Wright function:

W(ρ1,β1),(ρ2,β2)
(z) := 1Ψ2

[
(1, 1)

(β1, ρ1) (β2, ρ2)
; z
]

. (7)

According to the definition of the generalized Wright function, the series representation of the
four-parameters Wright function is as follows:

W(ρ1,β1),(ρ2,β2)
(z) =

∞

∑
k=0

zk

Γ(β1 + ρ1k)Γ(β2 + ρ2k)
, ρ1, ρ2 ∈ R, β1, β2 ∈ C, z ∈ C. (8)

For ρ1 + ρ2 > 0, the series at the right-hand side of (8) is absolutely convergent ∀z ∈ C. For ρ1 +

ρ2 = 0, the series is absolutely convergent for |z| < 1 and for |z| = 1 under the condition <(β1 + β2) >

2. Finally, the series is divergent for any z 6= 0 in the case ρ1 + ρ2 < 0.
Without any loss of generality, in what follows we always suppose that the condition ρ1 ≥ ρ2

holds true in the definition of the four-parameters Wright function. This assumption will lead to
simpler formulations of some results concerning the four-parameters Wright function. Moreover,
we will distinguish between the four-parameters Wright function of the first kind (ρ2 > 0) and of the
second kind (ρ2 < 0). The properties and applications of the four-parameters Wright function of the
second kind are very different from those of the function of the first kind. Thus, we found it appropriate
to introduce a separate notation for the four-parameters Wright function of the second kind:

Φ(ρ1,β1),(ρ2,β2)
(z) := W(ρ1,β1),(ρ2,β2)

(z), ρ2 < 0. (9)

The notation W(ρ1,β1),(ρ2,β2)
is kept for the four-parameters Wright function (including the cases of

the functions of the first and of the second kinds).
In what follows, we always suppose that the condition ρ1 + ρ2 > 0 is satisfied. This condition

along with the inequality ρ1 ≥ ρ2 leads to the inequality ρ1 > 0. Thus, the parameter ρ1 of the
four-parameters Wright function is always positive, whereas the parameter ρ2 is positive in the case of
the function of the first kind and negative in the case of the function of the second kind. In the case
ρ2 = 0, the four-parameters Wright function is reduced to the two-parameters Mittag–Leffler function:

W(ρ1,β1),(0,β2)
(z) =

1
Γ(β2)

Eρ1,β1(z) =
1

Γ(β2)

∞

∑
k=0

zk

Γ(β1 + ρ1k)
. (10)

For the theory and applications of the two-parameters Mittag–Leffler function we refer to the
book [3]; in this paper we do not consider this function. Please note that in [3] the function (7) is called
the generalized Mittag–Leffler function or the four-parametric Mittag–Leffler function.

Another important particular case of the four-parameters Wright function (7) is the Wright
function (4):

W(1,1),(ρ,β)(z) = φ(ρ, β; z). (11)



Mathematics 2020, 8, 970 5 of 16

For the properties and applications of the Wright function we refer to the recent survey [5], see also
the references therein.

As already mentioned, the four-parameters Wright function is an entire function provided the
condition ρ1 + ρ1 > 0 holds true.

Theorem 1. Let the condition ρ1 + ρ1 > 0 be satisfied. Then the four-parameters Wright function is an entire
function of the variable z. Its order p and type σ are given by the relations

p =
1

ρ1 + ρ2
, σ =

ρ1 + ρ2(
ρ

ρ1
1 |ρ2|ρ2

) 1
ρ1+ρ2

. (12)

The proof of the theorem is based on the Stirling formula for the asymptotic of the Gamma-function
and can be found in [3,12,16].

Since it is a function of the hypergeometric type, the four-parameters Wright function possesses a
very useful Mellin–Barnes integral representation ([35]):

W(ρ1,β1),(ρ2,β2)
(z) =

1
2πi

∫
L−∞

Γ(s)Γ(1− s)
Γ(β1 − ρ1s)Γ(β2 − ρ2s)

(−z)−s ds, (13)

where L−∞ is a left loop located in a horizontal strip. It goes from the point −∞ + iy1 to the point
−∞ + iy2 with y1 < 0 < y2 and separates the poles of the Gamma-function Γ(s) (the points sk =

0,−1,−2, . . . ) from the poles of the Gamma-function Γ(1− s) (the points sl = 1, 2, 3, . . . ).
The formula (13) can be easily proved by evaluating the Mellin–Barnes integral taking into account

the Jordan lemma, the formula

ress=−kΓ(s) =
(−1)k

k!
, k = 0, 1, 2, . . . , (14)

the known asymptotic of the Gamma-function, and the Cauchy residue theorem.
Depending on the sign of the parameter ρ2 (the parameter ρ1 is always positive), the right-hand

side of the representation (13) can be interpreted as the Fox H-function:

W(ρ1,β1),(ρ2,β2)
(z) = H1,1

1,3

(
(0, 1)

(0, 1), (1− β1, ρ1), (1− β2, ρ2)

∣∣− z
)

, ρ2 > 0, (15)

Φ(ρ1,β1),(ρ2,β2)
(z) = H1,1

2,2

(
(0, 1), (β2,−ρ2)

(0, 1), (1− β1, ρ1)

∣∣− z
)

, ρ2 < 0. (16)

It is worth mentioning that both the Mellin–Barnes integral representation (13) and the Fox
H-function representations (15) and (16) can be used for derivation of several useful properties of
the four-parameters Wright function including its particular cases for the rational values of the
parameters ([1,3,5]) or its asymptotic behavior ([6,7]).

Because the focus of this paper is on applications of the four-parameters Wright function of the
second kind in FC, in the rest of this section we mainly restrict ourselves to a short discussion of its
important properties. For the proofs, we refer the interested readers to [18].

A very useful integral representation of the four-parameters Wright function is given in the
following theorem:

Theorem 2 ([18]). The four-parameters Wright function possesses the following integral representation in
terms of the two parameters Mittag–Leffler function (10):

W(ρ1,β1),(ρ2,β2)
(z) =

1
2πi

∫
γ(ε;ϕ)

eζ ζ−β2 Eρ1,β1(zζ−ρ2) dζ, (17)
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where γ(ε; ϕ) (ε > 0, π
2 < ϕ ≤ π) is a contour in the complex plane with the nondecreasing arg ζ that consists

of the ray arg ζ = −ϕ, |ζ| ≥ ε, the arc −ϕ ≤ arg ζ ≤ ϕ of the circle |ζ| = ε, and the ray arg ζ = ϕ, |ζ| ≥ ε.

In the case of the four-parameters Wright function of the second kind, the integration contour
γ(ε; ϕ) in Theorem 2 can be replaced by a simpler one:

Theorem 3 ([18]). For any k0 ∈ N satisfying the condition k0 > max{−1,<((1 − β2)/(−ρ2))},
the four-parameters Wright function of the second kind can be represented as follows:

Φ(ρ1,β1),(ρ2,β2)
(z) =

k0

∑
k=0

zk

Γ(β1 + ρ1k)Γ(β2 + ρ2k)
+ (18)

1
2πi

∫
L−

(
eζζ−β2 Eρ1,β1(zζ−ρ2)−

k0

∑
k=0

(zζ−ρ2)k

Γ(β1 + ρ1k)

)
dζ,

where L− is a cut in the complex ζ-plane along the negative real semi-axis.

Remark 1. As already mentioned, for β1 = ρ1 = 1, the four-parameters Wright function is reduced to the
Wright function (4) and the integral representation (17) with ρ2 = ρ > −1 and β2 = β ∈ R takes the
well-known form

φ(ρ, β; z) =
1

2πi

∫
γ(ε;ϕ)

exp{ζ + zζ−ρ}ζ−β dζ. (19)

This integral representation was obtained by Wright in [27,29] and then used for derivation of the asymptotic
behavior of the Wright function. In particular, he showed that the Wright function of the second kind has an
algebraic asymptotic expansion on the positive real semi-axis provided the condition 1/3 < −ρ < 1 holds true
(K = 0, 1, 2, . . . ):

φ(ρ, β; x) =
K−1

∑
k=0

x(β−1−k)/(−ρ)

(−ρ)Γ(k + 1)Γ(1 + (β− l − k)/(−ρ))
+ O(x(β−1−K)/(−ρ)), x → +∞. (20)

For the four-parameters Wright function of the second kind, a similar result was obtained in [18].

Theorem 4 ([18]). Under the condition ρ1/3 < −ρ2 < ρ1 ≤ 2, the four-parameters Wright function of the
second kind has the following asymptotic on the positive real semi-axis:

Φ(ρ1,β1),(ρ2,β2)
(x) =

K−1

∑
k=0

x(β2−1−k)/(−ρ2)

(−ρ2)Γ(k + 1)Γ(β1 + ρ1(β2 − 1− k)/(−ρ2))
− (21)

P

∑
p=1

x−p

Γ(β1 − ρ1 p)Γ(β2 − ρ2 p)
+ O(x(β2−1−K)/(−ρ2)) + O(x−1−P), x → +∞

for any K = 0, 1, 2, . . . , and P = 0, 1, 2, . . . .

For geometric properties of the four-parameters Wright function we refer the interested readers to
the very recent paper [11].

3. Applications of the Four-Parameters Wright Function of the Second Kind

In this section, we consider three examples of applications of the four-parameters Wright function
of the second kind in FC.

The first example concerns the well-studied one-dimensional time-fractional diffusion-wave
equation with the Caputo derivative. For analytical treatment of this equation, the Wright functions
of the second kind play a fundamental role ([10,14,15,19,36]). Say, the fundamental solution to this
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equation can be expressed in terms of some special cases of the Wright function of the second kind
(so-called Mainardi auxiliary functions). However, it turns out that the formulas for the scale-invariant
solutions to the one-dimensional diffusion-wave equation involve both the Wright function of the
second kind and the four-parameters Wright function of the second kind.

In the second example, we deal with a subordination formula for solutions to a multi-dimensional
space-time-fractional diffusion equation ([33]). This equation is obtained from the diffusion equation
by replacing the first order time derivative by the Caputo fractional derivative and the Laplace operator
by the fractional Laplacian. This time, it is the four-parameters Wright function of the second kind
that is of importance for this equation. In particular, a special case of the four-parameters Wright
function of the second kind appears in the kernel of a subordination formula that connects the solution
operators of this equation with different orders of the fractional derivatives to the classical solution
of the conventional diffusion equation. Moreover, this kernel function is non-negative and can be
interpreted as a probability density function.

The third example deals with the ordinary fractional differential equations that contain both the
left- and the right-hand sided fractional derivatives. In [32], an operational method for the so-called
composed Erdélyi-Kober fractional derivatives was suggested and applied for derivation of the
analytical solutions to the initial-value problems for a special class of such equations. In this section,
we present an equation of this sort with an explicit solution expressed in terms of the four-parameters
Wright function of the second kind.

3.1. Scale-Invariant Solutions to the One-Dimensional Time-Fractional Diffusion-Wave Equation

In this subsection, we deal with the fractional diffusion-wave equation, which is obtained from
the conventional diffusion or wave equation by replacing the first- or second-order time derivative,
respectively, by the Caputo fractional derivative:

∂αu(x, t)
∂tα =

∂2u(x, t)
∂x2 , 1 < α < 2, t > 0, x > 0. (22)

The Caputo fractional derivative of order α, 1 < α < 2, is defined as follows:

∂αu(x, t)
∂tα =

1
Γ(2− α)

t∫
0

(t− τ)1−α ∂2u(x, τ)

∂τ2 dτ. (23)

In particular, we are interested in the scale-invariant solutions to this equation. First, we introduce
some basic notions concerning the similarity method for the general equation

F(u) = 0, u = u(x, t). (24)

A one-parameter family of scaling transformations, denoted by Tλ, is called a transformation of
the (x, t, u)-space of the form

x̄ = λax, t̄ = λbt, ū = λcu, (25)

where a, b, and c are some constants and λ is a real parameter restricted to an open interval I containing
the value λ = 1.

The general Equation (24) is called invariant under the one-parameter family Tλ of scaling
transformations (25) if and only if Tλ translates any solution u of (24) to a solution ū of the
same equation:

F(ū) = 0 if ū = Tλu. (26)
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A real-valued function η(x, t, u) is called an invariant of the one-parameter family Tλ of scaling
transformations if it is unaffected by the transformations from Tλ:

η(Tλ(x, t, u)) = η(x, t, u) for all λ ∈ I.

The general theory ([37]) says that on the half-space {(x, t, u) : x > 0, t > 0}, the invariants of the
scaling transformations (25) are provided by the functions

η1(x, t, u) = xt−a/b, η2(x, t, u) = t−c/bu. (27)

Say, let the Equation (24) be a second-order partial differential equation

G(x, t, u, ux, ut, uxx, utt, uxt) = 0. (28)

If this equation is invariant under the family Tλ of scaling transformations (25),
then the substitution

u(x, t) = tc/bv(z), z = xt−a/b (29)

reduces the Equation (28) to a second-order ordinary differential equation

g(z, v, v′, v′′) = 0. (30)

In [9,14,15,18], the scale-invariant solutions for the equation of type (22) with the fractional
derivatives in the Caputo and Riemann–Liouville sense and for the more general time- and
space-fractional partial differential equations were obtained. In all cases, these solutions were expressed
in terms of the Wright function of the second kind and the four-parameters Wright function of the
second kind. In what follows, we present some of these results for the Equation (22).

The group of scaling transformations for the fractional diffusion-wave Equation (22) can be
determined in explicit form.

Theorem 5 ([9]). The group of scaling transformations of the Equation (22) has the form

Tλ ◦ (x, t, u) = (λx, λ
2
α t, λcu)

with an arbitrary constant c ∈ R and its invariants are given by the formulas

η1(x, t) = xt−α/2, η2(x, t, u) = t−c α/2u. (31)

In what follows, for the sake of convenience, we use the notation γ = c α/2.
The general theory of the Lie groups ([37]) and Theorem 5 ensure that the scale-invariant solutions

of the Equation (22) have the form

u(x, t) = tγv(y), y = xt−α/2, γ = c α/2. (32)

Substitution of the function u from the formula (32) into the partial fractional differential
Equation (22) transforms it into an ordinary fractional differential equation with an unknown function
v(y). More precisely, the following result holds true:

Theorem 6 ([9]). The scale-invariant solutions of the Equation (22) in the form (32) satisfy the equation

(∗P
γ−1,α
2/α v)(y) = v′′(y), y > 0, (33)
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where the operator ∗P
γ−1,α
2/α is the Caputo type modification of the right-hand sided Erdélyi-Kober fractional

derivative defined by

(∗Pτ,α
δ g)(y) := (Kτ,n−α

δ

n−1

∏
j=0

(τ + j− 1
δ

u
d

du
)g)(y), y > 0, δ > 0, n− 1 < α ≤ n ∈ N. (34)

The operator Kτ,α
δ , α > 0 is the right-hand sided Erdélyi-Kober fractional integral defined by

(Kτ,α
δ g)(y) :=

1
Γ(α)

∫ ∞

1
(u− 1)α−1u−(τ+α)g(yu1/δ) du. (35)

For α = 1 and α = 2, the fractional diffusion-wave Equation (22) is reduced to the conventional
one-dimensional diffusion or wave equation, respectively. The Equation (33) for the scale-invariant
solutions of (22) is an ordinary differential equation, not a fractional one. In the case α = 1 (the diffusion
equation) we have the representation

(∗P
γ,1
2 v)(y) = (γ− 1

2
y

d
dy

)v(y)

and the Equation (33) takes the well-known form

v′′(z) +
1
2

yv′(y)− γv(y) = 0.

In the case α = 2 (the wave equation) we get the formula

(∗P
γ−1,2
1 v)(y) = (γ− 1− y

d
dy

)(γ− y
d

dy
)v(y) = y2v′′(y)− 2(γ− 1)yv′(y) + γ(γ− 1)v(y)

and the equation (33) is transformed to the following ODE:

(y2 − 1)v′′(y)− 2(γ− 1)yv′(y) + γ(γ− 1)v(y) = 0.

These both cases are discussed in detail in [37].
It turns out that the Equation (34) can be solved in explicit form in terms of the Wright function of

the second kind and the four-parameters Wright function of the second kind.

Theorem 7 ([14]). The scale-invariant solutions of the fractional diffusion-wave Equation (22) are given by
the formulas

u(x, t) = C1tγφ(−α

2
, 1 + γ;−y) + C2tγ

(
1
2

φ(−α

2
, 1 + γ; y)− y2+2 γ−1

α Φ
(2,3+2 γ−1

α ),(−α,2−α)
(y2)

)
(36)

in the case 1− α < γ < 1, γ 6= 1− α
2 , γ 6= 0, and

u(x, t) = C1φ(−α

2
, 1;−y) + C2

(
1
2

φ(−α

2
, 1; y)− y2− 2

α Φ(2,3− 2
α ),(−α,2−α)(y

2)

)
+ C3 (37)

in the case γ = 0, where y = xt−
α
2 is the first scale-invariant (31), φ is the Wright function of the second kind

defined by (4), Φ is the four-parameters Wright function of the second kind defined by (7), and C1, C2, C3 are
arbitrary constants.

For further results regarding the scale-invariant solutions to the fractional diffusion-wave
equations we refer to [9,14,15,18].
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3.2. Subordination Formula for the Multi-Dimensional Space-Time-Fractional Diffusion Equations

The object of analysis in this subsection is the multi-dimensional space-time-fractional
diffusion equation

Dβ
t u(x, t) = −(−∆)

α
2 u(x, t), x ∈ Rn, t > 0, 0 < α ≤ 2, 0 < β ≤ 1. (38)

In the Equation (38), the time-fractional derivative Dβ
t is defined in the Caputo sense:

Dβ
t u(x, t) =

(
In−β
t

∂nu
∂tn

)
(t), n− 1 < β ≤ n, n ∈ N (39)

with Iγ
t being the Riemann–Liouville fractional integral:

(Iγ
t u)(t) =

 1
Γ(γ)

∫ t
0 (t− τ)γ−1u(x, τ) dτ for γ > 0,

u(x, t) for γ = 0.

The fractional Laplacian−(−∆)
α
2 is understood as a pseudo-differential operator with the symbol

−|κ|α ([38,39]): (
F − (−∆)

α
2 u
)
(κ) = −|κ|α(F u)(κ) , (40)

where (F f )(κ) is the Fourier transform of a function u at the point κ ∈ Rn defined by

(F u)(κ) = f̂ (κ) =
∫
Rn

eiκ·xu(x) dx . (41)

The fractional Laplacian can be also represented as a hypersingular integral ([39]):

− (−∆)
α
2 u(x) = − 1

dn,m(α)

∫
Rn

(
∆m

h u
)
(x)

|h|n+α
dh, 0 < α < m, m ∈ N, x ∈ Rn (42)

with a suitably defined finite differences operator
(
∆m

h f
)
(x) and a normalization constant dn,m(α).

The representation (42) of the fractional Laplacian in form of the hypersingular integral does not
depend on m, m ∈ N provided α < m ([39]). For other representations of the fractional Laplacian we
refer the reader to [40].

In what follows, we consider the Cauchy problem for the space-time-fractional diffusion
Equation (38) with the Dirichlet initial condition:

u(x, 0) = f (x) , x ∈ Rn. (43)

Because the initial-value problem (38), (43) is linear, its solution can be represented in the form

u(x, t) =
∫
Rn

Gα,β,n(ζ, t) f (x− ζ) dζ. (44)

In (44), the function f is the initial condition and Gα,β,n is the first fundamental solution of (38),
i.e., its solution with the initial condition

u(x, 0) =
n

∏
i=1

δ(xi) , x = (x1, x2, . . . , xn) ∈ Rn

where δ is the Dirac delta function.



Mathematics 2020, 8, 970 11 of 16

In the case of the conventional diffusion equation (α = 2 and β = 1 in the Equation (38)),
the fundamental solution is well-known:

G2,1,n(x, t) =
1

(
√

4πt)n
exp

(
−|x|

2

4t

)
. (45)

It turned out that the fundamental solution Gα,β,n to the multi-dimensional space-time-fractional
diffusion Equation (38) can be represented in terms of the fundamental solution G2,1,n of the
conventional diffusion equation. The result obtained in [33] for the first time is given in the
following theorem:

Theorem 8 ([33]). For the fundamental solution Gα,β,n(x, t) to the multi-dimensional space-time-fractional
diffusion-wave Equation (38) with 0 < β ≤ 1, 0 < α ≤ 2, and 2β + α < 4 the following subordination formula
is valid:

Gα,β,n(x, t) =
∫ ∞

0
t−

2β
α Ψα,β(st−

2β
α ) G2,1,n(x, s) ds, (46)

where the fundamental solution G2,1,n(x, s) to the conventional diffusion equation is given by the formula (45)
and the kernel function Ψα,β is a probability density function in s, s ∈ R+ for each value of t, t > 0 defined
as follows:

Ψα,β(τ) =



τ
α
2−1 Φ( α

2 , α
2 ),(−β,1−β)

(
−τ

α
2

)
if β

α < 1
2 ,

−τ−1− α
2 Φ(β,1−β),(− α

2 ,− α
2 )

(
−τ−

α
2

)
if β

α > 1
2 ,


τ

α
2−1

π ∑∞
k=0 sin

(
πα
2 (k + 1)

) (
−τ

α
2

)k
if 0 < τ < 1

− τ−1

π ∑∞
k=0 sin

(
πα
2 k
) (
−τ−

α
2

)k
if τ > 1

if β
α = 1

2 .

(47)

In the formula (47), the function Φ is the four-parameters Wright function of the second kind defined by (9).

It is worth mentioning that even if the subordination formula (46) concerns just the fundamental
solution, it can be extended to the solution operator for the initial-value problem (38), (43). Indeed,
let us suppose that a more general subordination formula for the fundamental solution Gα,β,n is valid:

Gα,β,n(x, t) =
∫ ∞

0
Ψ(α, β, s, t)Gα̂,β̂,n(x, s) ds, (48)

where the kernel function Ψ = Ψ(α, β, s, t) can be interpreted as a probability density function in
s, s ∈ R+ for each value of t, t > 0 (the formula (47) is a particular case of the formula (48)). Then we
have the following chain of relations:

Sα,β,n(t) f =
∫
Rn

Gα,β,n(ζ, t) f (x− ζ) dζ =
∫
Rn

∫ ∞

0
Ψ(α, β, s, t)Gα̂,β̂,n(ζ, s) ds f (x− ζ) dζ =

∫ ∞

0
Ψ(α, β, s, t)

∫
Rn

Gα̂,β̂,n(ζ, s) f (x− ζ) dζ ds =
∫ ∞

0
Ψ(α, β, s, t)Sα̂,β̂,n(s) f ds.

Thus, the subordination formula

Sα,β,n(t) f =
∫ ∞

0
Ψ(α, β, s, t)Sα̂,β̂,n(s) f ds (49)
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holds true for the solution operator Sα,β,n. Vice versa, any subordination formula for the solution
operator Sα,β,n to the initial-value problem (38), (43) in the form (49) induces a subordination formula
of the type (48) for the fundamental solution Gα,β,n just by setting f to be the Dirac δ-function.

In the rest of this subsection, we provide some important remarks concerning the kernel Ψα,β of
the subordination formula (46).

In [33], the kernel function Ψα,β given by the formula (47) was first deduced in form of the
following Mellin–Barnes integral:

Ψα,β(τ) =
2
α

1
2πi

∫ γ+i∞

γ−i∞

Γ
( 2

α −
2
α s
)

Γ
(
1− 2

α + 2
α s
)

Γ
(

1− 2β
α + 2β

α s
)

Γ (1− s)
τ−s ds. (50)

The series representation (47) was derived by evaluating the Mellin–Barnes integral (50) taking
into account the Jordan lemma, the formula (14) for the residual of the Gamma-function Γ(s) at the
point s = −k, the asymptotic behavior of the Gamma-function, and the Cauchy residue theorem.

The kernel function Ψα,β can be also interpreted as the inverse Laplace transform of the
Mittag–Leffler function Eβ(−λ

α
2 ):

Eβ(−λ
α
2 ) =

∫ ∞

0
Ψα,β(τ) e−λτ dτ, (51)

where the Mittag–Leffler function Eβ is defined as follows:

Eβ(z) = Eβ,1(z) =
∞

∑
k=0

zk

Γ(1 + β k)
, β > 0, z ∈ C. (52)

For the time-fractional diffusion equation (α = 2, 0 < β ≤ 1 in the Equation (38)) the subordination
formula (46) with the kernel function Φα,β given by the 1st line of (47) is valid. In this case,
the four-parameters Wright function of the second kind is reduced to the Wright function of the
second kind and we arrive at the known formula ([41,42])

G2,β,n(x, t) =
∫ ∞

0
t−βφ(−β, 1− β;−st−β)G2,1,n(x, s) ds, 0 < β < 1. (53)

For the space-fractional diffusion equation (β = 1, 0 < α ≤ 2 in the Equation (38)),
the subordination formula (46) with the kernel function Ψα,β given by the 2nd line of (47) is valid. It is
easy to verify that the kernel function can be rewritten in the following form:

−τ−1− α
2 Φ(β,1−β),(− α

2 ,− α
2 )

(
−τ−

α
2

)
= τ−1 Φ(β,1),(− α

2 ,0)

(
−τ−

α
2

)
.

Thus, also in the case of the space-fractional diffusion equation, the four-parameters Wright
function of the second kind from the formula (47) is reduced to the Wright function of the second kind
and we arrive at the subordination formula in the form

Gα,1,n(x, t) =
∫ ∞

0
s−1φ(−α

2
, 0;−s−

α
2 t) G2,1,n(x, s) ds, 0 < α < 2. (54)

3.3. FDEs with the Left- and Right-Hand Sided Erdélyi-Kober Fractional Derivatives

In this part of the section, we consider an initial-value problem for an ordinary fractional
differential equation with the left- and right-hand sided Erdélyi-Kober fractional derivatives defined
on the positive semi-axis. The equations of this type appear in the fractional calculus of variations as
the Euler-Lagrange equations. However, to the best knowledge of the author, the only method for
analytical treatment of these equations defined on an infinite interval, say, on the positive real semi-axis,



Mathematics 2020, 8, 970 13 of 16

is the operational method recently suggested in [32]. Here we present an example of application of
this method to the following sample equation (a > b > 0, n− 1 < aµ ≤ n, n ∈ N):

( ∗D
−α−aµ,aµ
1/a y)(x) + ρ xµ( ∗P

β−bµ,bµ
1/b y)(x) = f (x), x > 0, ρ > 0 (55)

subject to the initial conditions (k = 0, . . . , n− 1)

lim
x→0

x
1
a (1−α−aµ+k)

n−1

∏
i=k+1

(
1− α− aµ + i + ax

d
dx

)
y(x) = ck. (56)

In the Equation (55), the operator ∗P
β−bµ,bµ
1/b is the Caputo type modification of the right-hand

sided Erdélyi-Kober fractional derivative given by the formula (34). The operator ∗D
−α−aµ,aµ
1/a is the

Caputo type modification of the left-hand sided Erdélyi-Kober fractional derivative defined as follows:

(∗D
γ,δ
β f )(x) = (Iγ+δ,n−δ

β

n−1

∏
k=0

(
1 + γ + k +

1
β

t
d
dt

)
f )(x), (57)

where Iγ,δ
β stays for the left-hand sided Erdélyi-Kober fractional integral of order δ:

(Iγ,δ
β f )(x) =

1
Γ(δ)

∫ 1

0
(1− t)δ−1tγ f

(
xt

1
β

)
dt, δ, β > 0, γ ∈ R. (58)

It is worth mentioning that the initial conditions in form (56) are determined by the projector
operator of the left-hand sided Erdélyi-Kober fractional integral I−α−aµ,aµ

1/a

(P y)(x) = y(x)− (I−α−aµ,aµ
1/a ∗D

−α−aµ,aµ
1/a y)(x) =

n−1

∑
k=0

ckx−
1
a (1−α−aµ+k), (59)

ck = lim
x→0

x
1
a (1−α−aµ+k)

n−1

∏
i=k+1

(
1− α− aµ + i + ax

d
dx

)
y(x) (60)

and thus, they are quite natural for the Equation (38).
In this paper, we do not repeat the derivation of the exact solution to the initial-value problem (55),

(56) presented in [32] and restrict ourselves to formulation of the final result.

Theorem 9. Let a > b > 0, n− 1 < aµ ≤ n, n ∈ N, f ∈ O, and the condition

α− 1
a

<
β

b
(61)

be satisfied. Then the initial-value problem (38), (56) possesses a unique solution on the space O in the form

y(x) =
n−1

∑
k=0

ckyk(x) + y f (x), (62)

where the functions yk, k = 0, . . . , n− 1 are defined by

yk(x) = Γ(aµ− k)Γ
(

β +
b
a
(1− α− aµ + k)

)
xµ− 1

a (1−α+k) Φ(aµ,aµ−k),(−bµ,β+ b
a (1−α−aµ+k)(−ρ xµ),

(63)
and the function y f is given by the formula

y f (x) = g(x) + (g
λ∗ yΦ)(x), (64)
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with
g(x) = (I−α−aµ,aµ

1/a f )(x), yΦ(x) = ρ xµ−λΦ(aµ,1−α+a(µ−λ)),(−bµ,β−b(µ−λ)(−ρ xµ)

and the convolution
λ∗ defined as follows:

( f
λ∗ g)(x) = (I1−2α−aλ,α+aλ−1

1/a ∗P
β,β+bλ
1/b f ◦ g)(x) (65)

with

( f ◦ g)(x) = xλ
∫ 1

0

∫ 1

0
τ−α

1 (1− τ1)
−α τ

β−1
2 (1− τ2)

β−1 f

(
xτa

1

τb
2

)
g
(

x(1− τ1)
a

(1− τ2)b

)
dτ1dτ2. (66)

The function y f satisfies the inhomogeneous Equation (55) and homogeneous initial conditions, whereas
the functions yk, k = 0, . . . , n− 1 satisfy the homogeneous Equation (55) ( f (x) ≡ 0, x > 0) and the initial
conditions (k = 0, . . . , n− 1, j = 0, . . . , n− 1)

lim
x→0

x
1
a (1−α−aµ+j)

n−1

∏
i=j+1

(
1− α− aµ + i + ax

d
dx

)
yk(x) =

{
1, j = k,

0, j 6= k.
(67)

In the formulation of the theorem, the space of functions denoted by O consists of the functions
that are continuous on the semi-axis ]0, ∞[ and can be represented as the convergent power series
with the power functions weights in some neighborhoods Uε1(0) and Uε2(+∞) of the points x = 0
and x = +∞, respectively, i.e., in the form

f (x) = xα
∞

∑
k=0

ak(xρ)k, ρ > 0, x ∈ Uε1(0), (68)

and

f (x) = xβ
∞

∑
k=0

bk(x−σ)k, σ > 0, x ∈ Uε2(+∞). (69)

The functions from O have a power law asymptotic behavior at the points 0 and +∞ that appears
to be an appropriate asymptotics for solutions of the fractional differential equations that contain both
the left- and right-hand sided Erdélyi-Kober fractional derivatives.

Finally, we mention that the results formulated in Theorem 9 remain valid also in the case of
the Equation (55) with a negative parameter ρ under the additional condition a/3 < b. This can be
proved by the operational method presented in [32] and employing the asymptotic behavior of the
four-parameters Wright function of the second kind on the positive semi-axis given in Theorem 4.
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