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1 Department of Mathematics, Sana’a University, P.O.Box 1247 Sana’a, Yemen
2 Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; lkocinac@gmail.com
3 Department of Computer Science, College of Science, Cihan University-Duhok, Duhok 42001, Iraq
4 Department of Mathematics, Faculty of Science, University of Zakho, Zakho 42002, Iraq;

baravan.asaad@uoz.edu.krd
* Correspondence: tareqalshami83@gmail.com

Received: 11 May 2020; Accepted: 4 June 2020; Published: 17 June 2020
����������
�������

Abstract: In this paper, we introduce the concept of sum of soft topological spaces using pairwise
disjoint soft topological spaces and study its basic properties. Then, we define additive and finitely
additive properties which are considered a link between soft topological spaces and their sum.
In this regard, we show that the properties of being p-soft Ti, soft paracompactness, soft extremally
disconnectedness, and soft continuity are additive. We provide some examples to elucidate that
soft compactness and soft separability are finitely additive; however, soft hyperconnected, soft
indiscrete, and door soft spaces are not finitely additive. In addition, we prove that soft interior, soft
closure, soft limit, and soft boundary points are interchangeable between soft topological spaces and
their sum. This helps to obtain some results related to some important generalized soft open sets.
Finally, we observe under which conditions a soft topological space represents the sum of some soft
topological spaces.

Keywords: sum of soft topological spaces; additive property; p-soft Ti; soft compactness;
soft paracompactness; soft extremally disconnectedness; soft separable; soft continuity

1. Introduction

In 1999, Molodtsov [1] introduced the concept of soft sets as an innovative approach to deal with
uncertainties. He demonstrated that soft sets are a beneficial mathematical method to handle with
uncertainty in a parametric manner. Then, Maji et al. have completed two significant works, the first
one has showed an application of soft set theory on decision-making problems [2], and the second one
has presented the basic concepts between two soft sets such as soft union, intersection, and equality
relations [3]. Ali et al. [4] have made some amendments for some results obtained by [3] and have
defined new types of soft union and intersection between two soft sets. They have presented these
types along with a relative complement of a soft set to keep the De Morgan’s laws on a soft setting.

In 2011, Shabir and Naz [5] initiated the concept of soft topological spaces using soft sets that are
defined over an initial universe set with a fixed set of parameters. After the inception of soft topology,
many authors have investigated soft topological concepts analogously with their counterparts on
classical topology. The different types of belong and non-belong relations on soft setting leads to
introducing several types of soft axioms in terms of ordinary points [5–8] and soft points [9,10].
The authors of [11–14] have corrected some alleged findings on soft separation axioms. The author
in [15] has presented and studied soft compactness. Then, the authors in [16] have defined other
types of soft compactness depending on the natural belonging of the ordinary points to the covers.
The authors in [17] have explored weak types of soft compact spaces, namely almost soft compact and
mildly soft compact spaces. Investigation of soft compactness using soft pre-open and soft semi-open
sets have been done by [18] and [19], respectively. The authors in [20] have discussed the concepts of
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soft connectedness and soft paracompactness. The authors in [21] have introduced a concept of soft
hyperconnected spaces, and the authors [22] have studied a concept of soft extremally disconnected
spaces. Kharal and Ahmad [23] were the first one who introduced the concept of soft mappings and
proved main properties. Then, the authors of [24] have defined and discussed the concepts of soft
continuous and homeomorphism maps. The study of generalized soft open sets began by Chen [25].
He defined soft semi-open sets and discussed main properties. Following Chen, the concepts of
soft α-open, soft b-open, soft pre-open, soft β-open, and soft somewhere dense sets have been given
in [26–29] and [30], respectively. In [31], the authors have presented the concept of the pointwise
topology of soft topological spaces and investigated the properties of soft mapping spaces. Recently,
the authors [32] have proved the equivalence between two types of soft topology and have investigated
the links between soft topology and its parameterized topologies.

We aim through this work to introduce and study the concept of sum of soft topological spaces
using pairwise disjoint soft topological spaces. Our results mainly investigate invariant properties
between soft topological spaces and their sum. We define additive and finitely additive properties.
With the help of illustrative examples, many properties such as p-soft Ti, soft paracompactness,
soft continuity, soft compactness, soft separability, and soft discrete are investigated regarding whether
they are additive, finitely additive, or not. In addition, we made use of interchangeability of soft
interior and soft closure operators between soft topological spaces and their sum to obtain some results
related to some important generalized soft open sets. Ultimately, we study under what conditions a
soft topological space represents the sum of some soft topological spaces.

2. Preliminaries

In what follows, we first recall the main definitions and results which will be used through
this work.

2.1. Soft Sets

Throughout the paper, Y will be a nonempty set, called an initial universal set, 2Y its power set,
E a nonempty set, called the set of parameters, A, B, C, ... subsets of E. Let us mention that almost all
definitions are given for soft sets having a common set of parameters A.

Definition 1. [1] A soft set over Y is an ordered pair (ξ, A) such that A ⊂ E is a set of parameters and ξ is a
mapping of A into 2Y.

We often write a soft set (ξ, A) as

(ξ, A) = {(a, ξ(a)) : a ∈ A and ξ(a) ∈ 2Y}.

Through this work, the collection of all soft sets over Y under a set of parameters A is denoted by
SS(YA). In addition, we use the different notations (ω, B), (δ, C), (η, D) for soft sets.

Definition 2. [3] A soft set (ξ, A) over Y is said to be the null soft set if ξ(a) = ∅ for all a ∈ A; and it is said
to be the absolute soft set if ξ(a) = Y for all a ∈ A.

The null and absolute soft sets are denoted by ∅̃Y and Ỹ, respectively.
A soft set (P, A) over Y is called a soft point if there exist a ∈ A and y ∈ Y such that P(a) = {y} and

P(b) = ∅, for each b ∈ A \ {a}. A soft point will be shortly denoted by Py
a and we say that Py

a ∈ (ξ, A),
if y ∈ ξ(a) [33].

Definition 3. [34] (ξ, A) is a soft subset of (ω, B), denoted by (ξ, A)⊆̃(ω, B), if A is a subset of B, and ξ(a)
is a subset of ω(a) for all a ∈ A. The two soft sets are soft equal if each of them is a soft subset of the other.

Definition 4. [4] The relative complement of (ξ, A) is a soft set (ξ, A)c = (ξc, A) such that the map ξc : A→
2Y is defined by ξc(a) = Y \ ξ(a) for each a ∈ A.
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Definition 5. [3] The union of soft sets (ξ, A) and (ω, B) over Y, denoted by (ξ, A)
⋃̃
(ω, B), is the soft set

(δ, C), where C = A
⋃

B and δ : C → 2Y is a mapping defined by

δ(c) =


ξ(c) : c ∈ A \ B

ω(c) : c ∈ B \ A
ξ(c)

⋃
ω(c) : c ∈ A

⋂
B.

Definition 6. [4] The intersection of soft sets (ξ, A) and (ω, B) over Y, denoted by (ξ, A)
⋂̃
(ω, B), is a soft

set (δ, C), where C = A
⋂

B 6= ∅ and δ : C → 2Y is a mapping defined by δ(c) = ξ(c)
⋂

ω(c).

However, in this paper, we need definitions of the union and intersection for an arbitrary family
of soft sets over a common universe Y and with a common set of parameters.

Definition 7. [3] The union of a family {(ξi, A) : i ∈ I} of soft sets over the common universe Y, denoted⋃̃
i∈I(ξi, A), is the soft set (η, A), where, for each a ∈ A, η(a) =

⋃
i∈I ξi(a).

The intersection of a family {(ξi, A); i ∈ I} over the common universe Y, denoted
⋂̃

i∈I(ξi, A), is the soft
set (η, A), where, for each a ∈ A, η(a) =

⋂
i∈I ξi(a).

Definition 8. [33] A soft mapping between SS(YA) and SS(ZA) is a mapping f : Y → Z such that the image
of (ξ, A) ∈ SS(YA) and preimage of (θ, A) ∈ SS(ZA) are defined by:

1. f (ξ, A) = ( f (ξ), A), where [ f (ξ)](a) = f (ξ(a)), a ∈ A;
2. f←(θ, A) = ( f←(θ), A), where [ f←(θ)](a) = f←(θ(a)), a ∈ A.

2.2. Soft Topology

Definition 9. [5] The family τ of soft sets over Y under a set of parameters A is called a soft topology on Y
provided that it is closed under arbitrary union and finite intersection and contains Ỹ and ∅̃Y.

The triple (Y, τ, A) is called a soft topological space. An element (ξ, A) is called a soft open set (resp. soft
closed set) if (ξ, A) (resp. (ξ, A)c) belongs to τ.

A soft set (ξ, A) in a soft topological space (Y, τ, A) is called a soft neighborhood of the soft point
Py

a in (Y, τ, A) if there exists a soft open set (η, A) such that Py
a ∈ (η, A)⊆̃(ξ, A).

Definition 10. [5] Let (ξ, A) be a soft subset of (Y, τ, A). Then,

1. The interior of (ξ, A), denoted by Int(ξ, A), is the union of all soft open sets contained in (ξ, A).
2. The closure of (ξ, A), denoted by Cl(ξ, A), is the intersection of all soft closed sets containing (ξ, A).
3. (ξ, A) is dense in (Y, τ, A) if its closure is equal to the set Ỹ. The space (Y, τ, A) is separable if it contains

a countable dense soft set [17]. (Recall that a soft set (ξ, A) is countable if ξ(a) is countable for each
a ∈ A.)

Definition 11. For a subset Z 6= ∅ of (Y, τ, A), the family τZ = {Z̃⋂̃
(ξ, A) : (ξ, A) ∈ τ} is called a soft

relative topology on Z and the triple (Z, τZ, A) is called a soft subspace of (Y, τ, A).

Proposition 1. [5] Let (Y, τ, A) be a soft topological space. Then, for each a ∈ A, the family τa = {ξ(a) :
(ξ, A) ∈ τ} defines a topology on Y for each a ∈ A.

We call τa a parametric topology on Y.

Definition 12. [5,7] Let (ξ, A) be a soft set over Y and y ∈ Y. We write:

1. y b (ξ, A) if y ∈ ξ(a) for some a ∈ A; and y 6b (ξ, A) if y 6∈ ξ(a) for every a ∈ A.
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2. y ∈ (ξ, A) if y ∈ ξ(a) for every a ∈ A; and y 6∈ (ξ, A) if y 6∈ ξ(a) for some a ∈ A. In particular, y ∈ Ỹ
means y ∈ Y.

Definition 13. [7] (Y, τ, A) is said to be:

1. p-soft T0 if, for every y 6= z ∈ Y, there is a soft open set (ξ, A) such that y ∈ (ξ, A) and z 6b (ξ, A) or
z ∈ (ξ, A) and y 6b (ξ, A).

2. p-soft T1 if, for every y 6= z ∈ Y, there are soft open sets (ξ, A) and (ω, A) such that y ∈ (ξ, A), z 6b
(ξ, A), z ∈ (ω, A) and y 6b (ω, A).

3. p-soft T2 if, for every y 6= z ∈ Y, τ contains two disjoint soft open sets (ξ, A) and (ω, A) such that
y ∈ (ξ, A), z 6b (ξ, A), y ∈ (ω, A) and x 6b (ω, A).

4. p-soft regular if for every soft closed set (η, A) and y ∈ Y such that y 6b (η, A), τ contains disjoint soft
open sets (ξ, A) and (ω, A) such that (η, A)⊆̃(ξ, A) and y ∈ (ω, A).

5. soft normal if, for every two disjoint soft closed sets (η1, A) and (η2, A), τ contains two disjoint soft open
sets (ξ, A) and (ω, A) such that (η1, A)⊆̃(ξ, A) and (η2, A)⊆̃(ω, A).

6. p-soft T3 (resp. p-soft T4) if it is both p-soft T1 and p-soft regular (resp. soft normal).

Definition 14. [7] A soft set (ξ, A) over Y is called stable provided that there is S ⊆ Y such that ξ(a) = S for
each a ∈ A; a soft topological space (Y, τ, A) is called stable provided that all proper non null soft open sets
are stable.

A family {(ξi, A) : i ∈ I} of soft sets in (Y, τ, A) is said be a soft cover of (Y, τ, A) if ∪̃i∈I(ξi, A) = Ỹ.
A soft cover {(ξi, A) : i ∈ I} is said to be locally finite if, for each soft point, Py

a has a soft neighborhood
intersecting only finitely many (ξi, A). A soft cover {(ξi, A) : i ∈ I} is a soft refinement of a soft cover
{(ωj, B) : j ∈ J} if, for each (ξi, A), there is (ωj, B) such that (ξi, A)⊂̃(ωj, B).

Definition 15. A soft topological space (Y, τ, A) is said to be:

1. soft compact [15] provided that every soft open cover of Y has a finite subcover.
2. soft paracompact [20] if every soft open cover has a soft open, locally finite refinement.
3. soft connected [20] if it can not be expressed as a union of two disjoint soft open sets.
4. soft hyperconnected [30] if every nun-null soft open set is soft dense.
5. soft extremally disconnected [22] if Clτ(ξ, A) is soft open for every (ξ, A) ∈ τ.

Theorem 1. [15,20] A soft closed set in a soft compact (resp. soft paracompact) space is also soft compact (resp.
soft paracompact).

Definition 16. [24] A soft mapping f : (Y, τ, A)→ (Z, θ, A) is said to be:

1. soft continuous if the inverse image of each soft open set is soft open.
2. soft open (resp. soft closed) if the image of each soft open (resp. soft closed) set is soft open (resp. soft closed).
3. soft homeomorphism if it is bijective, soft continuous, and soft open.

Definition 17. A soft subset (ξ, A) of (Y, τ, A) is said to be:

1. soft semi-open [25] if (ξ, A)⊆̃Cl(Int((ξ, A))).
2. soft β-open [29] if (ξ, A)⊆̃Cl(Int(Cl((ξ, A)))).
3. soft pre-open [28] if (ξ, A)⊆̃Int(Cl((ξ, A))).
4. soft α-open [26] if (ξ, A)⊆̃Int(Cl(Int((ξ, A)))).
5. soft b-open [27] if (ξ, A)⊆̃Int(Cl((ξ, A)))

⋃̃
Cl(Int((ξ, A))).

6. soft somewhere dense [30] if Int(Cl((ξ, A))) 6= ∅̃Y.
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3. Sum of Soft Topological Spaces

In this section, we introduce and study the concept of sum of soft topological spaces. Then,
we investigate which properties are additive and finitely additive.

Definition 18. A collection of two or more soft sets is said to be pairwise disjoint if the intersection of any two
distinct soft sets is the null soft set.

Proposition 2. Let {(Yi, τi, A) : i ∈ I} be a family of pairwise disjoint soft topological spaces and Y =
⋃

i∈I Yi.
Then, the collection

τ = {(ξ, A) over
⋃
i∈I

Yi : (ξ, A)
⋂̃

Ỹi = {(a, ξ(a)
⋂

Yi) : a ∈ A} is a soft open set in (Yi, τi, A) for every i ∈ I}

defines a soft topology on Y with a fixed set of parameters A.

Proof. It is clear that Ỹ and ∅̃Y are members of τ. Let (ξ j, A) ∈ τ, where j ∈ J be an arbitrary family.
Then, (ξ j, A)

⋂̃
Ỹi ∈ τi for each j ∈ J and i ∈ I. Thus,

⋃̃
j∈J(ξ j, A)

⋂̃
Ỹi ∈ τi for each i ∈ I. Thus, τ is

closed under arbitrary unions. Let (ξ1, A) and (ξ2, A) be two members of τ. Then, (ξ1, A)
⋂̃

Ỹi ∈ τi and
(ξ2, A)

⋂̃
Ỹi ∈ τi for each i ∈ I. Therefore, [(ξ1, A)

⋂̃
(ξ2, A)]

⋂̃
Ỹi ∈ τi for each i ∈ I. Thus, τ is closed

under finite intersections. Hence, τ is a soft topology on Y.

Definition 19. The soft topological space (Y, τ, A) given in the above proposition is said to be the sum of soft
topological spaces and is denoted by (⊕i∈IYi, τ, A).

Remark 1. The term of sum of soft topological spaces was given in [31] without a condition of pairwise
disjointness. Moreover, the authors of [31] did not study the properties of additive, finitely additive and
countably additive which represent the main goal of this study. In fact, this definition leads to confusion on
how constructing the sum of soft topological spaces and losing some well-known properties of the sum of soft
topological spaces as the following example shows:

Example 1. Let A = {a1, a2} and let Y1 = {1, 2} and Y2 = {1, 3}. Consider that τ1 = {∅̃Y1 , Ỹ1} and
τ2 = {∅̃Y2 , Ỹ2} are two soft topologies on Y1 and Y2, respectively. The sum of soft topological spaces (Y1, τ1, A)

and (Y2, τ2, A) does not exist according to Definition 19 because Y1
⋂

Y2 6= ∅. However, the sum of soft
topologies τ1 and τ2 on Y = Y1

⋃
Y2 = {1, 2, 3} according to the definition given in [31] is τ = {∅̃Y, Ỹ}. It is

clear that Ỹ1 and Ỹ2 do not belong to τ and this contradicts the fact that the universal sets Ỹ1 and Ỹ2 belong
to τ, see Corollary 1. Moreover, (Y, τ, A) is soft connected and this contradicts the fact that the sum of soft
topological spaces is soft disconnected, see Corollary 2.

Proposition 3. A soft subset (η, A) of (⊕i∈IYi, τ, A) is soft closed if and only if (η, A)
⋂̃

Ỹi is a soft closed
subset of (Yi, τi, A) for every i ∈ I.

Proof. (η, A) is a soft closed subset of (⊕i∈IYi, τ, A) ⇔ (ηc, A)
⋂̃

Ỹi is a soft open subset of (Yi, τi, A)

for every i ∈ I ⇔ (η, A)
⋂̃

Ỹi is a soft closed subset of (Yi, τi, A) for every i ∈ I.

Corollary 1. All soft sets Ỹi are soft clopen in (⊕i∈IYi, τ, A).

Corollary 2. Every sum of soft topological spaces is soft disconnected.

Proposition 4. If {(Yi, τi, A) : i ∈ I} is a class of pairwise disjoint soft topological spaces and Xi is a subspace
of Yi for every i ∈ I, then the soft topology of the sum of subspaces {(Xi, τXi , A) : i ∈ I} and the soft topological
subspace on

⋃
i∈I Xi of the sum soft topology (⊕i∈IYi, τ, A) coincide.

Proof. Straightforward.
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Definition 20. A property P is said to be:

1. additive if, for any family of soft topological spaces {(Yi, τi, A) : i ∈ I} with the property P , the sum of
this family (⊕i∈IYi, τ, A) also has property P .

2. finitely additive (resp., countably additive) if, for any finite (resp., countable) family soft topological spaces
with the property P , the sum of this family (⊕i∈IYi, τ, A) also has property P .

Theorem 2. The property of being a p-soft Ti-space is an additive property for i = 0, 1, 2, 3, 4.

Proof. We prove the theorem in the case of i = 2. Let y 6= z ∈ ⊕i∈IYi. Then, we have the following
two cases:

1. There exists i0 ∈ I such that y, z ∈ Yi0 .
Since (Yi0 , τi0 , A) is p-soft T2, then there exist two disjoint soft open subsets (ξ, A) and (ω, A) of

(Yi0 , τi0 , A) such that y ∈ (ξ, A) and z ∈ (ω, A). It follows from Definition 19 that (ξ, A) and (ω, A)

are disjoint soft open subsets of (⊕i∈IYi, τ, A).
2. There exist i0 6= j0 ∈ I such that y ∈ Yi0 and z ∈ Yj0 .
Now, Ỹi0 and Ỹj0 are soft open subsets of (Yi0 , τi0 , A) and (Yj0 , τj0 , A), respectively. It follows from

Definition 19 that Ỹi0 and Ỹj0 are disjoint soft open subsets of (⊕i∈IYi, τ, A).
It follows from the two cases above that (⊕i∈IYi, τ, A) is a p-soft T2-space.
The theorem can be proved similarly in the cases of i = 0, 1.
To prove the theorem in the cases of i = 3 and i = 4, it suffices to prove the p-soft regularity and

soft normality, respectively.
First, we prove the p-soft regularity property. Let (η, A) be a soft closed subset of (⊕i∈IYi, τ, A)

such that y 6b (η, A). It follows from Proposition 3 that (η, A)
⋂̃

Ỹi is soft closed in (Yi, τi, A) for
each i ∈ I. Since y ∈ ⊕i∈IYi, there is only i0 ∈ I such that y ∈ Yi0 . This implies that there are
disjoint soft open subsets (ξ, A) and (ω, A) of (Yi0 , τi0 , A) such that (η, A)

⋂̃
Ỹi0⊆̃(ξ, A) and y ∈ (ω, A).

Now, (ξ, A)
⋃̃

i 6=i0
Ỹi is a soft open subset of (⊕i∈IYi, τ, A) containing (η, A). The disjointness between

(ξ, A)
⋃̃

i 6=i0
Ỹi and (η, A) ends the proof that (⊕i∈IYi, τ, A) is a p-soft regular space.

Second, we prove the soft normality property. Let (η, A) and (δ, A) be two disjoint soft closed
subsets of (⊕i∈IYi, τ, A). It follows from Proposition 3 that (η, A)

⋂̃
Ỹi and (δ, A)

⋂̃
Ỹi are soft closed in

(Yi, τi, A) for each i ∈ I. Since (Yi, τi, A) is soft normal for each i ∈ I, then there exist two disjoint soft
open subsets (ξi, A) and (ωi, A) of (Yi, τi, A) such that (η, A)

⋂̃
Ỹi⊆̃(ξi, A) and (δ, A)

⋂̃
Ỹi⊆̃(ωi, A).

This implies that (η, A)⊆̃ ⋃̃
i∈I

(ξi, A), (δ, A)⊆̃ ⋃̃
i∈I

(ωi, A) and [
⋃̃
i∈I

(ξi, A)]
⋂̃
[
⋃̃
i∈I

(ωi, A)] = ∅̃. Hence,

(⊕i∈IYi, τ, A) is a soft normal space.

Proposition 5. The property of being a discrete soft space is an additive property.

Proof. Let (ξ, A) be a soft subset of (⊕i∈IYi, τ, A). Then, (ξ, A)
⋂̃

Ỹi is a soft subset of (Yi, τi, A) for
each i ∈ I. Therefore, it is a soft open subset of (Yi, τi, A) for each i ∈ I. Hence, (ξ, A) =

⋃̃
i∈I

[(ξ, A)
⋂̃

Ỹi]

is a soft open subset of (⊕i∈IYi, τ, A).

In the following two examples, we show that the properties of indiscrete and door soft spaces are
not additive properties. Recall that a soft topological space is a door soft space if each subset in it is soft
open, or soft closed, or both.

Example 2. Let A = {a1, a2} and let Y1 = {6, 7} and Y2 = {8, 9}. Then, τ1 = {∅̃Y1 , Ỹ1} and τ2 =

{∅̃Y2 , Ỹ2} are two indiscrete soft topologies on Y1 and Y2, respectively. Now, τ = {∅̃Y, Ỹ, Ỹ1, Ỹ2} is the sum of
soft topologies τ1 and τ2 on Y = Y1

⋃
Y2 = {6, 7, 8, 9}. Since τ is not indiscrete, then the indiscrete soft space

property is not an additive property.
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Example 3. Let A = {a1, a2} and let Y1 = {6} and Y2 = {8}. Then, τ1 = {∅̃Y1 , Ỹ1, {(a1, {6}), (a2, ∅)}}
and τ2 = {∅̃Y2 , Ỹ2, {(a1, ∅), (a2, {8})} are two door soft topologies on Y1 and Y2, respectively. Now, τ =

{∅̃Y, Ỹ, Ỹ1, Ỹ2, {(a1, {6}), (a2, ∅)}, {(a1, ∅), (a2, {8})}, {(a1, {6}), (a2, {8})}} is the sum of soft topologies
τ1 and τ2 on Y = Y1

⋃
Y2 = {6, 8}. Since τ is not a door soft topology, then the door soft topology is not an

additive property.

Proposition 6. The property of being a soft compact space is a finitely additive property.

Proof. Let {(Yk, τk, A) : k ∈ {1, 2, ..., n}} be a finite family of pairwise disjoint soft compact spaces
and let (⊕n

k=1Yk, τ, A) be the sum of this family. Suppose that {(ξi, A) : i ∈ I} is a soft open cover of

Ỹ =
ñ⋃

k=1
Ỹk. Then, Ỹk =

⋃̃
i∈I

[(ξi, A)
⋂̃

Ỹk] for every k ≤ n. Since (Yk, τk, A) is soft compact for every k ≤ n,

there exist finite subsets M1, M2, ..., Mn of I such that Ỹ1 =
⋃̃

i∈M1

[(ξi, A)
⋂̃

Ỹ1], Ỹ2 =
⋃̃

i∈M2

[(ξi, A)
⋂̃

Ỹ2], ...,

Ỹn =
⋃̃

i∈Mn

[(ξi, A)
⋂̃

Ỹn]. Letting M =
n⋃

k=1
Mk, now, Ỹ =

⋃̃
i∈M

[(ξi, A)
⋂̃

Ỹk] for every k ≤ n. Since M is

finite, then (⊕n
k=1Ys, τ, A) is soft compact.

The following example shows that soft compactness is not an additive property.

Example 4. Let A = {a1, a2} and let Yn = {2n− 1, 2n}, where n belongs to the set N of natural numbers.
Consider the discrete soft topology τn on Yn. Now, {(Yn, τn, A) : n ∈ N} is a family of pairwise disjoint soft
compact spaces. It follows from Proposition 5 that the sum of these soft spaces (⊕n∈NYn, τ, A) is soft discrete.
Obviously, (⊕n∈NYn, τ, A) is not soft compact. Hence, soft compactness is not an additive property.

Proposition 7. If the sum of soft topological spaces (⊕i∈IYi, τ, A) is soft compact, then we have the following
two assertions that are true:

1. all (Yi, τi, A) are soft compact.
2. the index set I is finite.

Proof. 1. From Corollary 1, (Yi, τi, A) is a soft closed subspace of (⊕i∈IYi, τ, A) for each i ∈ I. It follows
from Theorem 1 that (Yi, τi, A) is soft compact for each i ∈ I.

2. Let (⊕i∈IYi, τ, A) be the sum of soft topological spaces. Then, Λ = {Yi : i ∈ I} is a soft open
cover of Ỹ =

⋃̃
i∈I

Ỹi. It is clear that Λ does not have a finite subcover. This contradicts the fact that

(⊕i∈IYi, τ, A) is soft compact. Hence, it must be that I is finite.

Remark 2. It is clear that the soft topological spaces (Y1, τ1, A) and (Y2, τ2, A) given in Example 2 are soft
hyperconnected. Moreover, they are soft connected. However, the sum of (Y1, τ1, A) and (Y2, τ2, A) is neither
soft hyperconnected nor soft connected. This means that the properties of soft hyperconnected and soft connected
are not finite additive.

Similarly to the proof of Proposition 6, we prove the following:

Proposition 8. The property of being a soft Lindelöf space is a countably additive property.

Definition 21. A soft topological space (Y, τ, A) is said to be soft locally compact if every soft point Py
a has a

soft compact neighborhood.

Theorem 3. The sum of soft topological spaces (⊕i∈IYi, τ, A) is soft locally compact if and only if all soft spaces
(Yi, τi, A) are soft locally compact.
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Proof. Necessity: Let Pyi
a be a soft point in (Yi, τi, A). Then, there is a soft compact neighborhood

(ξ, A) of Pyi
a in (⊕i∈IYi, τ, A). Since (Yi, A) is soft closed, then (ξ, A)

⋂̃
(Yi, A) is a soft compact set

in (⊕i∈IYi, τ, A). Therefore, (ξ, A)
⋂̃
(Yi, A) is a soft compact set in (Yi, τi, A). Since Pyi

a ∈ Intτ(ξ, A),
then Pyi

a ∈ Intτi [(ξ, A)
⋂̃
(Yi, A)]. Hence, (ξ, A)

⋂̃
(Yi, A) is a soft compact neighborhood of Pyi

a in
(Yi, τi, A), as required.

Sufficiency: Let Py
a be a soft point in (⊕i∈IYi, τ, A). Then, there is Yi such that Py

a ∈ Ỹi. Since
(Yi, τi, A) is soft locally compact, then there is a soft compact neighborhood (ξ, A) of Py

a in (Yi, τi, A).
Since Yi

⋂
Yj = ∅ for each i 6= j, then (ξ, A) is a soft compact neighborhood of Py

a in (Yi, τi, A).

Theorem 4. The sum of soft topological spaces (⊕i∈IYi, τ, A) is soft paracompact if and only if all soft spaces
(Yi, τi, A) are soft paracompact.

Proof. Necessity: From Corollary 1, (Yi, τi, A) is a soft closed subspace of (⊕i∈IYi, τ, A) for each i ∈ I.
It follows from Theorem 1 that (Yi, τi, A) is soft paracompact for each i ∈ I.

Sufficiency: Suppose that Λ = {(ξ j, A) : j ∈ J} is a soft open cover of (⊕i∈IYi, τ, A). Then, U =

{(ξ j, A)
⋂̃

Ỹi : j ∈ J} is a soft open cover of (Yi, τi, A) for each i ∈ I. By hypothesis, there is a Vi such
that Vi = {(ξs, A)

⋂̃
Ỹi : s ∈ S ⊆ J} is a locally finite soft open refinement of U . Now,

⋃
i∈I Vi is a soft

open refinement of Λ. Since the family of (Yi, τi, A) is pairwise disjoint, then
⋃

i∈I Vi is locally finite as
well. Hence, (⊕i∈IYi, τ, A) is soft paracompact.

Definition 22. Let { fi : (Yi, τi, A) → (Zi, θi, B) : i ∈ I} be a family of soft mappings. Then, we define
a soft mapping f : (⊕i∈IYi, τ, A) → (⊕i∈I Zi, θ, B) as follows: For each soft subsets (ξ, A) and (ω, B) of
(⊕i∈IYi, τ, A) and (⊕i∈I Zi, θ, B), respectively, we have:

1. f (ξ, A) =
⋃̃
i∈I

fi([(ξ, A)
⋂̃

Ỹi]); and

2. f−1(ω, B) =
⋃̃
i∈I

f−1
i ([(ω, B)

⋂̃
Z̃i]).

Theorem 5. A soft mapping f : (⊕i∈IYi, τ, A) → (⊕i∈I Zi, θ, B) is soft continuous (resp. soft open, soft
closed) if and only if every soft mapping fi : (Yi, τi, A) → (Zi, θi, B) is soft continuous (resp. soft open,
soft closed).

Proof. We merely give a proof for the theorem in the case of soft continuity and one can prove the
cases between parentheses similarly.

Necessity: Suppose that a soft mapping f : (⊕i∈IYi, τ, A) → (⊕i∈I Zi, θ, B) is soft continuous.
Taking an arbitrary soft map f j : (Yj, τj, A)→ (Zj, θj, B), where j ∈ I. Let (ξ, B) be a soft open subset of
(Zj, θj, B). Then, (ξ, B) is a soft open subset of (⊕i∈I Zi, θ, B). By assumption, f−1(ξ, B) is a soft open
subset of (⊕i∈IYi, τ, A). Since (ξ, B)

⋂̃
Z̃i = ∅̃Zi for each i 6= j, then f−1(ξ, B) = f−1

j (ξ, B). Therefore,

f−1
j (ξ, B) is a soft open subset of (Yj, τj, A), as required.

Sufficiency: Suppose that fi : (Yi, τi, A) → (Zi, θi, B) is soft continuous for every i ∈ I and let
(ω, B) be a soft open subset of (⊕i∈I Zi, θ, B). Now, (ω, B)

⋂̃
Z̃i is a soft open subset of (Zi, θi, B) for

every i ∈ I. By assumption, f−1
i [(ω, B)

⋂̃
Z̃i] is a soft open subset of (Yi, θi, A) for every i ∈ I. Therefore,⋃̃

i∈I
f−1
i [(ω, B)

⋂̃
Z̃i] is a soft open subset of (⊕i∈IYi, τ, A). Since f−1(ω, B) =

⋃̃
i∈I

f−1
i [(ω, B)

⋂̃
Z̃i],

then f−1(ω, B) is a soft open subset of (⊕i∈IYi, τ, A), as required.

Corollary 3. A soft mapping f : (⊕i∈IYi, τ, A)→ (⊕i∈I Zi, θ, B) is soft homeomorphism if and only if every
soft mapping fi : (Yi, τi, A)→ (Zi, θi, B) is soft homeomorphism.

Theorem 6. Let Intτi and Intτ (resp. Clτi and Clτ , lτi and lτ) be the soft interior (resp. soft closure, soft limit)
points of a soft set (η, A)⊆̃Ỹi in (Yi, τi, A) and (⊕i∈IYi, τ, A), respectively. Then:

1. Intτi (η, A) = Intτ(η, A).
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2. Clτi (η, A) = Clτ(η, A).
3. lτi (η, A) = lτ(η, A).

Proof. 1. Intτi (η, A) =
⋃̃{(ξ, A)⊆̃Ỹi : (ξ, A) ∈ τi and (ξ, A)⊆̃(η, A)}

=
⋃̃{(ξ, A)⊆̃⊕̃i∈IYi : (ξ, A) ∈ τ (ξ, A)⊆̃(η, A)} [Since Yi

⋂
Yj = ∅, ∀i 6= j]

= Intτ(η, A).
2, 3. Following similar above arguments, results 2 and 3 are satisfied.

Corollary 4. Let bτi and bτ be the soft boundary of a soft set (η, A)⊆̃Ỹi in (Yi, τi, A) and (⊕i∈IYi, τ, A),
respectively. Then, bτi (η, A) = bτ(η, A).

Proof. bτi (η, A) = Clτi (η, A) \ Intτi (η, A)

= Clτ(η, A) \ Intτ(η, A) (by the above theorem)
= bτ(η, A).

Theorem 7. A soft set (η, A)⊆̃⊕̃i∈IYi is soft semi-open (resp. soft pre-open, soft α-open, soft b-open, soft
β-open) in (⊕i∈IYi, τ, A) if and only if all (η, A)

⋂̃
Ỹi are soft semi-open (resp. soft pre-open, soft α-open, soft

b-open, soft β-open) in (Yi, τi, A).

Proof. We give a proof for the theorem in the case of soft semi-open sets and one can prove the cases
between parentheses similarly.

Necessity: Let (η, A) be a soft semi-open subset of (⊕i∈IYi, τ, A). Then, (η, A)⊆̃ Clτ(Intτ((η, A))).
Now, (η, A)

⋂̃
Ỹi⊆̃Clτ(Intτ((η, A)))

⋂̃
Ỹi. Since Ỹi is soft open in (⊕i∈IYi, τ, A), then

Clτ(Intτ((η, A)))
⋂̃

Ỹi⊆̃Clτ [Intτ((η, A))
⋂̃

Ỹi] = Clτ [Intτ [(η, A)
⋂̃

Ỹi]]. From Theorem 6, we have
Clτ [Intτ [(η, A)

⋂̃
Ỹi]] = Clτi [Intτi [(η, A)

⋂̃
Ỹi]]. Thus, (η, A)

⋂̃
Ỹi⊆̃Clτi [Intτi [(η, A)

⋂̃
Ỹi]]. Hence,

(η, A)
⋂̃

Ỹi is a soft semi-open set in (Yi, τi, A).
Sufficiency: Let (η, A)

⋂̃
Ỹi be a soft semi-open subset of (Yi, τi, A). Then, (η, A)

⋂̃
Ỹi⊆̃

Clτi (Intτi ((η, A)
⋂̃

Ỹi)). It follows from Theorem 6 that (η, A)
⋂̃

Ỹi⊆̃Clτ(Intτ((η, A)
⋂̃

Ỹi)). Thus,
(η, A)

⋂̃
Ỹi is soft semi-open in (Yi, τi, A). It is well known that

⋃̃
i∈I

(η, A)
⋂̃

Ỹi = (η, A) is a soft semi-open

subset of (⊕i∈IYi, τ, A).

Lemma 1. Let (η, A) be a soft subset of (⊕i∈IYi, τ, A). Then, the collection {(η, A)
⋂̃

Ỹi : i ∈ I} is
locally finite.

Proof. For each Px
a ∈ {(η, A)

⋂̃
Ỹi : i ∈ I}, there is a soft open subset Ỹj of (⊕i∈IYi, τ, A) such that

Px
a ∈ Ỹj. Since (η, A)

⋂̃
Ỹj is the only member of {(η, A)

⋂̃
Ỹi : i ∈ I} such that [(η, A)

⋂̃
Ỹj]

⋂̃
Ỹj 6= ∅̃Yj ,

the desired result holds.

Theorem 8. (η, A)⊆̃⊕̃i∈IYi is a soft dense subset of (⊕i∈IYi, τ, A) if and only if all (η, A)
⋂̃

Ỹi are a soft dense
subset of (Yi, τi, A).

Proof. Necessity: First, we prove that (η, A)
⋂̃

Ỹi 6= ∅̃Yi for each i ∈ I. Suppose that there exists j ∈ I
such that (η, A)

⋂̃
Ỹj = ∅̃Yj . Then, (η, A)⊆̃[Ỹj]

c. Therefore, Clτ(η, A)⊆̃[Ỹj]
c. However, this contradicts

that (η, A) is a soft dense subset of (⊕i∈IYi, τ, A). Second, it is clear that (η, A) =
⋃̃
i∈I

[(η, A)
⋂̃

Ỹi]. Since

the collection {(η, A)
⋂̃

Ỹi : i ∈ I} is locally finite, then Clτ(η, A) =
⋃̃
i∈I

Clτ [(η, A)
⋂̃

Ỹi]. This implies that

Clτ [(η, A)
⋂̃

Ỹi] = Clτi [(η, A)
⋂̃

Ỹi] = Ỹi for each i ∈ I.
Sufficiency: The proof follows from the fact that Clτ(η, A) =

⋃̃
i∈I

Clτi [(η, A)
⋂̃

Ỹi] =
⋃̃
i∈I

Ỹi =

⊕i∈IYi.
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Proposition 9. The property of being a soft separable space is a countably additive property.

Proof. Let {(Yi, τi, A) : i = 1, 2, ...} be a countable family of pairwise disjoint soft topological spaces
such that there exists a countable soft dense subset (ξi, A) of (Yi, τi, A) for each i ∈ N. Set (ω, A) =
∞̃⋃

i=1
(ξi, A). Obviously, (ω, A) is countable. In addition, Clτ(ω, A) =

∞̃⋃
i=1

Clτi (ξi, A) =
∞̃⋃

i=1
Ỹi = ⊕i∈NYi.

Thus, (ω, A) is soft dense. Thus, (⊕i∈NYi, τ, A) is soft separable. Hence, the desired result is
proved.

Theorem 9. (⊕i∈IYi, τ, A) is soft extremally disconnected if and only if all (Yi, τi, A) are soft
extremally disconnected.

Proof. Necessity: Let (ξ, A) be a soft open subset of (Yi, τi, A). Then, it is a soft open subset of
(⊕i∈IYi, τ, A). By hypothesis, Clτ(ξ, A) is soft open. Since Clτ(ξ, A) = Clτi (ξ, A), then Clτi (ξ, A) is a
soft open subset of (Yi, τi, A). Hence, (Yi, τi, A) is soft extremally disconnected.

Sufficiency: Let (ξ, A) be a soft open subset of (⊕i∈IYi, τ, A). Then, (ξ, A) =
⋃

i∈I [(ξ, A)
⋂̃

Ỹi].
It follows from Lemma 1 that Clτ(ξ, A) =

⋃
i∈I Clτ [(ξ, A)

⋂̃
Ỹi] =

⋃
i∈I Clτi [(ξ, A)

⋂̃
Ỹi]. Since

Clτi [(ξ, A)
⋂̃

Ỹi] is a soft open subset of (Yi, τi, A) for each i ∈ I, then
⋃

i∈I Clτi [(ξ, A)
⋂̃

Ỹi] is a soft
open subset of (⊕i∈IYi, τ, A). Thus, Clτ(ξ, A) is soft open. Hence, (⊕i∈IYi, τ, A) is soft extremally
disconnected.

The other path of this study is the answer of the following two questions:

1. Under what conditions can a soft topological space represent the sum of soft topological spaces?
2. If a soft topological space represents the sum of soft topological spaces, what is the maximum

number of these soft topological spaces?

The following results answer these questions.

Theorem 10. If (Y, τ, A) is stable soft disconnected, then it represents the sum of two soft topological spaces.

Proof. Since (Y, τ, A) is soft disconnected, then it contains at least a proper soft clopen set (ξ, A).
Since (Y, τ, A) is stable, then ξ(a) = X ⊆ Y for each a ∈ A. Thus, the two soft subspaces (X, τX, A)

and (Xc, τXc , A) are soft topological spaces such that (Y, τ, A) is their sum.

Corollary 5. If (Y, τ, A) contains m stable soft clopen sets, then (Y, τ, A) represents the sum of m soft
topological spaces.

Theorem 11. If Yi =
⋃

a∈A
(ξ(a)

⋂
Yi) for a soft subset (ξ, A) of (Y, τ, A). Then, the maximum partition of

{Yi : i ∈ I} for Y represents the maximum number of soft topological spaces of the sum (Y, τ, A).

Proof. Straightforward.

4. Conclusions

The study of soft topological spaces is of great importance because it provides a general frame that
consists of parameterized classical topological spaces. The aim of the present work is to study the sum
of topological spaces in the soft setting. Our results mainly investigate invariant properties between
soft topological spaces and their sum. Thus, we define additive and finitely additive properties. In this
regard, we demonstrate some additive properties such as p-soft Ti, i = 0, 1, 2, 3, 4, soft paracompactness,
soft extremally disconnectedness, and soft continuity. With the help of illustrative examples, we show
that the properties of soft compact and soft separable spaces are finitely additive and the properties
of soft hyperconnected, soft indiscrete, and door soft spaces are not additive. We made use of
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interchangeability of soft interior and soft closure operators between soft topological spaces and their
sum to obtain some results related to some important generalized soft open sets. We complete this
study by investigating the necessary conditions for a soft topological space to represent the sum of
some soft topological spaces.

In the upcoming studies, we plan to examine more notions with respect to additive properties
such as e-soft separation axioms and w-soft separation axioms. In addition, we are going to introduce
and discuss the concept of sum of soft topological spaces on the contexts of ordered soft topological
spaces and fuzzy soft topological spaces. Finally, we hope that this work will help the researchers who
are interested in soft topology to study additive properties as a new characteristic of the concepts.
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