Second-Order Dual Phase Lag Equation. Modeling of Melting and Resolidification of Thin Metal Film Subjected to a Laser Pulse
Abstract
:1. Introduction
2. Governing Equations
3. Mathematical Description of 1D Problem
- -
- energy equation for thin metal film domain
- -
- source function Ql
- -
- initial conditions
4. Numerical Model Based on FDM
- -
- for x = 0:
- -
- for x = G:
5. Results of Computations
6. Conclusions
- -
- numerical algorithm and computer program for 3D problems;
- -
- numerical algorithm and computer program for axially-symmetrical tasks (this geometry is very convenient because of the typical shape of the function describing the laser action);
- -
- adaptation of the algorithm presented in this work for modeling the ablation process;
- -
- research on other approaches to phase changes modeling.
Author Contributions
Funding
Conflicts of Interest
References
- Cattaneo, M.C. Sulla Conduzione de Calore. Atti de Seminario Matematico e Fisico; Della Universita di Modena: Modena, Italy, 1948; pp. 3–21. [Google Scholar]
- Cattaneo, M.C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Comptes Rendus 1958, 247, 431–433. [Google Scholar]
- Escobar, R.A.; Ghai, S.S.; Jhon, M.S.; Amon, C.H. Multi-length and time scale thermal transport using the l lattice Boltzmann method with applications to electronics cooling. Int. J. Heat Mass Transf. 2006, 49, 97–107. [Google Scholar] [CrossRef]
- Flik, M.I.; Choi, B.I.; Goodson, K.E. Heat transfer regimes in microstructures. J. Heat Transf. 1992, 114, 664–674. [Google Scholar] [CrossRef] [Green Version]
- Tzou, T. A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 1995, 117, 8–16. [Google Scholar] [CrossRef]
- Cabrera, J.; Castro, M.A.; Rodríquez, F.; Martín, J.A. Difference schemes for numerical solutions of lagging models of heat conductions. Math. Comupt. Model. 2013, 57, 1625–1632. [Google Scholar] [CrossRef]
- Özişik, M.N.; Tzou, D.Y. On the wave theory in heat conduction. J. Heat Transf. 1994, 116, 526–535. [Google Scholar] [CrossRef]
- Orlande, R.B.; Özişik, M.N.; Tzou, D.Y. Inverse analysis for estimating the electron-phonon coupling factor in thin metal films. J. Appl. Phys. 1995, 78, 1843–1849. [Google Scholar] [CrossRef]
- Al Nimr, M.A. Heat transfer mechanisms during short duration laser heating of thin metal films. Int. J. Thermophys. 1997, 18, 1257–1268. [Google Scholar] [CrossRef]
- Zhang, Z.M. Nano/Microscale Heat Transfer; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- Tzou, D.Y. Macro- to Microscale Heat Transfer. The Lagging Behavior; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Faghri, A.; Zhang, Y.; Howell, J. Advanced Heat and Mass Transfer; Global Digital Press: Columbia, MO, USA, 2010. [Google Scholar]
- Smith, A.N.; Norris, P.M. Microscale Heat Transfer, Chapter 18. In Heat Transfer Handbook; John Willey & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Ciesielski, M. Analytical solution of the dual phase lag equation describing the laser heating of thin metal film. J. Appl. Math. Comput. Mech. 2017, 16, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Srivastava, A. Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer equation. Appl. Math. Model. 2017, 52, 378–403. [Google Scholar] [CrossRef]
- Liu, K.-C.; Wang, J.-C. Analysis of thermal damage to laser irradiated tissue based on the dual-phase-lag model. Int. J. Heat Mass Transf. 2014, 70, 621–628. [Google Scholar] [CrossRef]
- Mohammadi-Fakhar, V.; Momeni-Masuleh, S.H. An approximate analytic solution of the heat conduction equation at nanoscale. Phys. Lett. A 2010, 374, 595–604. [Google Scholar] [CrossRef]
- Ramadan, K. Semi-analytical solutions for the dual phase lag heat conduction in multi-layered media. Int. J. Therm. Sci. 2009, 48, 14–25. [Google Scholar] [CrossRef]
- Wang, H.; Dai, W.; Melnik, R. A finite difference method for studying thermal deformation in a double-layered thin film exposed to ultrashort pulsed lasers. Int. J. Therm. Sci. 2006, 45, 1179–1196. [Google Scholar] [CrossRef]
- Dai, W.; Nassar, R. A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film. Numer. Methods Partial Differ. Equ. 2000, 16, 441–458. [Google Scholar] [CrossRef]
- Mochnacki, B.; Majchrzak, E. Numerical model of thermal interactions between cylindrical cryoprobe and biological tissue using the dual-phase lag equation. Int. J. Heat Mass Transf. 2017, 108, 1–10. [Google Scholar] [CrossRef]
- Majchrzak, E.; Mochnacki, B. Dual-phase-lag equation. Stability conditions of a numerical algorithm based on the explicit scheme of the finite difference method. J. Appl. Math. Comput. Mech. 2016, 15, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Ciesielski, M. Application of the alternating direction implicit method for numerical solution of the dual phase lag equation. J. Theor. Appl. Mech. Pol. 2017, 55, 839–852. [Google Scholar] [CrossRef] [Green Version]
- Majchrzak, E.; Mochnacki, B. Dual-phase lag model of thermal processes in a multi-layered microdomain subjected to a strong laser pulse using the implicit scheme of FDM. Int. J. Therm. Sci. 2018, 133, 240–251. [Google Scholar] [CrossRef]
- Mochnacki, B.; Paruch, M. Estimation of relaxation and thermalization times in microscale heat transfer model. J. Theor. Appl. Mech. Pol. 2013, 51, 837–845. [Google Scholar]
- Kumar, P.; Kumar, D.; Rai, K.N. A numerical study of dual-phase-lag model of bio-heat transfer during hyperthermia treatment. J. Therm. Biol. 2015, 49–50, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumar, P.; Rai, K.N. A study on DPL model of heat transfer in bi-layer tissues during MFH Treatment. Comput. Biol. Med. 2016, 75, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Rai, K.N. A study on thermal damage during hyperthermia treatment based on DPL model for multilayer tissues using finite element Legendre wavelet Galerkin approach. J. Therm. Biol. 2016, 62, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, E. Numerical solution of dual phase lag model of bioheat transfer using the general boundary element method. CMES Comput. Model. Eng. Sci. 2010, 69, 43–60. [Google Scholar]
- Mochnacki, B.; Ciesielski, M. Micro-scale heat transfer. Algorithm basing on the Control Volume Method and the identification of relaxation and thermalization times using the search method. CMMS 2015, 15, 353–361. [Google Scholar]
- Patidar, S.; Kumar, S.; Srivastava, A.; Singh, S. Dual phase lag model-based thermal analysis of tissue phantoms using lattice Boltzmann method. Int. J. Therm. Sci. 2016, 103, 41–56. [Google Scholar] [CrossRef]
- Ho, J.R.; Kuo, C.P.; Jiaung, W.S. Study of heat transfer in multilayered structure within the framework of dual-phase-lag heat conduction model using lattice Boltzmann method. Int. J. Heat Mass Transf. 2003, 46, 55–69. [Google Scholar] [CrossRef]
- Castro, M.A.; Rodríques, F.; Cabrera, J.; Martín, J.A. A compact difference scheme for numerical solution of second order dual-phase-lagging models of microscale heat transfer. J. Comput. Appl. Math. 2016, 291, 432–440. [Google Scholar] [CrossRef] [Green Version]
- Deng, D.; Jiang, Y.; Liang, D.L. High-order finite difference methods fora second order dual-phase-lagging models of microscale heat transfer. Appl. Math. Comput. 2017, 309, 31–48. [Google Scholar]
- Majchrzak, E.; Mochnacki, B. Implicit scheme of the finite difference method for a second-order dual phase lag equation. J. Theor. Appl. Mech. Pol. 2018, 56, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Majchrzak, E.; Mochnacki, B. Numerical solutions of the second-order dual-phase lag equation using the explicit and implicit schemes of the finite difference method. Int. J. Numer. Methods Heat Fluid Flow 2019, 20, 2099–2120. [Google Scholar] [CrossRef]
- Askarizadeh, H.; Baniasadi, E.; Ahmadikia, H. Equilibrium and nonequilibrium thermodynamic analysis of high-order dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 2017, 104, 301–309. [Google Scholar] [CrossRef]
- Ciesielski, M.; Mochnacki, B. Comparison of approaches to the numerical modelling of pure metals solidification using the control volume method. Int. J. Cast Metals Res. 2019, 32, 213–220. [Google Scholar] [CrossRef]
- Grigoropoulos, C.P.; Chimmalgi, A.; Hwang, D.J. Laser Ablation and Its Applications; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2007; pp. 473–504. [Google Scholar]
- Datta, B.N. Numerical Linear Algebra and Applications, 2nd ed.; SIAM: Philadelphia, PA, USA, 2010; p. 162. [Google Scholar]
∆t [ps] | n = 100 | n = 200 | n = 500 | n = 1000 |
---|---|---|---|---|
0.0001 | 1484.22 | 1498.47 | 1507.06 | 1511.45 |
0.00025 | 1484.19 | 1498.43 | 1507.07 | 1511.43 |
0.0005 | 1484.08 | 1498.44 | 1507.05 | 1511.47 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majchrzak, E.; Mochnacki, B. Second-Order Dual Phase Lag Equation. Modeling of Melting and Resolidification of Thin Metal Film Subjected to a Laser Pulse. Mathematics 2020, 8, 999. https://doi.org/10.3390/math8060999
Majchrzak E, Mochnacki B. Second-Order Dual Phase Lag Equation. Modeling of Melting and Resolidification of Thin Metal Film Subjected to a Laser Pulse. Mathematics. 2020; 8(6):999. https://doi.org/10.3390/math8060999
Chicago/Turabian StyleMajchrzak, Ewa, and Bohdan Mochnacki. 2020. "Second-Order Dual Phase Lag Equation. Modeling of Melting and Resolidification of Thin Metal Film Subjected to a Laser Pulse" Mathematics 8, no. 6: 999. https://doi.org/10.3390/math8060999
APA StyleMajchrzak, E., & Mochnacki, B. (2020). Second-Order Dual Phase Lag Equation. Modeling of Melting and Resolidification of Thin Metal Film Subjected to a Laser Pulse. Mathematics, 8(6), 999. https://doi.org/10.3390/math8060999