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Abstract: Uncertainty quantification in deep learning models is especially important for the medical
applications of this complex and successful type of neural architectures. One popular technique is
Monte Carlo dropout that gives a sample output for a record, which can be measured statistically
in terms of average probability and variance for each diagnostic class of the problem. The current
paper puts forward a convolutional–long short-term memory network model with a Monte Carlo
dropout layer for obtaining information regarding the model uncertainty for saccadic records of all
patients. These are next used in assessing the uncertainty of the learning model at the higher level
of sets of multiple records (i.e., registers) that are gathered for one patient case by the examining
physician towards an accurate diagnosis. Means and standard deviations are additionally calculated
for the Monte Carlo uncertainty estimates of groups of predictions. These serve as a new collection
where a random forest model can perform both classification and ranking of variable importance.
The approach is validated on a real-world problem of classifying electrooculography time series for
an early detection of spinocerebellar ataxia 2 and reaches an accuracy of 88.59% in distinguishing
between the three classes of patients.

Keywords: deep learning; time series; uncertainty quantification; Monte Carlo dropout; random forest

1. Introduction

Deep learning (DL) has uncovered substantial findings in supporting decision making in medicine.
The high accuracy of its predictions has triggered its increasing use for a variety of clinical classification
tasks [1]. However, in order to be truly effective in practice, the confidence in its output must be
expressed beyond the resulting probabilities for the classes of the problem. Medical problems from
the real-world have a limited number of available electronic records and often the data is imbalanced
between classes. Moreover, other factors that derive from the experience of the clinician and influence
the diagnosis are not encompassed within the data. This epistemic uncertainty together with the
inherent aleatory unpredictability of the process can be tackled through methods for uncertainty
quantification (UQ). The two best-known current practices in UQ are the use of Monte Carlo dropout
(MCD) [2] at the prediction phase and the constitution of deep ensembles [3].

The current paper utilizes MCD to achieve UQ for the predictions of a deep architecture applied on
a biomedical time series data. Uncertainty is quantified by performing a forward pass with a different
dropout mask every time, and the result is a sample of outputs for the same input, instead of the
typical single outcome. This process may be viewed as an ensemble of several instances of the same
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network, but with distinct dropout masks. Uncertainty estimates will be subsequently reached from a
statistical quantification (e.g., average probability, variance) of the obtained sample for each possible
label of the problem. Data can be understood better analyzing the UQ results, as well.

A particular three-class problem of biomedical saccade classification from electrooculography
was chosen as the application scenario in this UQ study for a twofold reason. There are various
measurements (which are encoded as time series) made for each patient in turn and all these records
are gathered in a register that is representative for the patient diagnosis. The diagnoses can be healthy
(or control), presymptomatic and sick. However, not all records in a patient’s register have a similar
pattern, since a sick register can contain some records featuring a normal (control) profile, as well
as there can be a few saccades that do not resemble healthy in one control set of samples. Naturally,
the presymptomatic one will contain both control and sick samples.

Besides exhibiting a high degree of epistemic uncertainty, this medical task also requires the
tailoring of the classical MCD to go beyond the UQ of the predictions for the individual records.
Usually, the MCD is used to emphasize what are the samples where ambiguity occurs in classification
and also for establishing a closer to optimal contour in segmentation problems. Herein we deal with
a classification task based on time series, but the complexity of the problem arises from the fact that
the data corresponding to the patient comprises a high number of samples. Accordingly, the UQ
information is further used to establish the labeling per container (register of records). The manner
of accumulating the uncertainty from the separate records and carrying it at the level of the registers
represents a substantial contribution of the current study.

Accordingly, statistical measurements of mean and standard deviations are computed for each
register from the MCD uncertainty estimates of average probability and variance of comprised saccades.
The new features defining the registers are given to a Random Forest (RF) model that connects their
values to the known diagnosis class.

The definition of registers through the statistical measurements of the UQ and their subsequent
modelling by means of RF leads to a classification accuracy for the current test case scenario of 88.59%.
The RF also provides the insight into which statistical variables of saccade composition direct the
prediction towards a certain global label for the register.

The originality of the current approach stems from carrying UQ results from the level of individual
saccades over to patient’s registers, through the computation of means of averages and standard
deviations from the estimates of probabilities and even variances that were obtained for the saccades.
Furthermore, these are used to create a numerical data set that contains useful information for
a Random Forest to establish accurate results at the level of the records. The research question
that will be followed in the current article is whether the variance that was not used in the previous
study [4] carries significant information to substantially increase the classification accuracy for the
current data set.

The organization of the paper is as follows. Section 2 presents the complexity and particularities
of the application problem, which gave rise to the theoretical generalization of the MCD procedure
for the higher level of register classification. Section 3 outlines the novelty of the UQ framework with
respect to the state of the art in biomedical signal modelling. The methodological flow is presented
algorithmically and a visual exemplification is conducted on a selected register. Section 4 performs an
analysis of the data based on what the UQ revealed. The experimental design and findings are given
and discussed in Section 5. Finally, Section 6 summarizes the main conclusions of this work.

2. Materials

The problem investigated as the test case scenario for the generalization of Monte Carlo Dropout
for Uncertainty Quantification in deep networks models regards the analysis of electrooculography
time series for supporting an early diagnosis of spinocerebellar ataxia 2. This is a neurodegenerative
disease that is incurable, but early action can be taken to slow its advancement once precursory signs
are present and found.
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The electrical potential of the eye of a person following the movement of an object on screen
is recorded into electrooculograms. From these signals, saccades can be extracted, whose shape
examination determines the physician to classify the patient into one of the three categories: control
(C), presymptomatic (P) and sick (S). However, it does not suffice to inspect only one saccadic sample
of a person to establish an accurate diagnosis, because the response of the same person at different
times can take distinct saccadic shapes. In fact, one cannot even know a priori a universal number
of samples of a certain shape that is sufficient to reach an outcome. Each register is thus made of
a variable number of saccadic temporal vectors of several shapes and the diagnosis established by
the physician at the end of this consultation. The complexity of the problem thus stems from the
uncertainty regarding the exact register distribution of certain types of saccadic shapes that are strongly
indicative of one of the three outcomes.

The data set has 85 registers (each corresponding to a different individual) and these contain
5953 saccades in total. Each saccadic sample has a length of 192. Three illustrative example registers,
one pertaining to a class of the problem are shown in Figure 1 with their member saccades.
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Figure 1. Representation of all saccades from a register in class control (C029), one presymptomatic
(P022) and sick (S021).

This particular data set has been previously tackled by deep learning, where convolutional neural
network (CNN) layers performed feature selection and a long short-term memory (LSTM) layer
acquired the temporal pattern of the signal [5]. The clustering of the data before the DL application
significantly increased the classification accuracy. A self organizing map provided a relabeling of the
saccadic samples prior to learning that better connected the outcome with the shape similarity [6].
An early attempt to include UQ was performed in Reference [4]. It considered the UQ probabilities
for the C, P and S outcomes of the three corresponding groups derived from the DL labelling of the
saccades and appointed a decision tree (DT) from the mean and standard deviation probabilities
calculated for the groups.

This study builds on these previous attempts and now additionally includes the UQ variance
information from the MCD-DL model. Since the number of features is now double and exceeds the
number of observations, a RF is employed for mining the data set constructed from the mean and
standard deviations of the MCD probabilities and variances. Apart from classification, the RF outputs
the importance of each statistical variable, as an insight into the process.

The collection of saccadic samples was provided by the Center for Research and Rehabilitacion
of Hereditary Ataxias (CIRAH), Holguín, Cuba. It can be accessed for research purposes from the
following repository: https://dx.doi.org/10.6084/m9.figshare.11926812.

3. Methods

The current framework for encompassing UQ into the DL architecture through the use of MCD is
outlined with respect to the state of the art in the use of this special procedure for this type of medical
data. An example of the obtained uncertainty estimates for a chosen register is also shown.

https://dx.doi.org/10.6084/m9.figshare.11926812
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3.1. State of the Art for Mcd-Uq in Biomedical Time Series Modelling

Despite the success of DL for medical problem investigation mostly for images [7–12] but also for
biomedical signals [13–16], the question becomes eventually about how trustworthy is the decision
support of these networks.

From its introduction by Gal et al. [2] as a Bayesian approximation of a Gaussian process, the use
of dropout in DL went beyond controlling overfitting, and directed towards gathering a measure of
the certainty of the model on the predicted outcome. Hence, the literature in DL for medicine also
shifted to experimenting in this direction as to provide an answer to the earlier question about the
degree of trust in the network decision.

Although there is a large number of papers in this UQ direction in the application of DL for
medical image processing, the area related to biomedical time series data is not so dense in MCD
entries. Besides the higher popularity of image analysis, the MCD results are also more spectacular in
visual applications, especially for segmentation. For example, MCD was successfully applied for brain
tumor cavity segmentation in Reference [17] and the UQ information proved to be important in the
validation of the delineated sections using various DL architectures. MCD was also applied for deep
active learning on histological slides, also for segmentation [18]. Another application of MCD for the
segmentation of cardiovascular disease images is proposed in Reference [19].

In what follows, some of those few entries that regard MCD-DL specifically for medical time series
data analysis are enumerated. Time series in medicine generally define signal data that was collected
from sensors: electrocardiography (ECG), electromyography, electrooculography, phonocardiography,
blood pressure monitors. Reference [20] proposed a straight CNN and a recurrent version with
MCD for pulse detection from ECG signals. The conclusion was that giving feedback to the rescuer
only when the uncertainty was below an acceptable threshold significantly increased the balanced
accuracy. Reference [21] classifies electromyography hand gesture signals through transfer learning
and uses MCD, among batch normalization and early stopping, solely for dealing with overfitting.
In Reference [22], a LSTM with MCD was applied to four medical data sets with signal input: ECG
for arrythmia classification; phonocardiography for distinguishing between normal and abnormal
heart beat; ECG, blood pressure and oxygen saturation in neonatal care; and intracranial and arterial
blood pressures, respiratory and heart rates for traumatic injury analysis. The paper demonstrated
the benefits of using MCD in increasing classification accuracy in tasks involving medical signals
and providing a measure of confidence in the decisions given by the model. On a different note,
dropout has been used on recurrent neural networks to improve the robustness of biomedical time
series prediction [23].

In this scarcity of studies related to the use of MCD as a UQ approach for investigating biomedical
time series data with DL, the present paper advances both a new signal interpretation application
from medicine but also takes the MCD technique to measure uncertainty at the higher level of
register analysis.

3.2. The Mcd-Dl-Rf Approach for Uq in Register Labeling

The data set with registers of saccades is divided into training, validation and test subsets.
The proposed methodology starts from the training saccades that are modelled by a DL (CNN-LSTM)
architecture encompassing MCD. The principal goal of LSTM is to keep a long-short term memory in
order to handle temporal data. On the other hand, 1D CNN also demonstrated to analyze time series
single-handedly [24] or in combination with LSTM [6,25]. Therefore, the architecture used in this study
will be a sequence of the two deep networks, with 1D CNN for extracting the features and LSTM for
modeling the time dependencies.

The built model is applied to the validation saccades and the uncertainty estimates of class
probabilities and variances are used for computing means and standard deviations for each predicted
group at the containing register level. The correspondence between the statistical values for the
validation registers and the known labels is next learnt by a RF. The reached model classifies the test
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registers and additionally outputs a ranking of the importance of the referred statistical variables.
The flow is depicted in the diagram of Figure 2.
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Figure 2. Overview of the proposed methodology.

The approach from training to test through validation is depicted by Algorithm 1. A DL
architecture with a MCD layer is trained on the corresponding set of saccades (line 1). The real
label for each saccade is given by the training register to which it belongs. Once the DL model is
obtained, a sample of N probability outputs for every class (from the N MCD runs) is reached for
each saccade from the validation and test registers (lines 3–5). The uncertainty estimates, for example,
the average probability and variance, are further computed for every class that the saccade may belong
to (lines 6–9). The label with the highest average probability is assigned as the predicted class for the
saccade (line 10). This is where the classical MCD procedure ends.

The concept is taken further to the register level, where a different learning approach now
continues on the validation instances. A new feature set will be collected from UQ measures computed
on the validation registers and will be given to a RF to learn the correspondence between register
composition and the real label. First, the number of saccades is recorded for every register (line 13).
Then, the saccades within each register are grouped into the predicted labels according to the average
probabilities given by the MCD output (lines 14–15). The cardinal of each such found subset is also
recorded in the register information (line 16). Subsequently, for each detected group, we compute the
mean and standard deviation for the probability and variance of each of the three labels (lines 17–24),
resulting in 36 new features for every register. Each validation register is now described by 40 new
features that statistically measure the diversity of its interior saccades. A RF is trained on this new
register set (line 27). The model is applied on the test registers, described by the same novel features,
and the prediction accuracy is calculated (line 28). At the same time, the RF outputs the ranking of
these new statistical measurements in connection to the labeling process (line 29).
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Algorithm 1: The MCD-DL-RF model: MCD sample output for saccades from DL, computation
of the uncertainty estimates over registers and RF construction from the means and standard
deviations for register probabilities and variances.

Data: Data set with registers of saccades
Result: RF accuracy and variable importance

1 Learn DL model with a MCD layer on the training saccades - labels given by holding register;
2 for each validation/test saccade j = 1, 2, ..., m do
3 for each MCD run i = 1, ..., N do
4 Obtain class probability sample PrCij , PrPij and PrSij ;

5 end
6 for X ∈ {C, P, S} do
7 Compute average probability PrXj =

1
N ∑N

i=1 PrXij ;

8 Compute variance VarXj =
1
N ∑N

i=1 (PrXij − PrXj)
2;

9 end
10 Predict label Predj = X : PrXj = max(PrCj , PrPj , PrSj );

11 end
12 for each validation/test register i = 1, ..., n do
13 Calculate the number of saccades |regi| (1 feature);
14 Group saccades of register i according to prediction into Ci

pred, Pi
pred, Si

pred, where

15 Xi
pred = {saccade j ∈ register i : Predj=X };

16 Compute number of saccades in each subset |Ci
pred|, |P

i
pred|, |S

i
pred| (3 features);

17 for X ∈ {C, P, S} do
18 for Y ∈ {C, P, S} do

19 Compute mean group probability MeanPri
XY =

∑
|Xi

pred |
j=1 PrYj

|Xi
pred |

;

20 Compute StD group probability StdPri
XY =

√√√√∑
|Xi

pred |
j=1 (PrYj

−MeanPri
XY)

2

|Xi
pred |

;

21 Compute mean group StD MeanVari
XY =

∑
|Xi

pred |
j=1 VarYj

|Xi
pred |

;

22 Compute StD group StD StdVari
XY =

√√√√∑
|Xi

pred |
j=1 (VarYj

−MeanVari
XY)

2

|Xi
pred |

;

23 end
24 end
25 Collect resulting: 3(Xs)× 3(Ys)× 4(measures) = 36 features;
26 end
27 Build RF from the computed new 40 features of the validation registers;
28 Apply reached RF model on test registers with the same features;
29 Return test classification accuracy and variable importance;

3.3. Visualization of the Output from Mcd-Dl Per Register

This section shows an example of the application of Algorithm 1 for a selected presymptomatic
register. Figure 3 shows the obtained average probability and variance results from the MCD runs per
possible label for the contained saccades (lines 6–10, 14–15) and Table 1 gives the 36 statistical features
computed for the register referring mean and standard deviation from the previous probabilities and
variances (lines 17–24).
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Figure 3. Box plots with probabilities and variances for classes C, P and S reached by the Monte Carlo
dropout (MCD) runs for the presymptomatic register P022. Each row corresponds to the saccades that
were classified as control (top), presymptomatic (middle) and sick (bottom).

All values in Table 1 are recorded for the register and, together with the amount of saccades
labelled with each class in turn, will be further fed to the classifier.

Table 1. Mean and standard deviation values computed from the probabilities and variances for the
presymptomatic register P022 that are illustrated in Figure 3.

Probability Variance

P022 Mean St. Dev Mean St. Dev

C P S C P S C P S C P S

Control 0.75 0.16 0.09 0.12 0.04 0.10 0.05 0.04 0.03 0.01 0.01 0.02

Pres. 0.27 0.66 0.07 0.12 0.14 0.06 0.08 0.09 0.03 0.02 0.01 0.03

Sick 0.26 0.1 0.64 0.11 0.07 0.17 0.08 0.03 0.1 0.04 0.01 0.04

The information presented in the current subsection illustrates that the mere classification of the
saccades and the count of how many records from a register are classified into different classes is not
enough to determine the label of a register. This justifies the creation of a meta-vector that includes
statistics from the values generated by the MCD runs.
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4. A Better Comprehension of the Data Via Uq

As each register contains around 70 saccades in average and there are 100 MCD simulations for
each such sample in turn, it is natural that for some saccades the variance is higher, while for others it
has lower values. Naturally, a higher variance corresponds to a lower degree of certainty. Subsequently,
we illustrate in Figure 4 some selected saccades from registers belonging to each of the three classes.
The plots from each row show the probabilities and variance results for classes control (first three
rows), presymptomatic (rows 4–5) and sick (last row).

The first column of the plots shows on the horizontal the probability that the saccade is classified
as control, the middle column corresponds to the prediction for class presymptomatic and the right
one to a label of sick. When the bars have a large spread, there is a high variance in the results of the
100 MCD runs, while when they are gathered closer, the variance is low. The vertical axes show the
number of MCD runs in which the probabilities on the horizontal axis where the bars lie are achieved.

For the control class the results for three saccades are shown in the plots from the first three rows.
The first saccade is classified as control with a probability of 0.78 and a relatively low variance. It has
however a probability of 0.19 of being labeled as presymptomatic. The next two saccades from the
control register for which the results are illustrated below have an increased variance and the results
seem more ambiguous, although the largest probability falls into the control class in both situations.
There are also saccades in control registers that are more clearly classified as control, with a higher
probability for control and a lower variance, but such examples were not included in the article due to
space economy.

The results for two distinct saccades in the presymptomatic register P022 are illustrated in the
subsequent two rows in Figure 4. While the first one is assigned to the presymptomatic class with
a high probability of 0.83, the next one has the predicted label balanced between sick (probability
0.56) and control (0.35) with a very high variance in both cases. Nevertheless, it has to be stated that
presymptomatic registers contain many saccades where the probability for control dominates in the
MCD simulation results.

Lastly, we have an example with a saccade that is clearly assigned to the sick class (last row in
Figure 4). Again, there are also other saccades where the distinction is not so clear, probabilities for the
other classes are higher and the variance has larger values.

Figure 5 illustrates an overview for the probabilities obtained when applying the 100 MCD
simulations for all saccades from the three registers chosen as representatives for the distinct classes.
Each bar in the plots represents the probability for a saccade to be assigned to either control (blue),
presymptomatic (orange) or sick (red). The two plots on each row correspond to the cases when there
was a variance for all classes below a certain threshold of 0.04 on the left side or above 0.03 on the right.
The thresholds are chosen such that there exists a balanced distribution of bars in all cases. Note that
the same threshold values are kept for all three registers (and classes, respectively), but the balance
between the saccades with lower variance (left plots) and the ones with higher variance (right plots) is
very different. For instance, for almost 79% of the sick registers the classification of the MCD runs led
to low variance (i.e., cases like the last row in Figure 4), while for the control and presymptomatic cases
there are less than 13% where the model had such a low variance, and high certitude, respectively.
This also offers an explanation why it is harder to distinguish between the control and presymptomatic
classes, while sick is easier to delineate [5,6].

The saccades for which results are illustrated in Figure 4 belong to the registers that are shown in
Figure 1 and the findings for some of their saccades are also shown in Figure 5—for instance, saccade
1134 for which the probabilities per class and variances are represented in the second row in Figure 4
also appears as the first group of three bars in the second plot, first row of Figure 5.

It is interesting to observe that the patterns concerning the probabilities for the distinct classes
change when the variance is higher or lower. This can be seen especially for the first and third rows in
the figure.
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Although we state that the three registers for which various results are illustrated in
Figures 4 and 5 are representative for the three classes of the problem, we underline that the same clear
pattern is not observed in all registers.
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Figure 4. Example of the classification probabilities and variances from the 100 MCD runs for
some saccades from class control (3 saccades in register C029, rows 1–3), from class presymptomatic
(2 samples from register P022, rows 4–5) and from class sick (1 saccade from register S021, last row).
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Figure 5. The label prediction with probabilities and variances for each saccade of the example registers
as accumulated from the 100 MCD runs.

5. Experimental Results

The current section presents the setup used for the application of the proposed methodology,
the obtained classification results along with the most important features as discovered by the RF and
further discussions. The next subsection presents more attempts tried during pre-experimentation that
did not eventually lead to the most successful results.

5.1. Pre-Experimental Observations

In one of the tried scenarios, we tested the idea that there might exist only two types of saccades,
specific for control and for sick, respectively, and the register label might be established by the balance
of the amount of saccades having each of these two labels. Accordingly, we tried an approach where
only saccades from registers that belong to these 2 classes, control and sick, are used for training the
CNN-LSTM. The model would then classify the validation and test saccades into these two classes.
The shallow classifier would subsequently use the outputs computed by the MCD probabilities and
variances for these two classes to learn to predict the class of the registers. The idea of putting such
a scenario into practice came from the relatively lower importance that was found for the features
derived from the presymptomatic determined saccades. The importance is discussed in detail in
Sections 5.3 and 5.4. However, the classification results were down by 2% as opposed to the case where
all three classes are considered at the training level of the saccades and therefore the case with all three
labels was used throughout the experiments.
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We tried several shallow classifiers for distinguishing the classes of the registers based on the
statistical UQ features recorded for them. One option was support vector machines (SVM), both linear
and with a radial kernel. The data was normalized before applying SVM, but in both settings all the
presymptomatic registers were mistaken for either control or sick classes. Besides SVM, decision trees
were also tried, as they have shown good results previously [4]. They led to better outputs than SVM
and these are further outlined in the next subsection.

Another attempt addressed the inclusion of a feature selection method represented by a hill
climbing algorithm to pick the attributes derived from the MCD simulations for the registers
(the 40 features). The evaluation of the hill climbing was given by the classification accuracy reported
by the RF classifier on a validation set. Accordingly, the features that led to the best classification
accuracies on the validation set were used for the test set as well. However, the final results were
very similar to the ones obtained by applying the RF directly on the data set containing all features.
This goes in line with the observed trait of RF to be able to handle multidimensional data well.

5.2. Experimental Setup

The registers are split into training, validation and test sets such that the distribution of classes are
maintained balanced in each such set. The same split was used in previous works [4,6] and is kept here
as well to make a fair comparison. The DL architecture consists of 2 CNN layers of size 3 and 128 filters
and one LSTM layer of 100 units. The MCD steps in with a dropout rate of 0.5. The implementation is
done in Python using the TensorFlow library and running on the GPU.

The number of Monte-Carlo applications was varied during pre-experimentation from 30 up
to 500 but we noticed that the improvement for the classification accuracy for the saccades of the
ensemble model stopped when the number of MCD applications went beyond 100 (actually on 83,
but we selected a more round number). In a previous study [4], we kept this number at 500, which was
consuming computations, without any gain in the accuracy of the ensemble. There are 10 distinct runs
of the MCD approach on the saccades data set and they subsequently create 10 separate numerical
data sets on which different RF instances will be trained.

RF is applied 10 times on each data set and the mean results are reported. The results are further
accumulated from the 10 data sets and the mean from these is reported as the final result. The RF
implementation uses the Scikit-learn package in Python [26]. As concerns the parameter settings of the
algorithm, the default 100 trees are used, each with a maximum depth of 3. The quality of the split
uses the default Gini impurity criterion.

The values for the involved parameters are generally kept to simple and default settings.
Nevertheless, some metaheuristics could be used to make fine tuning especially for the deep learning
architecture [27].

5.3. Results and Visualization

Table 2 shows the results obtained by the RF or DT using either the data with the entire set
of features that include those related to variance as well and only the UQ probabilities. Beside the
classification accuracy, the F1 score and the running time are computed. The statistical tests on the last
two rows point the differences between the most prolific approach and the others used in comparison.
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Table 2. Classification results, running time and statistical tests for the proposed approach against
other setups, including decision tree (DT) without variance [4] in the last column.

Measure RF with Var RF no Var DT with Var DT no Var

Accuracy 88.59 86.88 83.12 82.88
F1 score 87.75 85.52 83 82.77
Running time (sec) 0.38 0.39 0.006 0.006

Statistical tests, RF with Var vs. others

Wilcoxon signed-rank test - 6.05× 10−4 5.9× 10−11 2.6× 10−8

Paired Student’s t-test - 2.8× 10−3 1.47× 10−12 2.79× 10−10

Figure 6 illustrates the confusion matrices for the same 4 compared approaches in Table 2.
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Figure 6. Confusion matrices for Random Forest (RF) with and without variances (on the top row) and
the corresponding application of DT (on the bottom row).

Figure 7 shows the importance of each feature based on the Gini impurity that is used in the
nodes of the trees in the RF.
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Figure 8 illustrates the importance of the features along with the standard deviation for each class
in turn, following the method proposed by Saabas in Reference [28].
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5.4. Discussion

The statistical tests were computed by comparing each individual run from the 10 repeated
applications of the classifier on every one of the 10 distinct data sets obtained from the MCD
applications. Consequently there are 100 distinct classification accuracies for each of the 4 classifiers in
Table 2 used for calculating the p-values in the last 2 rows of the table.

RF clearly led to better results as compared to DT, as the results were better regardless of using the
features related to variance or not. While the variance attributes did not add value for the DT model,
that is, the classification accuracy of 83.12% with variance versus 82.88% without it, the importance of
the same attributes proved significant for the RF classifier. This answers the research question that
was formulated in the introduction: the incorporation of the variance was not enough to improve
the results from Reference [4], the DT classifier also had to be changed to a RF to take advantage
of the higher amount of information. Both Wilcoxon signed-rank test and the paired Student t-test
obtained p-values that were below 0.05, rejecting thus the null hypothesis, and proving thus that the
samples belong to populations with different distributions and hence the improvement in classification
accuracy is significant.

Figure 6 illustrates how the test registers are labeled in each of the 4 compared situations. It is
worth underlying that in the DT classification the results of the sick class did not interfere in any
way with the other 2: neither the control nor the presymptomatic registers are mistaken for sick or
vice-versa. The RF mistakes some of the presymptomatic registers with the sick in both cases, when
the variance is used or let out. There is even a very small amount of cases when some sick registers are
mistaken for presymptomatic when RF with variance is employed. Nevertheless, the latter performs a
more accurate prediction for the control registers.

Figures 7 and 8 illustrate the importance of the involved features as they are derived from
the Gini impurity in the former case and as specialized on the registers and classes in the latter.
Since impurity-based feature importance favors features with many unique values, we additionally
used an approach that shows the importance for each individual sample in turn. Saabas proposed
the method to interpret the predictions of the RF for each record [28]. In order to provide a unified
plot, we gathered all registers that belong to the same class and computed the averages over multiple
runs. The most important feature is indicated the same in both figures, that is the number of control
saccades in the register. The plot in Figure 8 additionally illustrates that this attribute helps especially
in assigning the register class to sick, since this is the largest bar in the chart. However, the attribute
remains very important for the other 2 classes, as well. The second most important feature in Figure 7,
the MeanPrSS again remains in agreement with the importance detected by the model where the
discrimination is made between classes: this is the second most important attribute in the entire plot
and is again crucial for the sick class (red bar). The two plots also agree that the attributes related to
the presymptomatic class have less importance. They are the ones having the name starting with Pres
and are situated at the bottom of the plot in Figure 7 and are at the small bars in the middle of the
chart in Figure 8. Nevertheless, when we tried to remove the presymptomatic class from the training
saccades, and subsequently from the registers in the second part of the methodology, the results were
weaker than the currently reported ones, as also described in Section 5.1.

6. Conclusions

The methodology targeted in the current study started from the intricacy of the medical task
concerning the classification of registers containing saccades from patients into three classes: control
(or healthy), presymptomatic and sick. The complexity derives from the fact that not all saccades
have a similar nature: the control registers contain some that have an unusual (distinct from healthy)
behaviour, a shape that usually occurs in the presymptomatic registers. There seems to be a thin
delineation between the two classes and the solution put forward in this research makes use of MCD
for UQ to better discriminate between them. The registers from the third class, sick, are easier to
distinguish, since a majority of saccades have a non-healthy appearance.
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It is not the first time UQ is applied for the current task, a previous study led to the results
in Reference [4]. However the current research does a more extended work, which encompasses a large
variety of tried settings. The important steps forward come from the following observations: (1) a
smaller number of MCD steps is enough to reach similar results; (2) the variance from the MCD steps
brings additional useful information and (3) RF proves to be a more prolific classifier for the new
data set created from the calculated statistical features from the MCD uncertainty estimates. This also
answers the research question addressed in the introduction: there were two changes necessary (use
of variance and RF instead of DT) as opposed to Reference [4] in order to make a important step
as concerns the accuracy. Moreover, other approaches that led to competitive results are studied
and summarized, like employing a wrapper feature selection prior to using the RF or even removing
completely the presymptomatic class from saccade classification, but they still proved to be significantly
weaker than the ones obtained by the proposed tandem. Other statistics besides mean and standard
deviation might also arise and contain useful information from the probabilities and variances, but
these would further increase the number of features and would probably necessitate some means of
reducing the number of attributes like using some correlation analysis as in Reference [29] or even
some mechanism inside RF as in Reference [30]. On the other hand, the integration of other clinical
information about the patients besides the saccades themselves [31] might additionally increase the
quality of the diagnosis. An important parameter to be studied is the MCD rate: its value in the current
work was empirically established to 0.5, but its influence over the final results might be crucial and its
fine tuning might lead to better accuracy.

From the theoretical viewpoint, the paper generalizes the MCD approach for UQ by bringing it
to a higher grouping level of records (i.e., registers of trials) and demonstrates its usefulness for DL
support in medicine.
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