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Abstract: The parity-time symmetric nonlocal nonlinear Schrödinger equation with self-consistent
sources (PTNNLSESCS) is used to describe the interaction between an high-frequency electrostatic
wave and an ion-acoustic wave in plasmas. In this paper, the soliton solutions, rational soliton
solutions and rogue wave solutions are derived for the PTNNLSESCS via the generalized Darboux
transformation. We find that the soliton solutions can exhibit the elastic interactions of different type
of solutions such as antidark-antidark, dark-antidark, and dark-dark soliton pairs on a continuous
wave background. Also, we discuss the degenerate case in which only one antidark or dark soliton
remains. The rogue wave solution is derived in some specially chosen situations.

Keywords: parity-time symmetric; generalized Darboux transformation; soliton solution;
rational solution
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1. Introduction

In 1998, the parity-time (PT) symmetry firstly appeared in quantum mechanics since Bender
and Boettcher pointed out that non-Hermitian Hamiltonians exhibit entirely real spectra, provided
that they respect both the parity and time-reversal symmetries (usually called the parity-time
symmetry) [1]. Since then, physical systems exhibiting non-Hermitian systems with PT-symmetry
have been the subject of intense investigation. In general, a necessary condition for a Hamiltonian
H = p̂

2 + V(x) to be PT-symmetric is that the complex potential satisfies V(x) = V∗(−x), where
p̂ denotes the momentum operator and V(x) is the complex potential [1,2]. Also, the notion of
PT-symmetry has been applied to other areas of theoretical physics. In optical, R. El-Ganainy et al.
developed a formalism suitable for describing coupled optical parity-time symmetric systems [3].
K. G. Makris et al. investigated the possibility of PT-symmetric periodic potentials within the context
of optics [4]. A. Guo et al. demonstrated experimentally passive PT-symmetry breaking within the
realm of optics [5]. Y. J. He et al. reported the existence and stability of lattice solitons in PT-symmetric
mixed linear-nonlinear optical lattices in Kerr media [6].

In 2013, Ablowitz and Musslimani proposed and studied the following PT-symmetric nonlocal
nonlinear Schrödinger (NLS) equation [7]:

iuz(x, z) = uxx(x, z) + 2σu(x, z)u∗(−x, z)u(x, z) (σ = ±1), (1)
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where the asterisk * denotes the complex conjugate, σ = ±1 is the sign of nonlinearity (with the
plus sign being the focusing case and minus sign being the defocusing case). The nonlinear term
in Equation (1) brings a self-induced potential of the form V(x, z) = u(x, z)u∗(−x, z) satisfying
V(x, z) = V∗(−x, z). So the Hamiltonian of the Equation (1) satisfies the PT-symmetric condition. The
Equation (1) is nonlocal as it has a term u(−x, z), which means that the time evolution of u does not only
depends on the u(x, z), but u(−x, z) as well. Following the studying of this nonlocal PT-symmetric NLS
equation, M. Li et al. applied the Nth iterated Darboux transformation to derive a chain of nonsingular
localized-wave solutions of the PT-symmetric nonlocal NLS equation that can describe the soliton
interactions on the continuous-wave (cw) background [8]. M. Li et al. derived the rational solutions
of the PT-symmetric nonlocal NLS equation by generalized Darboux transformation [9]. In addition,
some other PT-symmetric nonlocal integrable models have also been proposed. C. Q. Dai and W. H.
Huang studied the coupled nonlinear Schrödinger equation in PT-symmetric coupled waveguides
by means of the modified Darboux transformation method [10]. A. K. Sarma et al. investigated the
continuous and discrete Schrödinger systems with PT-symmetric nonlinearities [11]. X. Y. Wen et al.
studied novel higher-order rational solitons of the integrable nonlocal nonlinear Schrödinger equation
with the self-induced PT-symmetric potential by the generalized perturbation N-1 fold Darboux
transformation [12]. Z. X. Zhou studied global explicit solutions for nonlocal Davey-Stewartson
I equation by Darboux transformation [13]. T. Xu et al. studied the nonsingular localized wave
solutions of the partially PT-symmetric nonlocal Davey Stewartson I equation with zero background
via the elementary Darboux transformation [14]. M. Li et al. analyzed the generation mechanism
of rogue waves for the discrete nonlinear Schrödinger equation from the viewpoint of structural
discontinuities [15]. K. Chen et al. showed a reduction technique that enables us to obtain solutions
for the reduced local and nonlocal equation from the Ablowitz-Kaup-Newell-Suger hierarchy [16].
M. Duanmu et al. studied dynamical systems of linear and nonlinear PT-symmetric oligomers [17].

There are many methods in solving the integrable equations, including the Darboux
transformation and Hirota bilinear method and so on. Yujia Zhang et al. investigated the interactions of
vector anti-dark solitons for variable coefficients coupled NLS equation, found the double-S structure
interactions [18]. H. Q. Zhang studied a modified NLS equation in inhomogeneous fibers and obtain the
dark and antidark soliton solutions with Hirota bilinear method [19]. X. Z. Zhang propose a generalized
long-water wave system study its invariant solutions and conservation laws are studied to guarantee its
integrability [20]. R. A. El-Nabulsi used matrix Lie algebra to derive some non-standard higher-order
equations [21]. Many equations posses peakons and smooth periodic waves. The most important
model is the Camassa-Holm equation, which is studied by R. Camassa and D. D. Holm in 1993 [22].
They could be seen as the negative flows of some integrable hierarchy [23]. C. Z. Qu considered the
stability of the peakon solitons of a modified Camassa-Holm equation with cubic nonlinearity [24].
S. Y. Lou extended the Camassa-Holm type equations to nonlocal case and constructed the AB peakon
equations including the AB Camassa-Holm equation and the AB Degasperis-Procesi equation [25].
The nonlocal case of the integrable system attract lots of attentions in recent years.

The soliton equations with self-consistent sources (SESCS) play an important role in many fields
of physics. The nonlinear Schrödinger equation with self-consistent sources (NLSESCS) describes
the soliton propagation in a medium with both resonant and nonresonant nonlinearities and it also
describes the nonlinear interaction of high-frequency electrostatic waves with ion acoustic waves in
plasma [26].

In Reference [26], Claude studied the following system of coupled equation

iqt +
1
2

qxx − q|q|2 = iΓa1 ā2,

a1,x = qa2, a2,x − 2ik0a2 = q̄a1,

with the initial-boundary value problem:
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q(x, 0) = q0(x) ∈ L1(R),

a1(x, t)→ 1, as x → +∞,

a2(x, t)→ 0, as x → −∞.

This system occurs in plasma physics as the small amplitude limit of the general wave equations
in a fluid-type warm electros/cold ions plasma.

To study the solution of NLSESCS, Y. J. Shao constructed a generalized Darbous transformation
with an arbitrary function of t to study the soliton and positon solution of NLSESCS [27]. It has
abundant applications in nonlinear envelope pulsed in fibers, pressure pulses in artery vessels,
nonlinear Rossby waves in atmosphere, and matter waves in dilute-gas Bose-Einstein condensates [28].
The SESCS were first studied by Mel’nikov [29]. Since then, the SESCS have attracted some attention.
A systematic way to construct the SESCS and their zero-curvature representations was proposed.
Y. B. Zeng et al. studied the mKdV hierarchy with self-consistent sources by integral-type Darboux
transformation [30]. Y. H. Huang et al. studied Camassa-Holm equation with self-consistent sources
and its solutions [31]. Y. Q. Yao et al. studied the Qiao-Liu equation with self-consistent sources and its
solutions [32].

In this paper, we construct the generalized Darboux transformation for the parity-time symmetric
nonlocal nonlinear Schrödinger equation with self-consistent sources (PTNNLSESCS) and further
reveal the soliton solution and the rational soliton phenomena on the cw background. The soliton
solutions obtained in this work can display the profiles of the dark and antidark solitons. Also, we
dicuss the degenerate cases in which only one dark or antidark soliton survives. We get the rogue
wave solution of the PTNNLSESCS in some specially chose situations.

This paper is organized as follows: In Section 2, we review elementary Darboux transformation
of the PT-symmetric NLS equation and derive the generalized Darboux transformation of the
PTNNLSESCS. In Section 3, we derive the soliton solutions and discuss the degenerate cases for
the PTNNLESCS. In Section 4, we derive the rational soliton solutions, rogue wave solutions and
analysis the degenerate case for the PTNNLESCS. In Section 5, the conclude is given.

2. Elementary Darboux Transformation for the PTNNLSESCS

In this section we recall the successively iterated Darboux transformation of Equation (1) and
construct the first-order generalized Darboux transformation with an arbitrary function of c(z) for
the PTNNLSESCS. The Darboux transformation, which comprises the eigenfunction and potential
transformations, can be used to recursively generate solutions including the soliton solutions, rational
solutions from a trivial solution which can further provide an algebraic basis to analyze the asymptotic
behavior of the solutions.

The Lax pair of Equation (1) can be written in the form [8]

Ψx = UΨ =

(
λ u(x, z)

−σu∗(−x, z) −λ

)
Ψ, (2a)

Ψz = VΨ =

(
−2iλ2 − iσu(x, z)u∗(−x, z) −2iλu(x, z)− iux(x, z)

2iσλu∗(−x, z)− iσu∗x(−x, z) 2iλ2 + iσu(x, z)u∗(−x, z)

)
Ψ, (2b)

where Ψ = ( f , g)T(the superscript T represents the vector transpose) is the vector eigenfunction, λ is
the spectral parameter, and Equation (1) satisfies the compatibility condition Uz −Vx + UV −VU = 0.
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In Reference [8], the Nth iterated elementary Darboux transformation for Equation (1) can be
constituted by the eigenfunction

Ψ[N] = T[N]Ψ, T[N] =

 λN −
N
∑

n=1
an(x, z)λn−1 −

N
∑

n=1
bn(x, z)(−λ)n−1

−
N
∑

n=1
cn(x, z)λn−1 λN −

N
∑

n=1
dn(x, z)(−λ)n−1

 , (3)

and the Darboux transformation

u[N](x, z) = u(x, z) + 2(−1)N−1bN(x, z), (4)

where N represents the iterated time. The new eigenfunction Ψ[N] is required to satisfy the Lax pair in
Equations (2a) and (2b) with u[N](x, z) and u[N]∗(−x, z) instead of u(x, z) and u∗(−x, z), respectively.
The functions an(x, z), bn(x, z), cn(x, z) and dn(x, z)(1 ≤ n ≤ N) can be determined from

T[N]|λ=λk Ψk = 0, T[N]|λ=λ∗k
Ψk = 0 (1 ≤ n ≤ N), (5)

where Ψk = [ fk(x, z), gk(x, z)T ] and Ψk = [g∗k (−x, z), σ f ∗k (−x, z)T ] are the solutions of
Equations (2a) and (2b) with λ = λk and λ = λ∗k , respectively. In particular, the functions bN(x, z) and
cN(x, z) can be obtained in the determinant form

bN(x, z) = (−1)N−1 τN+1,N−1

τN,N
, (6)

with

τN,N =

∣∣∣∣∣ FN×N GN×N
σGN×N FN×N

∣∣∣∣∣ , (7)

where the block matrices

FN×N = [λm−1
k fk(x, z)]1≤k,m≤N ,

GN×N = [(−λk)
m−1gk(x, z)]1≤k,m≤N ,

FN×N = [(−λ∗k )
m−1 f ∗k (−x, z)]1≤k,m≤N ,

GN×N = [(λ∗k )
m−1g∗k (−x, z)]1≤k,m≤N .

It is well known that the AKNS equation with self-consistent sources (AKNSESCS) is defined
as [27]

qt = −i(qxx − 2q2r) +
n

∑
j=1

(ϕ
(1)
j )2, rt = i(rxx − 2qr2) +

n

∑
j=1

(ϕ
(2)
j )2, (8a)

ϕj,x =

(
ϕ1

ϕ2

)
x

=

(
−λj q

r λj

)
ϕj, j = 1, . . . , n, (8b)

where λj are n distinct complex constants, ϕj = (ϕ
(1)
j , ϕ

(2)
j )T(hereafter, we use superscripts (1) and (2)

to denote the first and second elements of a two-dimensional vector respectively). In this paper, we
only consider the PT-symmetric nonlocal NLS equation with one source.



Mathematics 2020, 8, 1099 5 of 15

With the reduction q = u(x, z), r = u∗(−x, z) and n = 1, the PTNNLSESCS can be constructed
from AKNSESCS

iuz(x, z)− uxx(x, z) + 2u(x, z)u∗(−x, z)u(x, z) = 2i((ϕ∗2(−x, z))2 − (ϕ1(x, z))2), (9a)

ϕx(x, z) =

(
ϕ1(x, z)
ϕ2(x, z)

)
x

=

(
λ1 u(x, z)

u∗(−x, z) −λ1

)
ϕ(x, z). (9b)

The Lax pair of Equation (9) can be written in the form

Ψx =

(
λ u(x, z)

u∗(−x, z) −λ

)
Ψ, (10a)

Ψz =

(
−2iλ2 + iu(x, z)u∗(−x, z) −2iλu(x, z)− iux(x, z)
−2iλu∗(−x, z) + iu∗x(−x, z) 2iλ2 − iu(x, z)u∗(−x, z)

)
Ψ

+
1

λ− λ1

(
−ϕ1(x, z)ϕ2(x, z) (ϕ1(x, z))2

−(ϕ2(x, z))2 ϕ1(x, z)ϕ2(x, z)

)
Ψ

− 1
λ− λ∗1

(
ϕ∗1(−x, z)ϕ∗2(−x, z) (ϕ∗2(−x, z))2

−(ϕ∗1(−x, z))2 −ϕ∗1(−x, z)ϕ∗2(−x, z)

)
Ψ. (10b)

Based on the Darboux transformation for the AKNS equation, we derive the generalized Darboux
transformations of Equation (9).

Theorem 1. Let f1, ϕ = 0, and g1, ϕ = 0 be two solutions of Equation (10) with λ = λ1 and F = c(z) f1 + g1,
then the Darboux transformation for Equation (9) is defined as

Ψ[1] = T[1]Ψ, (11a)

u[1] = u + 2(λ1 − λ∗1)(P[1])12, (11b)

ϕ[1] =

√
c′(z)

(λ1 − λ∗1)det( f1, g1)
T[1](λ1) f1, (11c)

where

T[1] = λ− λ1 + (λ1 − λ∗1)P[1], P[1] =
FF
FF

, F =

(
F1

F2

)
, F =

(
F∗1 (−x, z)
F∗2 (−x, z)

)
,

and (P[1])12 represents the entry of matrix P[1] of the first row and second column.

Proof. Let u[1]z = I1 + I2c′(z), according to Equation (9) we know

iI1 − u[1]xx + 2u[1]2u[1]∗(−x, z) = 0, (12)

and
iI2c′(z) = 2ic′(z)(λ1 − λ∗1)

F1F∗2 (−x,z)
FF

=
2ic′(z)(λ1−λ∗1)

(FF)2

[
f1F∗2 (−x, z)FF + F1 f ∗2 (−x, z)FF−

F1F∗2 (−x, z) f F− F1F∗2 (−x, z)F f
]

.

(13)

After some calculations we have

iI2c′(z) =
2ic′(z)(λ1 − λ∗1)

(FF)2

[
(F∗2 (−x, z))2det( f1, g1)− F2

1 det( f ∗1 (−x, z), g∗1(−x, z))
]

, (14)
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from Equation (11c), we obtain

ϕ[1] =

√
c′(z)

(λ1 − λ∗1)det( f1, g1)

λ1 − λ∗1
FF

(
|F2|2 −F1F∗2 (−x, z)

−F∗1 (−x, z)F2 |F1|2

)
f1 (15)

=

√
c′(z)

(λ1 − λ∗1)det( f1, g1)

λ1 − λ∗1
FF

det( f1, g1)

(
F∗2 (−x, z)
−F∗1 (−x, z)

)
,

we find that

iI2c′(z) = 2i((ϕ2[1]∗(−x, z))2 − ϕ1[1]2),

so

iu[1]z − u[1]xx + 2u[1]u[1]∗(−x, z)u[1] = 2i((ϕ2[1]∗(−x, z))2 − ϕ1[1]2). (16)

From Theorem 1, we can obtain different types solutions of Equation (9). Next, we will use the
generalized Darboux transformation to construct the soliton solutions and rational solutions on a
cw background.

3. Soliton Solutions of the PTNNLSESCS

In this section we construct the soliton solutions on the cw background. It is not difficult to find
that Equation (9) admits the plane-wave solution

u = ρe2iρ2z+iφ, ϕ = 0, (17)

where ρ and φ are two real parameters. In the following, we take λ = λ1, using λ1R and λ1I to denote
the real and imaginary parts of λ = λ1, respectively. We take λ1R = 0 and 0 < |λ1I | < ρ to derive the
soliton solutions of the PTNNLSESCS. Inserting Equation (17) into the Lax pair (10), we obtain

f1 =

 e
2iρ2z+iφ

2 α1

e−
2iρ2z+iφ

2
(s1−λ1)α1

ρ

 es1χ1 , (18a)

g1 =

 e
2iρ2z+iφ

2 β1

−e−
2iρ2z+iφ

2
(s1+λ1)β1

ρ

 e−s1χ1 , (18b)

where s1 =
√

λ2
1 + ρ2, χ1 = x − 2iλ1z, α1 and β1 are arbitrary nonzero complex parameters. Then,

with substitution of (18) into the Darboux transformations (11), the solution can be written as

u[1] = ρe2iρ2z+iφ

[
1−

2λ1I(c(z)e2s1χ1 + γ1)(κ1c(z)e−2s1ω1 + γ∗1κ∗1)

c2(z)ρ2e2s1(χ1−ω1) + c(z)λ1I(κ1γ1e−2s1ω1 + κ∗1 γ∗1 e2s1χ1) + |γ1|2ρ2

]
, (19a)

ϕ1[1] =

√
iρβ1λ1I s1c′(z)

α1
e

2iρ2z+iφ
2 +s1χ1 β1s1(κ1c(z)e−2s1ω1 + γ∗1κ∗1)

c2(z)ρ2e2s1(χ1−ω1) + c(z)λ1I(κ1γ1e−2s1ω1 + κ∗1 γ∗1 e2s1χ1) + |γ1|2ρ2
, (19b)

ϕ2[1] =
iρ
√

iρβ1λ1I s1c′(z)
α1

e−
2iρ2z+iφ

2 +s1χ1 β1s1ρ(c(z)e−2s1ω1 + γ∗1)

c2(z)ρ2e2s1(χ1−ω1) + c(z)λ1I(κ1γ1e−2s1ω1 + κ∗1 γ∗1 e2s1χ1) + |γ1|2ρ2
, (19c)
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where χ1 = x + 2λ1Iz, ω1 = x − 2λ1Iz, s1 =
√

ρ2 − λ2
1I , κ1 = λ1I − is1 and γ1 = β1

α1
. In this section,

we take c(z) as a real arbitrary function of z. It can be proved that the solution (19) has no singularity
if and only if the following condition is satisfied:

Im(γ1κ1) 6= 0 or c(z)λ1I Re(κ1γ1) > 0. (20)

We make an asymptotic analysis to better understand the solitonic behavior in the solution (19) under
the condition (20) as follows.

(i) Along the line x + 2λ1Iz = 0 as | z |→ ∞, we have

u[1]→ u±1 = ρe2iρ2z+iφ

[
1− 2λ1I(c(z)e2s1χ1 + γ1)

µ±1 c(z)e2s1χ1 + ν±1

]
, (21a)

|u[1]|2 → |u±1 |
2 = ρ2

[
1− 2γ1Is1

Re(γ1κ1) + sgn(λ1Ic(z))|γ1|ρ cosh(2s1χ1 + ∆±1 )

]
, (21b)

with µ−1 = λ1I , ν−1 = γ1κ1, µ+
1 = κ∗1 , ν+1 = γ1λ1I , ∆−1 = ln |c(z)λ1I |

ρ|γ1|
and ∆+

1 = ln ρ|c(z)|
|γ1||λ1I |

, where the plus
sign corresponds to λ1I > 0 as z → ∞ or λ1I < 0 as z → −∞ and the minus sign corresponds to
λ1I < 0 as z→ ∞ or λ1I > 0 as z→ −∞.

(ii) Along the line x− 2λ1Iz = 0 as | z |→ ∞, we have

u[1]→ u±2 = ρe2iρ2z+iφ

[
1−

2λ1I(c(z)κ1e−2s1ω1 + γ∗1κ∗1)

c(z)ξ±1 e−2s1ω1 + η±1

]
, (22a)

|u[1]|2 → |u±2 |
2 = ρ2 +

2s1 Im(λ1Iκ
2
1)

Re(γ1κ1) + sgn(λ1Ic(z))|γ1|ρ cosh(2s1ω1 − ∆±1 )
, (22b)

with ξ−1 = λ1Iκ1, η−1 = ρ2γ∗1 , ξ+1 = ρ2 and η+
1 = λ1Iκ

∗
1 γ∗1 , where the plus sign corresponds to λ1I < 0

as z → ∞ or λ1I > 0 as z → −∞ and the minus sign corresponds to λ1I > 0 as z → ∞ or λ1I < 0 as
z→ −∞.

The above asymptotic analysis shows three different types of elastic interactions. The associated
parametric conditions are given in Table 1. The asymptotic soliton u±1 represents the antidark soliton
for c(z)λ1Iγ1I < 0 or dark soliton for c(z)λ1Iγ1I > 0 on a cw background and both the antidark
soliton and dark solitons are localized along the line x + 2zρ = 0, while the asymptotic soliton u±2
also represents the antidark soliton for c(z)Im(γ1Iκ

2
1) > 0 or dark soliton for c(z)Im(γ1Iκ

2
1) < 0 on the

same cw background. In this case, both the antidark soliton and dark soliton solitons are localized
along the line x − 2zρ = 0. In particular, for the degenerate case γ1I = 0, the asymptotic soliton
u±1 disappear as z → ±∞. Similarly, for the degenerate case λ1I Im((γ1κ2

1) = 0, the only surviving
asymptotic soliton is u±1 .

Table 1. Asymptotic patterns of the solution (19a) under different parametric conditions.

Parametric Conditions Asymptotic Soliton u±
1 Asymptotic Soliton u±

2

c(z)λ1Iγ1I > 0, c(z)λ1I Im(γ1κ2
1) < 0 dark soliton dark soliton

c(z)λ1Iγ1I < 0, c(z)λ1I Im(γ1κ2
1) > 0 antidark soliton antidark soliton

c(z)λ1Iγ1I < 0, c(z)λ1I Im(γ1κ2
1) < 0 antidark soliton dark soliton

c(z)λ1Iγ1I > 0, c(z)λ1I Im(γ1κ2
1) > 0 dark soliton antidark soliton

γ1I = 0, c(z)γ1R > 0 disappear dark soliton
γ1I = 0, c(z)γ1R < 0 disappear antidark soliton

λ1I Im(γ1κ2
1) = 0, c(z)λ1Iγ1I < 0 antidark soliton disappear

λ1I Im(γ1κ2
1) = 0, c(z)λ1Iγ1I > 0 dark soliton disappear
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The heights of the antidark solitons or the depth of the dark solitons from the cw background for
|u±1 |2 and |u±2 |2, that is

A±1 =
2ρ2|s1γ1I |

Re(γ1κ1) + sgn(λ1Ic(z))ρ|γ1I |
, (23)

A±2 =
2|s1 Im(γ1Iκ

2
1)|

Re(γ1κ1) + sgn(λ1Ic(z))ρ|γ1I |
, (24)

respectively. The envelope velocity of u±1 and u±2 , that is v−1 = v+1 = −2λ1I and v−2 = v+2 = 2λ1I ,
respectively. There exists a phase shift between u−i and u+

i (i = 1, 2), and its absolute value can be
calculated by |∆+

1 − ∆−1 | = 2| ln ρ
|λ1I |
| which means that the phase shift depends on both ρ and λ1I .

In any of these interactions, the interacting solitons can completely recover their individual
shapes and velocities upon an interaction and have only the phase shifts for their envelopes. The
Figures 1–3 suggest that the solution (19a) under the condition (20) can describe the elastic soliton
interactions on the cw background. The elastic interactions may occur between two antidark solitons,
two dark solitons, or dark and antidark solitons. The existence of the antidark soliton or the dark
soliton can be decided by the sign of c(z) [see Figure 1a–c]. Particularly taking γ1I = 0, the asymptotic
solitons (u−1 , u+

1 ) disappears as z → ±∞, but (u−2 , u+
2 ) still exists and represent antidark solitons

for c(z)γ1R < 0 or dark solitons for c(z)γ1R > 0 [see Figure 4]. However, the solution (19a) in this
degenerate case cannot be regarded as the conventional single soliton because there exists a phase
shift between u−2 and u+

2 . Similarly, for the degenerate case Im(γ1κ2
1) = 0, one can find that only the

pair of asymptotic solitons (u−1 , u+
1 ) exists as |z| → ∞ and there is also a phase shift between u−1 and

u+
1 [see Figure 5]. Associated with c(z)λ1Iγ1I < 0 and c(z)λ1Iγ1I > 0, (u−1 , u+

1 ) can represent antidark
solitons and dark solitons, respectively.

(a) (b) (c)

Figure 1. Elastic interactions via the solution (19a): (a) dark and antidark solitons with ρ = 1,
λ1 = −0.1i, c(z) = z and γ1 = 0.4− 0.5i; (b) two dark solitons with ρ = 1, λ1 = −0.1i, c(z) = z2 and
γ1 = 0.4− 0.5i; (c) two dark solitons with ρ = 1, λ1 = −0.1i, c(z) = ez and γ1 = 0.4− 0.5i.

(a) (b) (c)

Figure 2. Elastic interactions via the solution (19a): (a) dark and antidark solitons with ρ = 1,
λ1 = 0.4i, c(z) = z and γ1 = −2− 0.6i; (b) two antidark solitons with ρ = 1, λ1 = 0.4i, c(z) = z2 and
γ1 = −2− 0.6i; (c) two antidark solitons with ρ = 1, λ1 = 0.4i, c(z) = ez and γ1 = −2− 0.6i.
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(a) (b) (c)

Figure 3. Elastic interactions via the solution (19a): (a) dark and antidark solitons with ρ = 1, λ1 = 0.4i,
c(z) = z and γ1 = 2 − 0.5i; (b) dark and antidark solitons with ρ = 1, λ1 = 0.4i, c(z) = z2 and
γ1 = 2− 0.5i; (c) dark and antidark solitons with ρ = 1, λ1 = 0.4i, c(z) = ez and γ1 = 2− 0.5i.

(a) (b) (c)

Figure 4. Degenerate two-solution interaction via the solution (19a): (a) dark and antidark soliton
with a phase shift between two soliton segments as z → ±∞, where ρ = 1, λ1 = 0.5i, c(z) = z and
γ1 = −1; (b) antidark soliton with a phase shift between two soliton segments as z → ±∞, where
ρ = 1, λ1 = 0.5i, c(z) = z2 and γ1 = −1; (c) antidark soliton with a phase shift between two soliton
segments as z→ ±∞, where ρ = 1, λ1 = 0.5i, c(z) = ez and γ1 = −1.

(a) (b) (c)

Figure 5. Degenerate two-solution interaction via the solution (19a): (a) dark and antidark soliton
with a phase shift between two soliton segments as z → ±∞, where ρ = 1, λ1 = 0.5i, c(z) = z and

γ1 = −
√

3
3 + i; (b) dark soliton with a phase shift between two soliton segments as z → ±∞, where

ρ = 1, λ1 = 0.5i, c(z) = z2 and γ1 = −
√

3
3 + i; (c) dark soliton with a phase shift between two soliton

segments as z→ ±∞, where ρ = 1, λ1 = 0.5i, c(z) = ez and γ1 = −
√

3
3 + i.

4. Rational Solutions of the PTNNLSESCS

In this section we construct the rational solutions of the PTNNLSESCS on the cw background.
Equation (9) admits plane-wave solution u = ρe2iρ2z+iφ, ϕ = 0. We take c(z) = c1(z) + ic2(z), λ1 = iρ
to derive the rational solitons and rogue wave solutions. Inserting them into the Lax pair (10), by
eigenvalue method we obtain

f1 =

 e
2iρ2z+iφ

2

−ie−
2iρ2z+iφ

2

 , (25a)

g1 =

 √
2iρ(x + 2zρ + s1)e

2iρ2z+iφ
2

√
2(i + ρ(x + 2zρ + s1))e−

2iρ2z+iφ
2

 , (25b)

where s1 is an arbitrary complex parameter.
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Then, with substitution of (25) into the Darboux transformations (11), we obtain the first-order
rational soliton solution as follows:

u[1] = ρe2iρ2z+iφ

[
1−

(2ξ +
√

2K1 −
√

2i)(2η +
√

2K∗1 −
√

2i)

2ξη +
√

2K∗1 ξ +
√

2K1η + |K1|2 + 1

]
, (26a)

ϕ1[1] = −

√
iρc′2(z)
−
√

2
(2η +

√
2K∗1 −

√
2i)e

2iρ2z+iφ
2

2ξη +
√

2K∗1 ξ +
√

2K1η + |K1|2 + 1
, (26b)

ϕ2[1] =
−i
√

iρc′2(z)
−
√

2
(2η +

√
2K∗1 +

√
2i)e−

2iρ2z+iφ
2

2ξη +
√

2K∗1 ξ +
√

2K1η + |K1|2 + 1
, (26c)

where ξ = −ic1(z) + c2(z) +
√

2ρ(x + 2zρ), η = ic1(z) + c2(z) +
√

2ρ(−x + 2zρ), s1 = a + ib and
K1 = 2ρs1 + i. The solution in Equation (26) has no singularity if and only if the following condition
is satisfied:

c1(z) 6=
2ρb + 1√

2
. (27)

Under this condition, we perform an asymptotic analysis of the solution in Equation (26) so as to
clarify the dynamical behavior underlying the solution.

(i) when c1(z) = 0. Firstly, we obtain the asymptotic expression of the solution in Equation (26)
along the line c2(z) +

√
2ρ(x + 2zρ) ∼ 0 as |z| → ∞ as follows:

u[1]→ uI = ρe2iρ2z+iφ

[
1− 2(

√
2ξ + K1 − i)√

2ξ + K1

]
, (28a)

|u[1]|2 → |uI |2 = ρ2

[
1− 8ρIm(s1)

|
√

2ξ + K1|2

]
, (28b)

ϕ1[1]→ ϕI
1 =
−
√
−
√

2iρc′2(z)e
2iρ2z+iφ

2

√
2ξ + K1

, (29a)

|ϕ1[1]|2 → |ϕI
1|2 =

√
2ρ|c′2(z)|

|
√

2ξ + K1|2
, (29b)

ϕ2[1]→ ϕI I
2 =

−i
√
−
√

2iρc′2(z)e
− 2iρ2z+iφ

2

√
2ξ + K1

, (30a)

|ϕ2[1]|2 → |ϕI I
2 |2 =

√
2ρ|c′2(z)|

|
√

2ξ + K1|2
. (30b)

Secondly, we derive the asymptotic expression of the solution in Equation (26) along the line
c2(z) +

√
2ρ(−x + 2zρ) ∼ 0 as |z| → ∞ as follows:

u[1]→ uI I = ρe2iρ2z+iφ

[
1−

2(
√

2η + K∗1 − i)√
2η + K∗1

]
, (31a)

|u[1]|2 → |uI I |2 = ρ2

[
1 +

8(1 + ρIm(s1))

|
√

2η + K∗1 |2

]
, (31b)
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ϕ1[1] = −

√
iρc′2(z)
−
√

2
(2η +

√
2K∗1 −

√
2i)e

2iρ2z+iφ
2

2ξη +
√

2K∗1 ξ +
√

2K1η + |K1|2 + 1
→ 0, (32)

ϕ2[1] =
−i
√

iρc′2(z)
−
√

2
(2η +

√
2K∗1 +

√
2i)e−

2iρ2z+iφ
2

2ξη +
√

2K∗1 ξ +
√

2K1η + |K1|2 + 1
→ 0. (33)

The above asymptotic analysis shows three different types of elastic interactions. The associated
parametric conditions are given in Table 2. For the cases Im(s1) > 0 and Im(s1) < 0, the intensity |uI |2
can respectively exhibit the rational dark (RD) soliton beneath the cw background u = ρe2iρ2z+iφ, ϕ = 0
and the rational antidark (RAD) soliton on top of the same background, and the valley and peak are
both localized along the line

√
2c2(z) + 2ρ(x + 2zρ) + Re(K1) = 0. The intensity |uI I

1 |2 display the RD
and RAD soliton profiles which are associated with 1 + ρIm(s1) < 0 and 1 + ρIm(s1) > 0 respectively.
In this case, both the RD and RAD solitons are localized along the line

√
2c2(z) + 2ρ(−x + 2zρ) +

Re(K1) = 0. In particular, for the degenerate case Im(s1) = 0, the asymptotic soliton uI disappear as
z → ±∞. Similarly, for the degenerate case 1 + ρIm(s1) = 0, the only surviving asymptotic soliton
is uI .

Table 2. Asymptotic patterns of the solution (26a) under different parametric conditions.

Parametric Conditions Asymptotic Soliton uI Asymptotic Soliton uI I

Im(s1) < 0, 1 + ρIm(s1) > 0 RAD soliton RAD soliton
Im(s1) < 0, 1 + ρIm(s1) < 0 RAD soliton RD soliton
Im(s1) > 0, 1 + ρIm(s1) > 0 RD soliton RAD soliton

Im(s1) = 0 disappear RAD soliton
1 + ρIm(s1) = 0 RAD soliton disappear

The heights of the RAD soliton or the depth of the RD soliton from the cw background for

|uI | and |uI I |, that is A1 = 8ρ3 Im(s1)
2ρIm(s1)+1 and A2 = 8ρ2(1+ρIm(s1))

2ρIm(s1)+1 , respectively. The velocities of the

RD and RAD solitons from the cw background for |uI | and |uI I |, that is v1 = −2ρ − c′2(z)√
2ρ

and

v2 = 2ρ +
c′2(z)√

2ρ
, respectively.

The asymptotic analysis implies that Equation (26) can describe the elastic interactions of rational
solitons as two interacting solitons retain their individual shapes, intensities and velocities as z→ ∞.
However, different from the standard elastic interaction in the PTNNLSESCS, each soliton experiences
no phase shift upon the interaction.

In general, Equation (26) exhibits three different types of elastic interactions between two rational
solitons on a cw background, as shown in Figures 6–11. More specifically, with Im(s1) < 0 and
1 + ρIm(s1) > 0, the asymptotic soliton uI and uI I both displays RAD solitons profile [see Figure 6a].
With Im(s1) < 0 and 1 + ρIm(s1) < 0, the asymptotic soliton uI and uI I displays RAD and RD solitons
profile [see Figure 7a]. With Im(s1) > 0 and 1+ ρIm(s1) > 0, the asymptotic soliton uI and uI I displays
RD and RAD solitons profile [see Figure 8a]. The function c(z) of the solutions (26) can change the
shape of the RAD or RD [see Figures 9–11]. The solution of ϕ1[1] and ϕ2[1] always diplay RAD soliton
solution along the line c2(z) +

√
2ρ(x + 2zρ) = 0 as |z| → ∞ and has a constant height as c2(z) = z

[see Figure 6b,c], but the height change as c2(z) = z2 [see Figure 9b,c]. The solution of ϕ1[1] and ϕ2[1]
disappear along the line c2(z) +

√
2ρ(−x + 2zρ) = 0 as |z| → ∞.

In particular, with Im(s1) = 0 the asymptotic soliton uI disappear as z→ ±∞ while uI I displays
a RAD soliton profile [see Figure 12]. Similarly, for the degenerate case 1 + ρIm(s1) = 0, the only
surviving asymptotic soliton is uI and it takes the shape of the RAD type [see Figure 13]. In either of
the two degenerate cases, one asymptotic soliton disappears in the far-field region, but it still affects
the other one in the near-field region, that is, the surviving soliton is segmented into two pieces at
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some finite value of z. Therefore, such two degenerate cases of the solution in Equation (26a) cannot be
simply regarded as the conventional single soliton.

(a) (b) (c)

Figure 6. (a–c) are the first-order rational soliton solutions via Equations (26a)–(26c) with ρ = 0.5, φ =

0, c1(z) = 0, c2(z) = z and γ1 = 1− 0.1i, respectively.

(a) (b) (c)

Figure 7. (a–c) are the first-order rational soliton solution via Equations (26a)–(26c) with ρ = 1, φ =

0, c1(z) = 0, c2(z) = z and γ1 = 1− 3i, respectively.

(a) (b) (c)

Figure 8. (a–c) are the first-order rational soliton solution via Equations (26a)–(26c) with ρ = 1, φ =

0, c1(z) = 0, c2(z) = z and γ1 = 1 + 3i, respectively.

(a) (b) (c)

Figure 9. (a–c) are the first-order rational soliton solution via Equations (26a)–(26c) with ρ = 1, φ =

0, c1(z) = 0, c2(z) = z2 and γ1 = 1− 0.1i, respectively.

(a) (b) (c)

Figure 10. (a–c) are the first-order rational soliton solution via Equations (26a)–(26c) with ρ = 1, φ =

0, c1(z) = 0, c2(z) = z2 and γ1 = 1− 3i, respectively.
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(a) (b) (c)

Figure 11. (a–c) are the first-order rational soliton solution via Equations (26a)–(26c) with ρ = 1, φ =

0, c1(z) = 0, c2(z) = z2 and γ1 = 1 + 3i, respectively.

(a) (b)

Figure 12. Degenerate two-solution interaction via the solution in Equation (26a): (a) antidark soliton
as z → ±∞, where ρ = 0.5, φ = 0, c1(z) = 0, c2(z) = z and γ1 = 1; (b) antidark soliton as z → ±∞,
where ρ = 0.5, φ = 0, c1(z) = 0, c2(z) = z2 and γ1 = 1.

(a) (b)

Figure 13. Degenerate two-solution interaction via the solution Equation (26a): (a) antidark soliton
as z → ±∞, where ρ = 0.5, φ = 0, c(z) = z and γ1 = 1− 2i; (b) antidark soliton as z → ±∞, where
ρ = 0.5, c(z) = z2 and γ1 = 1− 2i.

(ii) when c1(z) 6= 0, Equation (26) can be written as follows:

u[1] = ρe2iρ2z+iφ(−1 +
G1

H1 + iH
), (34a)

ϕ1[1] = −
G2

H1 + iH
, (34b)

ϕ2[1] =
G3

H1 + iH
, (34c)

where

G1 = 2(2
√

2i(c2(z) + 2
√

2ρ2z) + 4iρa + 2),

G2 =
√
−
√

2iρc′2(z)(
√

2ic1(z) +
√

2c2(z) + 2ρ(−x + 2zρ) + 2(a− ib)− 2i)e
2iρ2z+iφ

2 ,

G3 = −i
√
−
√

2iρc′2(z)(
√

2ic1(z) +
√

2c2(z) + 2ρ(−x + 2zρ) + 2(a− ib))e−
2iρ2z+iφ

2 ,

H1 = 2(
√

2ρa + c2(z) + 2
√

2ρ2z)2 + (
√

2ρb− c1(z))2 + (
√

2ρb +
√

2− c1)
2 − 4ρ2x2,

H2 = −4ρx(2ρb−
√

2c1(z) + 1).

We can see that the solution of (34a) tends to background in the z direction as |z| → ∞ because
the denominator containing z2 and (c2(z))2 has higher exponential than the molecule containing
z and c2(z). The solution of (34a) tends to background in the x direction as |x| → ∞ because the
denominator contains x2 and x, but the molecule does not contain the x. So the solution of (34a)
would tend to background in all direction, which means that we get the rogue wave solution as shown
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in Figure 14a. The solution of (34b) tends to background in the z direction as |z| → ∞ because the
denominator containing z2, (c1(z))2 and (c2(z))2 has higher exponential than the molecule containing
z, c1(z) and c2(z). The solution of (34b) tends to background in the x direction as |x| → ∞ because the
denominator contains x2 and x, but the molecule only contains the x. So the solution of (34b) would
tend to background in all direction, which means that we get the rogue wave solution as shown in
Figure 14b. The solution of (34c) has the same reason as the solution of (34b) as shown in Figure 14c.

(a) (b) (b)

Figure 14. (a–c) are the rogue wave solution via Equations (26a)–(26c) with ρ = 1, φ = 0, c1(z) =

z2 + 3
√

2, c2(z) = z2 and γ1 = 1 + 2i, respectively.

5. Conclusions

In this paper, we have studied the nonlinear localized wave on the cw background for the
PTNNLSESCS. The generalized Darboux transformation for the PTNNLSESCS is derived. We have
derived the nonsingular first-order soliton solution, the first-order rational soliton solution and rogue
wave solution from a cw solution by the generalized Darboux transformation. We have revealed the
elastic antidark-antidark soliton, antidark-dark soliton, and dark-dark soliton interactions, in which
there is a phase shift for interacting solitons. we have also revealed the elastic RAD-RAD and RAD-RD
soliton interactions, in which there is no phase shift for interacting solitons. Meanwhile, we have
discussed the degenerate case in which only one soliton remains.
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