A Five-Component Generalized mKdV Equation and Its Exact Solutions
Abstract
:1. Introduction
2. Darboux Transformation
- 1.
- is a known solution of the five-component Equation (1);
- 2.
- is a fixed constant; and
- 3.
3. Exact Solutions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gu, C.H. Soliton Theory and Its Application; Zhejiang Publishing House of Science and Technology: Hangzhou, China, 1990. [Google Scholar]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Zarkhrov, V.E.; Shabat, A.B. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering transform. Funct. Anal. Appl. 1974, 8, 226–235. [Google Scholar] [CrossRef]
- Li, X.M.; Geng, X.G. Lax matrix and a generalized coupled KdV hierarchy. Phys. Lett. A 2003, 327, 357–370. [Google Scholar] [CrossRef]
- Tu, G.Z. A new hierarchy of integrable systems and its Hamiltonian structures. Sci. China Ser. A 1989, 2, 142–153. [Google Scholar]
- Tu, G.Z.; Meng, D.Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems(II). Acta Math. Appl. Sin. (Engl. Ser.) 1989, 1, 89–96. [Google Scholar] [CrossRef]
- Tu, G.Z. A trace identity and its applications to the theory of discrete integrable systems. J. Phys. A Math. Gen. 1990, 23, 3903–3922. [Google Scholar]
- Hirota, R.; Satsuma, J. Soliton solutions of a coupled Korteweg-de Vries equation. Phys. Lett. A 1981, 85, 407–408. [Google Scholar] [CrossRef]
- Li, Y.S.; Ma, W.X.; Zhang, J.E. Darboux transformations of classical Boussinesq system and its new solutions. Phys. Lett. A 2000, 275, 60–66. [Google Scholar] [CrossRef]
- Li, Y.S.; Zhang, J.E. Bidirectional soliton solutions of the classical Boussinesq system and AKNS system. Chaos Solitons Fractals 2003, 16, 271–277. [Google Scholar] [CrossRef]
- Gu, C.H.; Hu, H.S. A unified explicit form of Bäcklund transformations for generalized hierarchies of KdV equations. Lett. Math. Phys. 1986, 11, 325–335. [Google Scholar]
- Wang, M.L.; Wang, Y.M. A new Bäcklund transformation and multi-solutions to the KdV equation with general variable coefficients. Phys. Lett. A 2001, 287, 211–216. [Google Scholar] [CrossRef]
- Rogers, C.; Schief, W.K. Bäcklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Yu, J.; Chen, S.T.; Han, J.W.; Ma, W.X. N-fold Darboux Transformation for Integrable Couplings of AKNS Equations. Commun. Theor. Phys. 2018, 69, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Wei, J.; Geng, X.G.; Zeng, X. The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc. 2019, 371, 1483–1507. [Google Scholar] [CrossRef]
- Geng, X.G.; Liu, H. The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 2018, 28, 739–763. [Google Scholar] [CrossRef]
- Geng, X.G.; Tam, H.W. Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations. J. Phys. Soc. Jpn. 1999, 68, 1508–1512. [Google Scholar] [CrossRef]
- Zhao, X.J.; Guo, R.; Hao, H.Q. N-fold Darboux transformation and discrete soliton solutions for the discrete Hirota equation. Appl. Math. Lett. 2018, 75, 114–120. [Google Scholar] [CrossRef]
- Xue, B.; Wu, C.M. Conversation laws and Darboux transformation for Sharma-Tasso-Olver equation. Commun. Theor. Phys. 2012, 58, 317–322. [Google Scholar] [CrossRef]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer: New York, NY, USA, 1993. [Google Scholar]
- Geng, X.G.; Wu, L.H. Darboux transformation and explicit solutions for Drinfel’d-Sokolov-Wilson equation. Theor. Phys. 2010, 53, 1090–1096. [Google Scholar]
- Cao, J.N. Darboux transformations for differential-difference principal chiral equation and its continuous limits. J. Math. Phys. 2000, 41, 4687–4694. [Google Scholar]
- Xue, B.; Wang, X. Darboux transformation and new explicit solutions for Belov-Chaltikion lattice. Chin. Phys. Lett. 2012, 29, 100201. [Google Scholar] [CrossRef]
- Li, Y.S.; Zhang, J.E. Darboux transformations of classical Boussinesq system and its multi-soliton solutions. Phys. Lett. A 2001, 284, 253–258. [Google Scholar] [CrossRef]
- Geng, X.G.; Li, R.M.; Xue, B. A vector general nonlinear Schrödinger equation with (m + n)-components. J. Nonlinear Sci. 2020, 30, 991–1013. [Google Scholar] [CrossRef]
- Li, R.M.; Geng, X.G. On a vector long wave-short wave-type model. Stud. Appl. Math. 2020, 144, 164–184. [Google Scholar] [CrossRef]
- Li, R.M.; Geng, X.G. Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 2020, 102, 106147. [Google Scholar] [CrossRef]
- Chen, J.B.; Pelinovsky, D.E. Rogue periodic waves of the modified KdV equation. Nonlinearity 2017, 31, 1955–1980. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.B.; Pelinovsky, D.E. Rogue periodic waves of the focusing nonlinear Schrödinger equation. Proc. R. Soc. Math. Phys. Eng. Sci. 2018, 474, 20170814. [Google Scholar] [CrossRef] [PubMed]
- Triki, H.; Ismail, M.S. Solitary wave solutions for a coupled pair of mKdV equations. Appl. Math. Comput. 2010, 217, 1540–1548. [Google Scholar] [CrossRef]
- Geng, X.G.; Zhai, Y.Y.; Dai, H.H. Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy. Adv. Math. 2014, 263, 123–153. [Google Scholar] [CrossRef]
- Salkuyeh, D.K.; Bastani, M. Solution of the complex modified Korteweg-de Vries equation by the projected differential transform method. Appl. Math. Comput. 2013, 219, 5105–5112. [Google Scholar] [CrossRef]
- Degasperis, A.; Lombardo, S.; Sommacal, M. Rogue Wave Type Solutions and Spectra of Coupled Nonlinear Schrödinger Equations. Fluids 2019, 4, 4010057. [Google Scholar] [CrossRef] [Green Version]
- Ling, L.M.; Zhao, L.C.; Guo, B.L. Darboux transformation and classification of solution for mixed coupled nonlinear Schrödinger equations. Commun. Nonlinear Sci. 2016, 32, 285–304. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, B.; Du, H.; Li, R. A Five-Component Generalized mKdV Equation and Its Exact Solutions. Mathematics 2020, 8, 1145. https://doi.org/10.3390/math8071145
Xue B, Du H, Li R. A Five-Component Generalized mKdV Equation and Its Exact Solutions. Mathematics. 2020; 8(7):1145. https://doi.org/10.3390/math8071145
Chicago/Turabian StyleXue, Bo, Huiling Du, and Ruomeng Li. 2020. "A Five-Component Generalized mKdV Equation and Its Exact Solutions" Mathematics 8, no. 7: 1145. https://doi.org/10.3390/math8071145
APA StyleXue, B., Du, H., & Li, R. (2020). A Five-Component Generalized mKdV Equation and Its Exact Solutions. Mathematics, 8(7), 1145. https://doi.org/10.3390/math8071145