On an Energy-Dependent Quantum System with Solutions in Terms of a Class of Hypergeometric Para-Orthogonal Polynomials on the Unit Circle
Abstract
:1. Introduction
2. Basic Notations and Statement of the Results
2.1. Some Basic Facts about the Functions
The Schrödinger Invariant of a Second Order Differential Equation
3. Proof of the Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pauli, W. Zur Quantenmechanik des magnetischen Elektrons. Z. Phys. 1927, 43, 601–623. [Google Scholar] [CrossRef]
- Garcia-Martinez, J.; Garcia-Ravelo, J.; Peña, J.J.; Schulze-Halberg, A. Exactly solvable energy-dependent potentials. Phys. Lett. A 2009, 373, 3619–3623. [Google Scholar] [CrossRef]
- Langueur, O.; Merad, M.; Hamil, B. DKP Equation with Energy Dependent Potentials. Commun. Theor. Phys. 2019, 71, 1069–1074. [Google Scholar] [CrossRef]
- Rizov, V.A.; Sazdjian, H.; Todorov, T. On the relativistic quantum mechanics of two interacting spinless particles. Ann. Phys. 1985, 165, 59–97. [Google Scholar] [CrossRef]
- Sazdjian, H. Relativistic wave equations for the dynamics of two interacting particles. Phys. Rev. D 1986, 33, 3401. [Google Scholar] [CrossRef]
- Schiff, L.I.; Snyder, H.; Weinberg, J. On the existence of stationary states of the mesotron field. Phys. Rev. 1940, 57, 315–318. [Google Scholar] [CrossRef]
- Schulze-Halberg, A.; Yeşiltaş, Ö. Generalized Schrödinger equations with energy-dependent potentials: Formalism and applications. J. Math. Phys. 2018, 59, 113503. [Google Scholar] [CrossRef]
- Snyder, H.; Weinberg, J. Stationary states of scalar and vector fields. Phys. Rev. 1940, 57, 307–314. [Google Scholar] [CrossRef]
- Yekken, R.; Lassaut, M.; Lombard, R.J. Applying supersymmetry to energy dependent potentials. Ann. Phys. 2013, 338, 195–206. [Google Scholar] [CrossRef]
- Schulze-Halberg, A. Higher–order Darboux transformations and Wronskian representations for Schrödinger equations with quadratically energy–dependent potentials. J. Math. Phys. 2020, 61, 023503. [Google Scholar] [CrossRef]
- Lombard, R.J.; Mares, J.; Volpe, C. Wave equation with energy-dependent potentials for confined systems. J. Phys. G 2007, 34, 1–11. [Google Scholar] [CrossRef]
- Lombard, R.J.; Mares, J. The many-body problem with an energy-dependent confining potential. Phys. Lett. A 2009, 373, 426–429. [Google Scholar] [CrossRef]
- Mourad, J.; Sazdjian, H. The two-fermion relativistic wave equations of constraint theory in the Pauli–Schrödinger form. J. Math. Phys. 1998, 35, 6379–6406. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. Some water wave equations and integrability. J. Nonlinear Math. Phys. 2005, 12, 466–481. [Google Scholar] [CrossRef]
- Formanek, J.; Lombard, R.J.; Mares, J. Wave equations with energy-dependent potentials. Czechoslov. J. Phys 2004, 54, 289–315. [Google Scholar] [CrossRef] [Green Version]
- Schulze-Halberg, A.; Roy, P. Bound states of the two-dimensional Dirac equation for an energy-dependent hyperbolic Scarf potential. J. Math. Phys. 2017, 58, 113507. [Google Scholar] [CrossRef]
- Harko, T.; Liang, S.-D. Energy-dependent noncommutative quantum mechanics. Eur. Phys. J. C 2019, 79, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Rosen, N.; Morse, P.M. On the Vibrations of Polyatomic Molecules. Phys. Rev. 1932, 42, 210–217. [Google Scholar] [CrossRef]
- Sazdjian, H. The scalar product in two-particle relativistic quantum mechanics. J. Math. Phys. 1988, 29, 1620–1633. [Google Scholar] [CrossRef]
- Bose, A.K. A class of solvable potentials. Il Nuovo Cimento 1964, 32, 679–688. [Google Scholar] [CrossRef]
- Freud, G. Orthogonal Polynomials; Pergamon: Oxford, UK, 1971. [Google Scholar]
- Geronimus, L.Y. Polynomials Orthogonal on a Circle and Their Applications; American Mathematical Society Translations; American Mathematical Society: Providence, RI, USA, 1962; Volume 104, pp. 1–78. [Google Scholar]
- Szegő, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 1975; Volume 23. [Google Scholar]
- Ismail, M.E.H. Classical and Quantum Orthogonal Polynomials in One Variable; Encyclopedia of Mathematics and Its Applications; Cambridge Univ Press: Cambridge UK, 2005; Volume 98. [Google Scholar]
- Simon, B. Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, Part 2: Spectral Theory; American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 2005; Volume 54. [Google Scholar]
- Bateman, H.; Erdélyi, A. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume I. [Google Scholar]
- Dimitrov, D.K.; Sri Ranga, A. Zeros of a family of hypergeometric paraorthogonal polynomials on the unit circle. Math. Nachr. 2013, 286, 1778–1791. [Google Scholar] [CrossRef]
- Jones, W.B.; Njåstad, O.; Thron, W.J. Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle. Bull. Lond. Math. Soc. 1989, 21, 113–152. [Google Scholar] [CrossRef]
- Askey, R. Discussion of Szegő’s paper: Beiträge zur Theorie der Toeplitzschen Formen. In Gabor Szegő. Collected Works; Askey, R., Ed.; Birkhäuser: Boston, MA, USA, 1982; Volume I, pp. 303–305. [Google Scholar]
- Sri Ranga, A. Szegő polynomials from hypergeometric functions. Proc. Amer. Math. Soc. 2010, 138, 4259–4270. [Google Scholar] [CrossRef] [Green Version]
- ter Haar, D. Problems in Quantum Mechanics, 3rd ed.; Pion Ltd.: London, UK, 1975. [Google Scholar]
- Cooper, F.; Khare, A.; Sukhatme, U. Supersymmetry in Quantum Mechanics; World Scientific U P: Singapore, 2001. [Google Scholar]
- Sun, G.H.; Dong, S.H. Quantum information entropies of the eigenstates for a symmetrically trigonometric Rosen-Morse potential. Phys. Scr. 2013, 87, 7. [Google Scholar] [CrossRef]
- Cooper, F.; Khare, A.; Sukhatme, U. Supersymmetry and Quantum Mechanics. Phys. Rep. 1995, 251, 267–385. [Google Scholar] [CrossRef] [Green Version]
- de Lange, O.L.; Raab, R.E. Operator Methods in Quantum Mechanics; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Compean, C.B.; Kirchbach, M. The trigonometric Rosen-Morse potential in supersymmetric quantum mechanics and its exact solutions. J. Phys. A Math. Gen. 2006, 39, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Raposo, A.; Weber, H.J.; Alvarez-Castillo, D.E.; Kirchbach, M. Romanovski polynomials in selected physics problems. Cent. Eur. J. Phys. 2007, 5, 253–284. [Google Scholar] [CrossRef] [Green Version]
- Romanovski, V. Sur quelques classes nouvelles de polynomes orthogonaux. CR Acad. Sci. Paris 1929, 188, 1023–1025. [Google Scholar]
- Routh, E.J. On some properties of certain solutions of a differential equation of second order. Proc. Lond. Math. Soc. 1884, 16, 245–261. [Google Scholar] [CrossRef] [Green Version]
- Lesky, P.A. Endliche und unendliche systeme von kontinuierlichen klassischen orthogonalpolynomen. Z. Angew. Math. Mech. 1996, 76, 181–184. [Google Scholar] [CrossRef]
- Quesne, C. Extending Romanovski polynomials in quantum mechanics. J. Math. Phys. 2013, 54, 122103. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, D.K.; Ismail, M.E.H.; Sri Ranga, A. A class of hypergeometric polynomials with zeros on the unit circle: Extremal and orthogonal properties and quadrature formulas. Appl. Numer. Math. 2013, 65, 41–52. [Google Scholar] [CrossRef]
- Milson, R. On the Liouville transformation and exactly-solvable Schrödinger equations. Int. J. Theor. Phys. 1998, 37, 1735–1752. [Google Scholar] [CrossRef]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions. In Encyclopedia of Mathematics and Its Applications; Cambridge Univ. Press: Cambridge, UK, 2000; Volume 71. [Google Scholar]
- Markushevich, A.I. Theory of Functions of a Complex Variable; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965; Volume I. [Google Scholar]
- Bourbaki, N. Elements of Mathematics. General Topology; Addison-Wesley: Paris/Reading, MA, USA, 1966; Volume I, (Translated from French). [Google Scholar]
- Kolmogorov, A.N.; Fomin, S.V. Elements of the Theory of Functions and Functional Analysis; Graylock Press: Rochester, NY, USA, 1957; Volume I. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrego-Morell, J.A.; Bracciali, C.F.; Sri Ranga, A. On an Energy-Dependent Quantum System with Solutions in Terms of a Class of Hypergeometric Para-Orthogonal Polynomials on the Unit Circle. Mathematics 2020, 8, 1161. https://doi.org/10.3390/math8071161
Borrego-Morell JA, Bracciali CF, Sri Ranga A. On an Energy-Dependent Quantum System with Solutions in Terms of a Class of Hypergeometric Para-Orthogonal Polynomials on the Unit Circle. Mathematics. 2020; 8(7):1161. https://doi.org/10.3390/math8071161
Chicago/Turabian StyleBorrego-Morell, Jorge A., Cleonice F. Bracciali, and Alagacone Sri Ranga. 2020. "On an Energy-Dependent Quantum System with Solutions in Terms of a Class of Hypergeometric Para-Orthogonal Polynomials on the Unit Circle" Mathematics 8, no. 7: 1161. https://doi.org/10.3390/math8071161
APA StyleBorrego-Morell, J. A., Bracciali, C. F., & Sri Ranga, A. (2020). On an Energy-Dependent Quantum System with Solutions in Terms of a Class of Hypergeometric Para-Orthogonal Polynomials on the Unit Circle. Mathematics, 8(7), 1161. https://doi.org/10.3390/math8071161