The Effects of Fiscal and Tax Incentives on Regional Innovation Capability: Text Extraction Based on Python
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. The Influence Mechanism of Fiscal and Tax Policies on Stimulating Innovation
3. Measurement of Fiscal Policies and Regional Innovation Capability
3.1. Measurement of Fiscal Policy
3.2. Measurement of Regional Innovation Capability and Spatial Heterogeneity
4. Empirical Study
4.1. Data
4.2. Model Set
4.3. Explanatory Variables
4.4. Control Variables
4.5. Empirical Results
5. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Drucker, P. Innovation and Entrepreneurship; Harper & Row: New York, NY, USA, 1985. [Google Scholar]
- Gartner, W. What are we talking about when we talk about entrepreneurship? J. Bus. Ventur. 1990, 5, 15–28. [Google Scholar] [CrossRef]
- Kautsky, K.; Stenning, H.J. The Economic Doctrines of Karl Marx; N.C.L.C. Publishing Society: London, UK, 1925. [Google Scholar]
- What Country Spends Most Research-and-Development. Available online: https://www.investopedia.com/ask/answers/021715/whatcountryspendsmostresearch-and-development.asp (accessed on 19 October 2019).
- David, P.A.; Hall, B.H.; Toole, A.A. Is public R&D a complement or substitute for private R&D? A review of the econometric evidence. Res. Policy 2000, 4, 497–529. [Google Scholar]
- Peng, H.; Wang, G. Measurement and Analysis of the effects of Chinese government’s innovation subsidies. Res. Quant. Econ. Tech. Econ. 2018, 1, 77–93. [Google Scholar]
- China’s Science and Technology Development Strategy Research Group. Evaluation of China’s regional innovation ability in 2002. Sci. Sci. Technol. Manag. 2003, 4, 5–11. [Google Scholar]
- Kyrgiafini, L.; Sefertzi, E. Changing regional systems of innovation in Greece: The impact of regional innovation strategy initiatives in peripheral areas of Europe. Eur. Plan. Stud. 2003, 11, 885–910. [Google Scholar] [CrossRef]
- Eriksson, K.; Ernkvist, M.; Laurell, C.; Moodysson, J.; Nykvist, R.; Sandstrom, C. A revised perspective on innovation policy for renewal of mature economies—Historical evidence from finance and telecommunications in Sweden 1980–1990. Technol. Forecast. Soc. Chang. 2019, 147, 152–162. [Google Scholar] [CrossRef]
- Ho, Y.K.; Keh, H.T.; Ong, J.M. The effects of R&D and advertising on firm value: An examination of manufacturing and nonmanufacturing Firms. IEEE Trans. Eng. Manag. 2005, 52, 3–14. [Google Scholar]
- Kalantonis, P.; Schoina, S.; Missiakoulis, S.; Zopounidis, C. The impact of the disclosed R&D expenditure on the value relevance of the accounting information: Evidence from Greek listed firms. Mathematics 2020, 8, 730–748. [Google Scholar]
- Mamuneas, T.P.; Ishaq, N.M. Public R&D policies and cost behavior of the US manufacturing industries. J. Public Econ. 1996, 63, 57–81. [Google Scholar]
- Liu, F.C.; Simon, D.F.; Sun, Y.T.; Cao, C. China’s innovation policies: Evolution, institutional structure, and trajectory. Res. Policy 2011, 40, 917–931. [Google Scholar] [CrossRef]
- Herbig, P.; Golden, J.E.; Dunphy, S. The relationship of structure to entrepreneurial and innovative success. Mark. Intell. Plan. 1994, 12, 37–48. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, X.; Zhao, W.; Li, T. Taxation, tax Competition, and regional innovation: An empirical study based on provincial panel data in China. NTU Bus. Rev. 2012, 1, 23–41. [Google Scholar]
- Chen, L.; Yang, W.H. R&D tax credits and firm innovation: Evidence from China. Technol. Forecast. Soc. Chang. 2019, 146, 233–241. [Google Scholar]
- Gramkow, C.; Angerkraavi, A. Could fiscal policies induce green innovation in developing countries? The case of Brazilian manufacturing sectors. Clim. Policy 2018, 18, 246–257. [Google Scholar] [CrossRef]
- Busom, I. An empirical evaluation of the effects of R&D subsidies. Econ. Innov. New Technol. 2000, 9, 111–148. [Google Scholar]
- Klette, T.J.; Jarle, M. R&D investment responses to R&D Subsidies: A theoretical analysis and a micro-econometric study. World Rev. Sci. Technol. Sustain. Dev. 2012, 9, 169–203. [Google Scholar]
- Zhang, K.; Liu, X.L.; Fu, Z.R. Value added tax relief, enterprise tax burden, and innovation input: An analysis based on 2013-2015 survey Data. Commer. Res. 2017, 11, 39–45. [Google Scholar]
- Lee, J.W. Government interventions and productivity growth in Korean manufacturing industries. J. Econ. Growth 1996, 1, 391–414. [Google Scholar] [CrossRef]
- Aghion, P.; Dewatripont, M.; Du, L.; Harrison, A.; Legros, P. Industrial policy and competition. Natl. Bur. Econ. Res. 2012. [Google Scholar] [CrossRef] [Green Version]
- Hall, B.H. Tax Policy for Innovation. NBER Working Papers, No. 25773; National Bureau of Economic Research Inc.: Cambridge, UK, 2019. [Google Scholar]
- Chang, A.C. Tax policy endogeneity: Evidence from R&D tax credits. Econ. Innov. New Technol. 2018, 27, 809–833. [Google Scholar]
- Li, S.M.; Yang, Q.Y.; Tang, S.F.; Ge, L.L. Financial and taxation countermeasures to coordinate the balanced and balanced development of regional economy. Tax Res. 2020, 3, 128–133. [Google Scholar]
- Cao, Y.; Chen, M.; Su, G. Are fiscal and tax policies conducive to enhancing enterprise innovation efficiency? Southeast Acad. J. 2018, 2, 96–104. [Google Scholar]
- Wang, R.H.; Kesan, J.P. Do tax policies drive innovation by SMEs in China? J. Small Bus. Manag. 2020. [Google Scholar] [CrossRef]
- Alavuotunki, K.; Haapanen, M.; Pirttilä, J. The effects of the value-added tax on revenue and inequality. J. Dev. Stud. 2019, 55, 490–508. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.M.; Liu, W.L. Have fiscal R&D subsidies and tax incentives stimulated substantial innovation in manufacturing companies—Research based on propensity score matching and sample quantile regression. Ind. Econ. Rev. 2019, 10, 115–130. [Google Scholar]
- Wang, M.; Assun, Z. Hierarchy, Types of technological innovation policy and enterprise innovation: An empirical analysis based on survey data. Sci. Sci. Technol. Manag. 2017, 38, 20–30. [Google Scholar]
- Zhang, N.; Du, J.T. The influence of fiscal and taxation policies on the innovation efficiency of high-tech enterprises—Based on the perspective of interaction. Tax Res. 2019, 12, 47–53. [Google Scholar]
- Ning, L.; Li, J.C. Incentive effect of fiscal and taxation policies on enterprise technological innovation. Econ. Probl. 2019, 11, 38–45. [Google Scholar]
- Czarnitzki, D.; Hanel, P.; Rosa, J.M. Evaluating the impact of R&D tax credits on innovation: A micro-econometric study on Canadian firms. Res. Policy 2011, 40, 217–229. [Google Scholar]
- Ernst, C.; Spengel, C. Taxation, R&D tax incentives and patent application in Europe. SSRN Electron. J. 2011. [Google Scholar] [CrossRef] [Green Version]
- Westmore, B. R&D, Patenting, and Growth: The Role of Public Policy; OECD Economics Department Working Paper, No. 1047; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Cappelen, A.; Raknerud, A.; Rybalka, M. The effects of R&D tax credits on patenting and innovations. Res. Policy 2012, 41, 334–345. [Google Scholar]
- Ernst, C.; Ricter, K.; Riedel, N. Corporate taxation and the quality of research and development. Int. Tax Public Financ. 2014, 21, 694–719. [Google Scholar] [CrossRef]
- Xie, W.; Tang, Q.; Lu, S. Government R&D funding, corporate R&D expenditure, and independent innovation—Empirical evidence from Chinese listed companies. Financ. Res. 2009, 6, 86–99. [Google Scholar]
- Guo, B.; Luo, S. Does the local government’s financial science and technology funding stimulate enterprises’ technological innovation—Empirical research from Shanghai enterprise data. Shanghai Econ. Res. 2015, 4, 70–78. [Google Scholar]
- Cullen, J.B.; Gordon, R.H. Taxed and Entrepreneurial Activity: Theory and Evidence for the U.S. J. Public Econ. 2007, 7, 1479–1505. [Google Scholar] [CrossRef]
- Russo, B. A cost-benefit analysis of R&D tax incentives. Can. J. Econ. 2004, 37, 313–335. [Google Scholar]
- Gong, H. The choice of government policy tools in the innovation system of late-developed regions. Econ. Syst. Reform 2003, 4, 114–116. [Google Scholar]
- Xu, Y.; Li, C. Research on the evolution of science and technology policies and innovation performance in China: Based on the perspective of policy interactions. Econ. Issues 2017, 1, 11–16. [Google Scholar]
- Furman, J.L.; Porter, M.E.; Stern, S. The determinants of national innovative capacity. Res. Policy 2002, 31, 899–933. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Wu, G.; Lv, X. Influencing factors of regional innovation capability—A review of regional disparities in China’s innovation capability. China Soft Sci. 2010, 9, 76–85. [Google Scholar]
- Hu, M.C.; Mathews, J.A. National innovative capacity in East Asia. Res. Policy 2005, 34, 1322–1349. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, N.; Peng, Y. Tax arrangement and regional innovation. Econ. Geogr. 2014, 9, 33–39. [Google Scholar]
- Mukherjee, A.; Singh, M.; Zaldokas, A. Do corporate taxes hinder innovation. J. Financ. Econ. 2017, 124, 195–221. [Google Scholar] [CrossRef]
Dimension | Category | Aspect |
---|---|---|
Policy objectives | Encourage basic research | Patent system; government funding; government procurement |
Encourage the transformation of technological achievements | Control; technical standards; R&D investment; Subsidies; foreign investment and technology introduction; digestion and absorption; industrialization | |
Encourage the improvement of innovation systems | Cooperative research programs; enterprise innovation capability | |
Policy tools | Demand policy | Trade control; outsourcing |
Supply policy | Public services, education, and training; personnel measures; science and technology infrastructure; science and technology information support; science and technology funds | |
Environmental policies | Tax incentives; finance; intellectual property; administrative measures; target planning |
2009 | 2010 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
---|---|---|---|---|---|---|---|---|---|
Beijing | 53.19 | 47.92 | 46.11 | 50.73 | 50.11 | 50.45 | 52.61 | 52.56 | 54.3 |
Tianjin | 37.44 | 35.89 | 34.09 | 36.13 | 36.11 | 36.49 | 34.15 | 33.71 | 32.14 |
Hebei | 25.2 | 23.26 | 22.67 | 23.02 | 20.88 | 21.14 | 20.89 | 20.05 | 21.97 |
Shanxi | 24.69 | 23.83 | 20.68 | 21.68 | 21.2 | 20.61 | 18.17 | 17.93 | 19.14 |
Inner Mongolia | 21.87 | 20.46 | 26.18 | 23.73 | 19.23 | 21.44 | 18.22 | 18.32 | 19.11 |
Liaoning | 33.03 | 28.93 | 31.28 | 28.85 | 27.19 | 26.88 | 24.46 | 22.26 | 22.44 |
Jilin | 24.37 | 22.2 | 20.76 | 22.64 | 20.69 | 18.95 | 18.53 | 19 | 20.48 |
Heilongjiang | 27.67 | 22.84 | 24.61 | 23.55 | 21.22 | 20.65 | 21.16 | 19.51 | 19.19 |
Shanghai | 52.44 | 46.23 | 42.28 | 47.18 | 46.59 | 45.62 | 46.04 | 44.81 | 46 |
Jiangsu | 55.63 | 52.27 | 53.84 | 57.58 | 58.86 | 58.01 | 57.2 | 53.3 | 51.73 |
Zhejiang | 44.61 | 41.23 | 38.48 | 42.4 | 41.46 | 42.05 | 37.94 | 37.66 | 38.88 |
Anhui | 31.92 | 28.56 | 30.08 | 29.75 | 30.47 | 29.86 | 30.02 | 28.36 | 28.72 |
Fujian | 29.86 | 24.16 | 26.48 | 29.33 | 28.8 | 29.25 | 27.2 | 25.77 | 26.3 |
Jiangxi | 25.82 | 22.07 | 24.32 | 23.53 | 21.86 | 23.34 | 21.85 | 22.04 | 21.61 |
Shandong | 40.41 | 37.34 | 36.71 | 37.73 | 37.93 | 37.49 | 36.29 | 33.77 | 33.64 |
Henan | 28.4 | 25.96 | 25.26 | 26.21 | 24.33 | 25.9 | 26.44 | 24.23 | 24.91 |
Hubei | 32.76 | 30.61 | 28.35 | 28.71 | 28.82 | 28.59 | 29.07 | 29.35 | 29.45 |
Hunan | 28.94 | 29.79 | 28.45 | 28.25 | 28.59 | 29.01 | 27.77 | 26.63 | 26.59 |
Guangdong | 53.65 | 51.89 | 49.38 | 53 | 52.44 | 52.71 | 53.62 | 55.24 | 59.55 |
Guangxi | 22.7 | 22.56 | 22.67 | 23.06 | 22.3 | 23.62 | 22.81 | 21.19 | 21.87 |
Hainan | 21.31 | 21.95 | 23.3 | 24.1 | 26.79 | 28.03 | 25.68 | 22.49 | 22.79 |
Chongqing | 29.53 | 29.85 | 28.08 | 33.88 | 32.9 | 32.99 | 32.04 | 30.05 | 30.3 |
Sichuan | 33.61 | 29.95 | 28.35 | 27.16 | 26.98 | 26.39 | 29.08 | 27.52 | 27.04 |
Guizhou | 23.31 | 19 | 20.77 | 22.6 | 20.41 | 21.22 | 25.64 | 22.19 | 22.27 |
Yunnan | 24.32 | 20.74 | 19.37 | 21.32 | 21.13 | 20.3 | 19.72 | 20.43 | 21.48 |
Tibet | 18.13 | 18.43 | 17.43 | 17.39 | 17.77 | 17.09 | 17.16 | 17.7 | 16.4 |
Shaanxi | 29.12 | 27.79 | 27.84 | 27.68 | 26.86 | 27.14 | 29.29 | 36.05 | 26.49 |
Gansu | 20.93 | 19.83 | 19.7 | 22.2 | 23.58 | 21.68 | 22.06 | 20.82 | 20.05 |
Qinghai | 18.99 | 16.3 | 17.62 | 17.65 | 16.19 | 17.71 | 15.78 | 18.13 | 20.97 |
Ningxia | 20.16 | 20.89 | 16.8 | 20.32 | 17.64 | 18.52 | 20.04 | 20.68 | 19.45 |
Xinjiang | 23.93 | 20.38 | 20.32 | 20.39 | 18.49 | 18.04 | 19.86 | 20.04 | 19.93 |
Average | 30.90 | 28.49 | 28.14 | 29.41 | 28.64 | 28.75 | 28.41 | 27.80 | 27.91 |
Standard deviation | 10.81 | 10.07 | 9.52 | 10.60 | 11.07 | 10.94 | 11.01 | 10.86 | 11.09 |
Average of the East | 40.62 | 37.37 | 36.78 | 39.10 | 38.83 | 38.92 | 37.83 | 36.51 | 37.25 |
Average of the Central | 28.07 | 25.73 | 25.31 | 25.54 | 24.65 | 24.61 | 24.13 | 23.38 | 23.76 |
Average of the West | 23.88 | 22.18 | 22.09 | 23.12 | 21.96 | 22.18 | 22.64 | 22.76 | 22.11 |
Average of the North | 29.49 | 27.07 | 26.87 | 27.64 | 26.40 | 26.35 | 26.15 | 25.82 | 25.39 |
Average of the South | 32.23 | 29.81 | 29.32 | 31.07 | 30.74 | 31.00 | 30.54 | 29.66 | 30.20 |
Coefficient of variation | 0.35 | 0.35 | 0.34 | 0.36 | 0.39 | 0.38 | 0.39 | 0.39 | 0.40 |
Variables | Definition (Unit) | Average | SD | Min | Max | Observations |
---|---|---|---|---|---|---|
Innovation | Innovation index (null) | 28.83 | 10.56 | 15.78 | 59.55 | 310 |
Patent | Invention Patent (pieces) | 6072 | 9239 | 7 | 53,259 | 310 |
Policy | Fiscal and tax policies (items) | 2.116 | 2.494 | 0 | 14 | 310 |
Fiscal | Fiscal expenditure for science and technology (%) | 1.941 | 1.443 | 0.293 | 7.202 | 310 |
Taxtot | Total taxes/local GDP (%) | 8.235 | 2.957 | 4.193 | 19.965 | 310 |
VAT | VAT/total taxes (%) | 22.11 | 11.41 | 5.915 | 64.34 | 310 |
BT | Business tax/total taxes (%) | 31.61 | 7.418 | 11.634 | 54.402 | 248 |
IT | Income tax/total taxes (%) | 13.98 | 3.688 | 3.162 | 26.30 | 310 |
RDL | R&D personnel (person years) | 10.95 | 1.341 | 6.986 | 13.54 | 310 |
RDK | R&D intensity (%) | 1.522 | 1.090 | 0.190 | 6.014 | 310 |
PGDP | GDP per capita (yuan) | 10.65 | 0.492 | 9.241 | 11.94 | 310 |
Str | Industry Structure (null) | 1.068 | 0.355 | 0.199 | 2.002 | 310 |
Open | Level of Openness (%) | 2.816 | 0.958 | 0.523 | 5.043 | 310 |
Inf | Traffic infrastructure density (km/km2) | 0.934 | 0.544 | 0.045 | 2.379 | 310 |
Innovation | Ln(Patent) | |||||
---|---|---|---|---|---|---|
Fiscal | 0.910 *** | 0.507 * | 1.093 *** | 0.010 | −0.034 | 0.016 |
(0287) | (0.307) | (0.290) | (0.020) | (0.025) | (0.021) | |
Policy | 0.360 *** | 0.370 *** | 0.311 *** | 0.014 *** | 0.020 ** | 0.019 *** |
(0.065) | (0.0873) | (0.070) | (0.004) | (0.006) | (0.004) | |
VAT | 12.18 *** | −1.675 *** | ||||
(4.751) | (0.330) | |||||
BT | −25.22 *** | 0.204 | ||||
(4.782) | (0.376) | |||||
IT | −21.33 ** | −1.301 *** | ||||
(8.055) | (0.614) | |||||
Tax | 0.054 | 0.346 *** | 0.164 | 0.045 *** | 0.060 *** | 0.039 *** |
(0.106) | (0.123) | (0.118) | (0.009) | (0.011) | (0.010) | |
RDL | 1.990 *** | 3.389 *** | 2.117 *** | 1.084 *** | 1.123 *** | 1.062 *** |
(0.253) | (0.369) | (0.281) | (0.026) | (0.031) | (0.027) | |
RDK | 1.452 *** | 0.780 ** | 1.668 *** | 0.071 ** | 0.055 *** | 0.111 *** |
(0.368) | (0.381) | (0.375) | (0.023) | (0.026) | (0.026) | |
Open | 1.727 *** | 1.806 *** | 1.665 *** | 0.034 | 0.041 | 0.044 |
(0.286) | (0.361) | (0.313) | (0.027) | (0.031) | (0.029) | |
Inf | 2.324 *** | 1.759 *** | 2.282 *** | 0.051 | 0.003 | 0.007 |
(0.457) | (0.488) | (0.456) | (0.037) | (0.042) | (0.038) | |
Str | −3.023 *** | −1.667 ** | −2.715 *** | −0.257 *** | −0.327 *** | −0.322 *** |
(0.786) | (0.816) | (0.803) | (0.069) | (0.076) | (0.072) | |
PGDP | 3.414 *** | 3.792 *** | 3.526 *** | −0.241 *** | −0.294 *** | −0.268 *** |
(0.590) | (0.706) | (0.667) | (0.067) | (0.073) | (0.070) | |
Constant | −36.79 *** | −62.69 *** | −34.66 *** | −2.415 ** | −2.678 * | −2.056 * |
(5.923) | (9.104) | (6.792) | (0.662) | (0.799) | (0.693) | |
Time effect | Yes | Yes | Yes | Yes | Yes | Yes |
Individual effect | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 310 | 248 | 310 | 310 | 248 | 310 |
Wald | 15,523.74 | 15,472.39 | 13,327.00 | 58,231.44 | 57,348.86 | 59,728.20 |
Innovation | Ln(Patent) | |||||
---|---|---|---|---|---|---|
Lag of 1 Year | Lag of 1 Year | Lag of 1 Year | Lag of 1 Year | Lag of 1 Year | Lag of 1 Year | |
Fiscal | 1.091 *** | 0.710 ** | 1.223 *** | 0.025 | −0.002 | 0.026 |
(0.322) | (0.342) | (0.326) | (0.020) | (0.025) | (0.022) | |
Policy | 0.204 *** | 0.257 *** | 0.176 ** | 0.014 *** | 0.014 ** | 0.015 *** |
(0.071) | (0.0761) | (0.072) | (0.004) | (0.006) | (0.005) | |
VAT | 9.482 * | −1.972 *** | ||||
(5.019) | (0.313) | |||||
BT | 29.89 *** | 0.217 *** | ||||
(4.827) | (0.345) | |||||
IT | −27.26 *** | −1.557 *** | ||||
(8.443) | (0.588) | |||||
Tax | −0.115 | 0.181 | 0.063 | 0.043 *** | 0.049 *** | 0.041 *** |
(0.112) | (0.122) | (0.124) | (0.009) | (0.0102) | (0.010) | |
RDL | 1.942 *** | 3.081 *** | 2.114 *** | 1.083 *** | 1.107 *** | 1.066 *** |
(0.277) | (0.362) | (0.292) | (0.025) | (0.0285) | (0.026) | |
RDK | 1.555 *** | 1.040 ** | 1.825 *** | 0.073 ** | 0.077 *** | 0.115 *** |
(0.407) | (0.447) | (0.409) | (0.022) | (0.024) | (0.024) | |
Open | 1.603 *** | 1.548 *** | 1.567 *** | 0.040 | 0.040 | 0.048 |
(0.306) | (0.361) | (0.323) | (0.027) | (0.031) | (0.030) | |
Inf | 2.473 *** | 2.151 *** | 2.509 *** | −0.032 | 0.002 | 0.006 |
(0.485) | (0.515) | (0.484) | (0.037) | (0.040) | (0.038) | |
Str | −4.369 *** | −2.863 *** | −3.913 *** | −0.190 *** | −0.257 *** | −0.250 *** |
(0.833) | (0.852) | (0.829) | (0.065) | (0.075) | (0.071) | |
PGDP | 3.184 *** | 3.741 *** | 3.263 *** | −0.319 *** | −0.364 *** | −0.342 *** |
(0.611) | (0.721) | (0.678) | (0.066) | (0.072) | (0.070) | |
C | −30.93 *** | −59.88 *** | −30.59 *** | −1.374 ** | −1.560 * | −1.121 * |
(6.242) | (8.989) | (6.987) | (0.649) | (0.764) | (0.691) | |
Time effect | Yes | Yes | Yes | Yes | Yes | Yes |
Individual effect | Yes | Yes | Yes | Yes | Yes | Yes |
Obs. | 279 | 217 | 279 | 279 | 217 | 279 |
Wald | 11,496.48 | 16,469.02 | 11,402.89 | 61,501.28 | 63,030.67 | 69,007.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Peng, W.; Xiong, N.N. The Effects of Fiscal and Tax Incentives on Regional Innovation Capability: Text Extraction Based on Python. Mathematics 2020, 8, 1193. https://doi.org/10.3390/math8071193
Qi Y, Peng W, Xiong NN. The Effects of Fiscal and Tax Incentives on Regional Innovation Capability: Text Extraction Based on Python. Mathematics. 2020; 8(7):1193. https://doi.org/10.3390/math8071193
Chicago/Turabian StyleQi, Yawei, Wenxiang Peng, and Neal N. Xiong. 2020. "The Effects of Fiscal and Tax Incentives on Regional Innovation Capability: Text Extraction Based on Python" Mathematics 8, no. 7: 1193. https://doi.org/10.3390/math8071193
APA StyleQi, Y., Peng, W., & Xiong, N. N. (2020). The Effects of Fiscal and Tax Incentives on Regional Innovation Capability: Text Extraction Based on Python. Mathematics, 8(7), 1193. https://doi.org/10.3390/math8071193