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Abstract: In this article, we introduce a new probability distribution generator called the Lambert-F
generator. For any continuous baseline distribution F, with positive support, the corresponding
Lambert-F version is generated by using the new generator. The result is a new class of distributions
with one extra parameter that generalizes the baseline distribution and whose quantile function can
be expressed in closed form in terms of the Lambert W function. The hazard rate function of a
Lambert-F distribution corresponds to a modification of the baseline hazard rate function, greatly
increasing or decreasing the baseline hazard rate for earlier times. Herein, we study the main structural
properties of the new class of distributions. Special attention is given to two particular cases that can
be understood as two-parameter extensions of the well-known exponential and Rayleigh distributions.
We discuss parameter estimation for the proposed models considering the moments and maximum
likelihood methods. Finally, two applications were developed to illustrate the usefulness of the proposed
distributions in the analysis of data from different real settings.

Keywords: distribution generator; exponential distribution; lambert function; probability distribution;
Rayleigh distribution

1. Introduction

In recent years, towards more flexibility, many studies have been developed in which new
methods are proposed to add one or more parameters to a baseline probability distribution. These
methods have given way to the generation of models with more complex parametric structures
and more flexibility in aspects such as the shapes of the density and hazard rate functions and the
asymmetry or kurtosis of the distribution.

One of the most popular methods is to propose a new cumulative distribution function
(cdf) considering a suitable transformation of the cdf of a certain random variable of interest.
More specifically, if X is a random variable with cdf F(x), then

G(x) = r(F(x)), (1)

where r(·) is a nondecreasing function such that r(u) → 0 as u → 0+, and r(u) → 1 as u → 1−,
for u ∈ (0, 1), is a cdf.

Different analytical expressions for r(u) can be found in the literature. If r(u) = uα, α > 0, then the
cdf in Equation (1) corresponds to the cdf of the exponentiated distributions class; see Gupta et al. [1],
Nadarajah and Kotz [2], Al-hussaini [3], Castillo et al. [4] and Gómez-Déniz et al. [5], among
others. If r(u) = Iu(α, β), where α, β > 0 and Iu(·, ·) denotes the incomplete beta function ratio,
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then Equation (1) corresponds to the cdf of the beta-generated distributions class; see Eugene et al. [6],
Jones [7,8] and Nadarajah and Kotz [9], among others. Similarly, other alternative expressions for r(u)
can be found in Marshall and Olkin [10], Shaw and Buckley [11], Zografos and Balakrishnan [12],
Cordeiro and de Castro [13], Lai [14] and Badr et al. [15], to name just a few.

In this paper, we propose a new distribution generator called the Lambert-F generator.
The proposed generator is obtained from Equation (1) by considering a new analytical expression for
the function r(·) given by r(u) = 1− (1− u)αu, for α ∈ (0, e) and u ∈ (0, 1). The result is a new cdf
with an extra shape parameter having the quantile function written in closed form in terms of the
Lambert W function, hence the name of the generator. Note that a Lambert-F distribution is reduced
to the baseline distribution when α = 1; that is, the baseline distribution and the respective Lambert
version are nested distributions. We will show that the hazard rate function (hrf) of a Lambert-F
distribution corresponds to a modification of the baseline hrf, greatly increasing or decreasing the
baseline hrf for the lower values of X (earlier times). This can be interpreted as a perturbation of the
baseline hrf at earlier times.

The Lambert W function, which corresponds to the inverse function of f (z) = z exp(z), with z
being any complex number, plays an important role in this work. This is a many-valued function
satisfying z0 = W(z0) exp(W(z0)), for every complex number z0. By restricting W(·) to be a real-valued
function, the complex variable z is then replaced by the real variable x, and the function is defined
only for x ≥ 1/e to be double-valued in the interval (0,−1/e) and simple-valued (principal branch,
denoted by W0) for x ≥ 0. More details of the Lambert W function can be found in Corless et al. [16]
and Brito et al. [17]. Recently, Visser [18] showed that the Lambert W function can be used in the
distribution of prime numbers.

In the statistical literature, Goerg [19] introduced new families of distributions using the
Lambert W function in the context of random variable transformations. In our approach we apply a
transformation to a baseline cdf, as can be seen in Definition 1.

We emphasize the fact that the Lambert-F generator can be used to extend any arbitrary probability
distribution, regardless of whether it is the distribution of a discrete or continuous random variable
and whether it has positive, real or bounded support. However, in this paper we consider the case in
which the baseline distribution is a continuous distribution with positive support. Other cases might
be the subject of future research.

The remainder of the paper is organized as follows. In Section 2, we propose the distributions
generator. In Section 3, main structural properties of the generator are studied. In Section 4, two special
models are derived with its main properties. Section 6 discusses parameter estimation using the
moments and maximum likelihood methods. In Section 7, we describe a simulation study carried out
to assess the performances of the estimators. In Section 8, two applications evidence that the proposed
distributions may present a better fit than other models such as the Weibull and gamma distributions.
The conclusions of this work are presented in Section 9. Computational code used in Sections 6–8 is
available on request.

2. Lambert-F Distribution Generator

Definition 1. A random variable X follows a Lambert-F distribution, denoted as X ∼ LF(η, α), if its cdf is
given by

FX(x; η, α) = 1− [1− F(x; η)]αF(x;η), (2)

where α ∈ (0, e) is an extra parameter and F(x; η) is the cdf of a continuous and positive baseline random
variable with parameter vector η.

Note that the function FX(x; η, α) inherits the support of the baseline distribution F(x; η) and
that FX(x; η, α) = F(x; η) when α = 1. We refer to the cdf presented in Equation (2) as the Lambert-F
distribution generator. From now on, we will denote F(x; η) = F(x) and FX(x; η, α) = FX(x) to
simplify the notation.
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Proposition 1. Let X ∼ LF(η, α). Then, the probability density function (pdf), the survival function (sf) and
the hazard rate function (hrf) of X are given, respectively, by

fX(x) = f (x)αF(x) [1− log(α)S(x)] , (3)

SX(x) = S(x)αF(x) and (4)

hX(x) = h(x)[1− log(α)S(x)], (5)

where f (x), F(x), S(x) = 1− F(x) and h(x) = f (x)/S(x) are the pdf, the cdf, the sf and the hrf of the
baseline distribution, respectively.

Proof. The results Equations (3)–(5) are obtained directly from the cdf Equation (2) by calculating
∂FX(x; η, α)/∂x, 1 − FX(x; η, α) and [∂FX(x; η, α)/∂x]/[1 − FX(x; η, α)], respectively, where S(x) =

1− F(x; η) and h(x) = f (x; η)/S(x; η) are the sf and the hrf of the baseline distribution.

From the above results, we note that the extra parameter α allows the pdf and the hrf of the
Lambert-F distributions to present a wider range of shapes than those of the baseline distributions.
These shapes are discussed in detail in the following section.

3. Properties

In this section, we study the pdf and hrf shapes of the Lambert-F distributions class, discuss the
stochastic ordering of Lambert-F random variables and derive analytical expressions for the quantile
function and the raw moments of the Lambert-F distributions class.

3.1. Shapes

The shapes of the pdf and the hrf presented in Corollary 1 can be described analytically. First of
all, we see that: (i) fX(0) = [1− log(α)] f (0); (ii) hX(0) = [1− log(α)]h(0) and hX(∞) = h(∞).

Secondly, under the assumption that f ′(x) and f ′′(x) exist, the critical points of the pdf of X are
the roots of the equation

[1− log(α)S(x)] f ′(x) + log(α) f 2(x)[2− log(α)S(x)] = 0. (6)

A root x = x0 of Equation (6) will be a local maximum, a local minimum or an inflection point in
the cases ϕ(x0) < 0, ϕ(x0) > 0 or ϕ(x0) = 0, respectively, where

ϕ(x) = log(α) f (x)αF(x){[2− log(α)S(x)][3 f ′(x) + log(α) f 2(x)]

+ log2(α) f 3(x) + [1− log(α)S(x)] f ′′(x)}.

The critical points of the hrf of X are the roots of the equation

[
f ′(x)
S(x)

+ h2(x)][1− log(α)S(x)] + log(α) f (x)h(x) = 0. (7)

A root x = x0 of Equation (7) will be a local maximum, a local minimum or an inflection point in
the cases τ(x0) < 0, τ(x0) > 0 or τ(x0) = 0, respectively, where

τ(x) = [
f ′′(x)
S(x)

+
3 f ′(x)h(x)

S(x)
+ 2h3(x)][1− log(α)S(x)] + [

3 f ′(x)
S(x)

+ 2h2(x)] log(α) f (x).

While giving even greater attention to the hrf of the Lambert-F distributions, we point out the
following:

1. The hrf of the Lambert-F distribution approximates the hrf of the baseline distribution F when x
is large enough, that is, hX(x)/h(x)→ 1 as x → ∞.
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2. The hrf of the Lambert-F distribution is greater than the hrf of the baseline distribution F if and
only if α ∈ (1, e).

3. If α ∈ (1, e) and the hrf of the baseline distribution F is a nondecreasing monotonic function,
then the hrf of the Lambert-F distribution is a nondecreasing monotonic function.

In view of the above, the application of the proposed Lambert transformation to a baseline
distribution has a simple justification in terms of the hrf of the resulting model. The hrf induced by the
Lambert-F generator is more distant from the baseline hrf for lower values of X (earlier times), as can
be seen in Figures 1 and 2.

It should be taken into account that Equations (6) and (7) allow a detailed description of the
shapes of the pdf and the hrf of a Lambert-F distribution once the definition functions of the baseline
distribution are specified. The non-existence or existence of one or more solutions for these equations
will depend jointly on the performance of the parameter α and on the analytical structure of the
specified baseline distribution.

3.2. Stochastic Order

The ordering of continuous positive random variables is an important tool for judging comparative
behavior. It is well known that a random variable X is smaller than a random variable Y in the stochastic
order (X ≤st Y) if FX(x) ≥ FY(x) for all x, in the hazard rate order (X ≤hr Y) if hX(x) ≥ hY(x) for all x
and in the likelihood ratio order (X ≤lr Y) if fX(x)/ fY(x) decreases in x. Additionally, the implications

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y (8)

are well known Shaked and Shanthikumar [20].

Proposition 2. Let X1 ∼ LF(η, α1) and X2 ∼ LF(η, α2). If α1 > α2, then X1 ≤lr X2 and therefore
X1 ≤hr X2 and X1 ≤st X2.

Proof. First, notice that
fX2(x)
fX1(x)

=

(
α2

α1

)F(x) 1− log (α2) [1− F(x)]
1− log (α1) [1− F(x)]

is a nondecreasing function if and only if µ′(x) ≥ 0, where

µ(x) =
1− log (α2) [1− F(x)]
1− log (α1) [1− F(x)]

.

Some calculations show that

µ′(x) = log
(

α2

α1

)
f (x)

{1− log(α1)[1− F(x)]}2 .

Now, note that α1 > α2 implies µ′(x) < 0; that is, fX2(x)/ fX1(y) is decreasing in x, which means
X1 ≤lr X2. The remaining affirmations were derived from the implications in Equation (8).

A direct consequence of Proposition 2 is that the hrf of the Lambert-F distribution is less than the
hrf of the baseline F distribution when α ∈ (1, e), which is consistent with the observation Equation (2)
in Section 3.1.
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3.3. Quantile Function

Proposition 3. Let X ∼ LF(η, α). Then, the quantile function of X is given by

QX(u) =

F−1
[

1
log(α)W0

(
log(α)(u−1)

α

)
+ 1; η

]
, i f α 6= 1,

F−1(u; η), i f α = 1,
(9)

where F−1(·; η) is the quantile function of the baseline distribution and W0(·) is the principal branch of the
Lambert W function.

Proof. From Equation (2) it can be observed that the baseline cdf can be written as

F(x) =
1

log(α)
W0

[
(u− 1) log(α)

α

]
+ 1.

Then, solving this equation with respect to x, we obtain the expression in Equation (9) for α 6= 1.
In the special case α = 1, the result is obtained directly by calculating the inverse function of the
baseline cdf.

Remark 1. For α ∈ (0, 1), we have that log(α)(u− 1)/α > 0. Then, the Lambert W function has a unique
solution (principal branch). For α ∈ (1, e) we have that log(α)(u− 1)/α ∈ (−1/e, 0). Then, the Lambert W
function has two solutionsm but only the solution of the principal branch is admissible due to the condition of
obtaining positive random values.

3.4. Moments

Proposition 4. Let X ∼ LF(η, α). Then, for r = 1, 2, . . . , the r-th raw moment of X can be written as

µr = E(Xr) =
∫ 1

0
αu[F−1(u; η)]r[1− log(α)(1− u)]du, r = 1, 2, . . . , (10)

where F−1(·; η) denotes the quantile function of the baseline distribution.

Proof. From the Lambert-F pdf in Corollary 1, we have that

µr = E(Xr) =
∫ ∞

0
xr f (x)αF(x) [1− log(α){1− F(x)}] dx,

and by applying the change of variable u = F(x), the result is obtained.

4. Two Special Cases

In what follows, two new two-parameter models generated from the results in Corollary 1 are
introduced. The well-known exponential and Rayleigh distributions are taken as baseline distributions
in the generation of these new models.

Lambert-exponential model. The random variable X follows the Lambert-exponential distribution
with scale parameter σ > 0, denoted as X ∼ LE(σ, α), if its pdf and hrf for x > 0 are given,
respectively, by

fX(x) =
1
σ

e−
x
σ α1−e−

x
σ [1− log(α)e−

x
σ ] and hX(x) =

1
σ
[1− log(α)e−

x
σ ].
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Lambert–Rayleigh model. The random variable X follows the Lambert–Rayleigh distribution with
scale parameter σ > 0, denoted as X ∼ LR(σ, α), if its pdf and hrf for x > 0 are given, respectively, by

fX(x) =
x

σ2 e−
x2

2σ2 α1−e
− x2

2σ2
[1− log(α)e−

x2

2σ2 ] and hX(x) =
x

σ2 [1− log(α)e−
x2

2σ2 ].

The new two-parameter distributions described above are members of the well-known and
popular shape and scale distributions family. The scale σ in both models is inherited from the
respective baseline distribution, while the shape parameter α arises from the application of the Lambert
transformation to the baseline distribution. Figures 1 and 2 display some plots of the pdfs and the hrfs
of the above models for σ = 1 and different values of shape parameter.
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Figure 1. Plots of the density and hazard rate functions of the LE distribution for σ = 1 and different
values of α.
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Figure 2. Plots of the density and hazard rate functions of the LR distribution for σ = 1 and different
values of α.

5. Characterizing the LE and LR Distributions

This section describes the main structural properties of the LE and LR distributions.
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5.1. Description and Comparison of Shapes

From the results in Section 3.1, it is possible to analytically describe the shapes of the pdf and
the hrf of the above models. In the sequel, the pdf and the hrf of the LE and LR models can be
analytically described.

1. Let X ∼ LE(σ, α). Then,

(a) fX(0) = 1
σ [1− log(α)], hX(0) = 1

σ [1− log(α)] and hX(∞) = 1
σ .

(b) Considering a = exp[(3−
√

5)/2], the pdf of X is a monotonically decreasing function
when α ∈ (0, a] or α = 1, and it is a unimodal function for α ∈ (a, 1) or α ∈ (1, e). The mode
of X is given by Mod(X) = σ[2 log(α)− log(3−

√
5)].

(c) The hrf of X is a monotonically decreasing function when α ∈ (0, 1), a monotonically
increasing function when α ∈ (1, e) and a constant function for α = 1.

2. Let X ∼ LR(σ, α). Then,

(a) fX(0) = 0, hX(0) = 0 and hX(∞) = ∞.
(b) The pdf of X is a unimodal function for α ∈ (0, e) (Mode without explicit analytic expression).
(c) The hrf of X is a monotonically increasing function when α ∈ [0.1, e) and presents

the increasing–decreasing–increasing shape for α ∈ (0, 0.1). The local maximum
and the local minimum are given by x = σ{1 − 2Wj[e1/2/ log(α2)]}1/2, j ∈ {0,−1},
where W0(·) and W−1(·) denote the principal and non-principal branches of the Lambert W
function, respectively.

The shapes of the pdf and the hrf for the LE model are similar to those presented by other
two-parameter models, such as Weibull (W) and gamma (G). It is important to note that the LE, W and
G models are two-parameter extensions of the exponential model, so the comparison between these
models is quite natural. A similar observation can be made for the LR and W models because both are
two-parameter extensions of the Rayleigh model.

In Tables 1 and 2, we present a comparison of the shapes of density and hazard rate functions
of the LE and LR models with those of the W and G models. In Table 1, it is seen that the pdfs of
the LE distribution presents similar shapes to those of the W and G models. However, unlike the W
and G models, the pdf of the LE distribution tends to σ−1[1− log(α)] as x → 0+ when it is unimodal;
that is, it tends to a positive finite value. This led us to establish that the LE distribution can properly
fit datasets whose frequency distributions are unimodal while having observations lumped around
0. On the other hand, the pdf of the LR model presents only the unimodal shape but (as will be seen
later) with variations of asymmetry and kurtosis. In Table 2, it is seen that the shapes presented by
the hrf of the LE distribution are similar to those of the W and G distributions. However, from the
results presented in Table 2, and similarly to the behavior of the LE pdf, an important difference can
be observed in the behavior of the LE hrf for lower values of x (times close to 0). On the other hand,
the LR distribution is the only distribution (among the distributions considered) that has a hrf that can
present the increasing–decreasing–increasing shape.
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Table 1. Comparison of the Lambert-exponential (LE), Lambert–Rayleigh (LR), Weibull (W) and gamma
(G) models in terms of the pdf.

Model Shape Parameter (α) Interval Shape of the pdf, fX(x) lim
x→0+

fX(x)

LE (0, exp 3−
√

5
2 ) or {1} Decreasing 1

σ [1− log(α)]
(exp 3−

√
5

2 , 1) or (1, e) Unimodal 1
σ [1− log(α)]

LR (0, e) Unimodal 0

W (0, 1] Decreasing ∞ or 1
σ

(1, ∞) Unimodal 0

G (0, 1] Decreasing ∞ or 1
σ

(1, ∞) Unimodal 0

Table 2. Comparison of the Lambert-exponential (LE), Lambert–Rayleigh (LR), Weibull (W) and gamma
(G) models in terms of the hrf.

Model Shape Parameter (α) Interval Shape of the hrf, hX(x) lim
x→0+

hX(x) lim
x→∞

hX(x)

LE (0, 1) Decreasing 1
σ [1− log(α)] 1

σ
(1, e) Increasing 1

σ [1− log(α)] 1
σ

LR
(0, 1) Increasing-decreasing 0 ∞

-increasing
[1, e) Increasing 0 ∞

W (0, 1) Decreasing ∞ 0
(1, ∞) Increasing 0 ∞

G (0, 1) Decreasing ∞ 1
σ

(1, ∞) Increasing 0 1
σ

If α = 1, the hrf of the LR model reduces to h(x) = x/σ2 (the Rayleigh hrf) and the hrfs of the LE, W, and G
models to h(x) = 1/σ (the exponential hrf).

5.2. Quantile Function, Moments and Related Quantities

In the following corollaries, derived from the results in Section 3, analytical expressions are
presented for the quantile function, mean, variance, raw moments and asymmetry and kurtosis
coefficients for the LE and LR distributions.

Corollary 1. Let X1 ∼ LE(σ, α) and X2 ∼ LR(σ, α). Then, for α 6= 1, the quantile functions for X1 and X2

are given by

QX1(u) = −σ log[q(u)] and QX2(u) =
√
−2σ2 log[q(u)],

where

q(u) = − 1
log(α)

W0

[
log(α)(1− u)

α

]
Corollary 2. Let X1 ∼ LE(σ, α) and X2 ∼ LR(σ, α). Then, for i = 1, 2 and r = 1, 2, . . ., the r-th raw moment
of Xi is given by E(Xr

i ) = ai(σ)mr,α(ui), where

mr,α(ui) =
∫ 1

0
αuur

i [1− log(α)(1− u)]du,

such that a1(α) = σr, a2(σ) = (2σ2)r/2, u1 = − log(1− u) and u2 =
√
− log(1− u).

Corollary 3. Let X1 ∼ LE(σ, α) and X2 ∼ LR(σ, α). Then, for i = 1, 2, the mean and the variance of Xi are
given by

E(Xi) = ai(σ)m1,α(ui) and Var(Xi) = a2
i (σ)[m2,α(ui)−m2

1,α(ui)],
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respectively, where mr,α(ui) and ai(σ), for r = 1, 2 and i = 1, 2, are as in Corollary 2.

Corollary 4. Let X1 ∼ LE(σ, α) and X2 ∼ LR(σ, α). Then, the asymmetry (β1(Xi)
) and kurtosis (β2(Xi)

)
coefficients for Xi, with i = 1, 2, are given by

β1(Xi )
=

m3,α(ui)− 3m1,α(ui)m2,α(ui) + 2m3
1,α(ui)[

m2,α(ui)−m2
1,α(ui)

]3/2 and

β2(Xi )
=

m4,α(ui)− 4m1,α(ui)m3,α(ui) + 6m2
1,α(ui)m2,α(ui)− 3m4

1,α(ui)[
m2,α(ui)−m2

1,α(ui)
]2 ,

where mr,α(ui), for r = 1, 2, 3, 4 and i = 1, 2, are as in Corollary 2.

Figure 3 shows plots of the asymmetry and kurtosis coefficients for both the LE and LR
distributions, and for the baseline distributions, exponential and Rayleigh, respectively. Note that the
asymmetry and kurtosis values of the baseline distributions were extended to a range of values in the
respective Lambert versions, showing greater flexibility of these latter distributions. The asymmetry
and kurtosis ranges for the LE distribution were (1.456, 4.461) and (6.416, 48.814), respectively, and
for the LR distribution (0.342, 1.274) and (3.027, 6.005), respectively. These ranges were calculated
by minimizing and maximizing the asymmetry and kurtosis coefficients in Corollary 4. We used the
integrate function of the R programming language R Core Team [21] to compute the mr,α(ui) functions.
The optimize function was used to minimize and maximize the coefficients.
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Figure 3. Plots of the asymmetry and kurtosis coefficients for the Lambert-exponential (solid line) and
exponential (circle) distributions (panels (a,b)) and for the Lambert–Rayleigh (solid line) and Rayleigh
(circle) distributions (panels (c,d)).

6. Parameter Estimation

In this section, we discuss parameter estimation for the Lambert-F distributions using the
moments and maximum likelihood methods.
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6.1. Moment Estimators

For a random sample X1, . . . , Xn of the random variable X ∼ LF(η1, η2, . . . , ηk, α), the moment
estimators are obtained by solving the equations generated by matching the first k + 1 raw moments
with the first k + 1 sampling moments.

For a random sample Xs,1, . . . , Xs,n of the random variable Xs, for s = 1, 2, such that X1 ∼ LE(σ, α)

and X2 ∼ LR(σ, α), the moment estimator α̂M for α is given by the root of the equation

Xs
2m2,α̂M (us)− X2

s m2
1,α̂M

(us) = 0, (11)

and the moment estimator σ̂M for σ is given by

σ̂M =


X1

m1,α̂M
(u1)

, for the LE distribution,

X2√
2m1,α̂M

(u2)
, for the LR distribution,

(12)

where mr,α(us), for r = 1, 2 and s = 1, 2, are as in Corollary 2 and Xs and X2
s are the first and second

sampling moments, respectively, associated with the sample of the random variable Xs.

Remark 2. From Equation (11), it is seen that the moment estimators for α cannot be obtained in closed
form. To obtain the moment estimate of this parameter, Equation (11) should be solved numerically. We solved
Equation (11) using the uniroot function from the R programming language. Once obtained the estimate of α,
we used this value to obtain the moment estimate for the σ parameter from Equation (12).

6.2. Maximum Likelihood Estimators

For a random sample X1, . . . , Xn of a random variable X with LE or LR distribution (given in
Section 4), the log-likelihood function is given by

`(σ, α) =
n

∑
i=1

log f (xi) + log(α)
n

∑
i=1

F(xi) +
n

∑
i=1

log[1− log(α)S(xi)], (13)

where f (xi) = f (xi; σ), F(xi) = F(xi; σ) and S(xi) = 1− F(xi) are the baseline functions given in
Table 3.

Table 3. Baseline f (x), F(x), f1(x), f11(x), F1(x) and F11(x) functions (x > 0 and σ > 0) for the
Lambert-exponential (LE) and Lambert–Rayleigh (LR) models.

Baseline Function
Model

LE LR

F(x) 1− e−
x
σ 1− e−

x2

2σ2

f (x) 1
σ e−

x
σ

x
σ2 e−

x2

2σ2

f1(x) 1
σ2 e−

x
σ
( x

σ − 1
) x

σ3 e−
x2

2σ2
(

x2

σ2 − 2
)

f11(x) 1
σ3 e−

x
σ

(
2− 4x

σ + x2

σ2

)
x

σ4 e−
x2

2σ2
(

x2

σ2 − 1
) (

x2

σ2 − 6
)

F1(x) − x
σ2 e−

x
σ − x2

σ3 e−
x2

2σ2

F11(x) x
σ3 e−

x
σ
(
2− x

σ

) x2

σ4 e−
x2

2σ2
(

3− x2

σ2

)

Since expressions of the ML estimators are not available in closed form, ML estimates are
computed using the optim function in R via the L-BFGS-B method with the moments estimates,
σ̂M and α̂M, as the initial values for the iterative process.
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Under regularity conditions, the asymptotic distribution of the ML estimator θ̂ = (σ̂, α̂)′ of θ =

(σ, α)′ is N2(θ, I(θ)−1), where I(θ) is the expected information matrix. Due to the analytical structure
of Equation (13), it is not easy to obtain the analytical expression of this matrix. However, it can be
approximated by minus the Hessian matrix evaluated at the ML estimate of the parameters. For the
LE and LR models, the elements of the Hessian matrix are given by

hσσ =
n

∑
i=1

f11(xi)

f (xi)
+

n

∑
i=1

[
f1(xi)

f (xi)

]2

+ log(α)
n

∑
i=1

F11(xi)

F(xi)
+ log(α)

n

∑
i=1

[
F1(xi)

F(xi)

]2

+ log(α)
n

∑
i=1

F11(xi)

1− log(α)S(xi)
+ log2(α)

n

∑
i=1

[
F1(xi)

1− log(α)S(xi)

]2

,

hασ =
1
α

n

∑
i=1

F1(xi) +
1
α

n

∑
i=1

F1(xi)

1− log(α)S(xi)
+

log(α)
α

n

∑
i=1

S(xi)F1(xi)

[1− log(α)S(xi)]2
and

hαα = − 1
α2

n

∑
i=1

F(xi) +
1
α2

n

∑
i=1

S(xi)

1− log(α)S(xi)
+

1
α2

n

∑
i=1

F(xi)S(xi)

[1− log(α)S(xi)]2
,

with f11(·) and F11(·) for the LE and LR models as in Table 3.
In the case of survival data, under the consideration of non-informative right-censoring and

assuming independence between failure times (Yi) and censoring times (Ci), i = 1, . . . , n, the observed
time for the i-th individual is given by Xi = min(Yi, Ci) with the respective failure indicator δi = 1
if Yi ≤ Ci or δi > 0 if Yi > Ci. Thus, for a observed sample (x1, δ1), . . . , (xn, δn), the log-likelihood
function for the LE and LR models is given by

`(σ, α) =
n

∑
i=1

δi log f (xi) + log(α)
n

∑
i=1

δiF(xi) +
n

∑
i=1

δi log[1− log(α)S(xi)]

+
n

∑
i=1

(1− δi) log S(xi) + log(α)
n

∑
i=1

(1− δi)F(xi),
(14)

where f (·), F(·) and S(·) are as in the Table 3. For δi = 1, i = 1, . . . , n, Equation (14) is reduced to
Equation (13). Inference based on Equation (14) can be performed in a similar manner, as was done in
the uncensored case, as described above. Finally, note that the above procedures can be extended to
the case where the baseline distribution has k parameters.

7. Simulation Study

In this section, we present a simulation study done to assess the performances of the moments
and maximum likelihood estimates for the parameters of the models in Section 4. We generated
N = 1000 random samples of sizes n = 50, 100, 200 from the LE and LR distributions, respectively, for
different values of its parameters. The random numbers were generated by through the following steps:

1. Generate u ∼ Uniform(0, 1);
2. Compute z = [log(α)]−1W0[α

−1 log(α)(u− 1)] + 1, for α 6= 1;
3. Compute x = F−1(z; η), where F−1(·; η) is the baseline quantile function.

We used the W function of the LambertW package in R Goerg [22] to compute the principal
branch of Lambert W function. Tables 4 and 5 show averages, empirical standard deviations (SD),
averages of asymptotic standard errors (SE) and roots of the simulated mean square errors (RMSE) of
the estimates of σ and α for the LE and LR distributions. Looking at Table 4, it can be seen that both
the moments method and the ML method provide acceptable estimates of the parameters of the LE
distribution. However, the ML method provides estimates with lower biases, and the SD and RMSE
were smaller than those provided by the moments method. In addition, SD, SE and RMSE were closer
for the ML method. The same held for SD and RMSE from the moments method. The estimators of
the parameters of the LR distribution in Table 5 had similar behavior, with the exception that SD and
RMSE were smaller for the moments method when the sample size was n = 50.



Mathematics 2020, 8, 1398 12 of 17

Table 4. Averages, standard deviations (SD), averages of asymptotic standard errors (SE) and roots of the simulated mean square errors (RMSE) for the estimates of σ

and α for the LE model.
True Values Moment Estimates Maximum Likelihood Estimates

σ̂ α̂ σ̂ α̂

σ α Average SD RMSE Average SD RMSE Average SD SE RMSE Average SD SE RMSE

n = 50
1.0 1.5 0.952 0.185 0.191 1.720 0.428 0.481 0.981 0.179 0.196 0.143 1.620 0.388 0.449 0.325
1.0 2.0 1.025 0.179 0.179 2.032 0.426 0.426 1.024 0.159 0.173 0.160 1.969 0.372 0.432 0.373
1.0 2.5 1.081 0.162 0.181 2.250 0.355 0.434 1.041 0.129 0.151 0.136 2.373 0.304 0.432 0.329
2.0 1.5 1.909 0.341 0.353 1.711 0.434 0.482 1.976 0.340 0.399 0.340 1.601 0.393 0.451 0.406
3.0 1.5 2.844 0.547 0.569 1.731 0.437 0.494 2.938 0.546 0.590 0.549 1.627 0.405 0.450 0.424
4.0 1.5 3.825 0.756 0.776 1.685 0.437 0.474 3.962 0.748 0.817 0.748 1.572 0.387 0.451 0.393
0.5 1.5 0.478 0.090 0.093 1.710 0.437 0.484 0.494 0.088 0.100 0.088 1.600 0.391 0.451 0.404
1.5 2.0 1.533 0.257 0.257 2.026 0.417 0.418 1.526 0.240 0.254 0.241 1.980 0.375 0.430 0.375
2.5 2.5 2.707 0.410 0.459 2.226 0.358 0.451 2.594 0.345 0.378 0.358 2.368 0.308 0.429 0.335

n = 100
1.0 1.5 0.977 0.147 0.149 1.601 0.359 0.373 0.994 0.137 0.145 0.137 1.540 0.310 0.325 0.313
1.0 2.0 1.015 0.130 0.130 2.039 0.359 0.361 1.010 0.109 0.115 0.109 2.002 0.285 0.297 0.285
1.0 2.5 1.054 0.112 0.124 2.318 0.284 0.338 1.022 0.091 0.097 0.093 2.426 0.220 0.271 0.232
2.0 1.5 1.958 0.308 0.310 1.617 0.375 0.393 1.991 0.281 0.288 0.281 1.555 0.319 0.323 0.323
3.0 1.5 2.934 0.439 0.444 1.608 0.358 0.374 2.986 0.407 0.432 0.407 1.547 0.310 0.324 0.313
4.0 1.5 3.944 0.616 0.618 1.602 0.368 0.382 3.992 0.558 0.579 0.558 1.551 0.310 0.324 0.315
0.5 1.5 0.489 0.072 0.073 1.619 0.351 0.371 0.498 0.067 0.072 0.067 1.555 0.302 0.323 0.307
1.5 2.0 1.525 0.206 0.207 2.019 0.360 0.360 1.524 0.172 0.174 0.174 1.993 0.285 0.299 0.285
2.5 2.5 2.625 0.279 0.306 2.334 0.281 0.326 2.552 0.222 0.243 0.228 2.431 0.222 0.270 0.232

n = 200
1.0 1.5 0.989 0.113 0.113 1.563 0.274 0.281 0.998 0.101 0.101 0.101 1.528 0.231 0.231 0.232
1.0 2.0 0.999 0.105 0.105 2.028 0.300 0.301 1.001 0.083 0.080 0.083 1.998 0.223 0.210 0.223
1.0 2.5 1.024 0.076 0.080 2.411 0.213 0.231 1.011 0.062 0.065 0.063 2.457 0.165 0.177 0.171
2.0 1.5 1.989 0.231 0.231 1.554 0.278 0.283 2.004 0.208 0.205 0.208 1.524 0.239 0.231 0.240
3.0 1.5 2.996 0.355 0.355 1.540 0.278 0.280 3.016 0.303 0.310 0.303 1.508 0.221 0.231 0.221
4.0 1.5 3.987 0.463 0.463 1.544 0.281 0.284 4.001 0.417 0.413 0.417 1.513 0.238 0.231 0.238
0.5 1.5 0.498 0.060 0.060 1.541 0.283 0.286 0.500 0.051 0.051 0.051 1.519 0.232 0.232 0.232
1.5 2.0 1.486 0.143 0.144 2.056 0.275 0.281 1.500 0.114 0.118 0.114 2.005 0.202 0.209 0.203
2.5 2.5 2.566 0.193 0.203 2.401 0.217 0.238 2.519 0.155 0.162 0.155 2.468 0.160 0.176 0.163
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Table 5. Averages, standard deviations (SD), averages of asymptotic standard errors (SE) and roots of the simulated mean square errors (RMSE) for the estimates of σ

and α for the LR model.

True Values Moment Estimates Maximum Likelihood Estimates

σ̂ α̂ σ̂ α̂

σ α Average SD RMSE Average SD RMSE Average SD SE RMSE Average SD SE RMSE

n = 50
1.0 1.5 0.984 0.089 0.090 1.641 0.393 0.417 0.991 0.124 0.101 0.125 1.626 0.407 0.450 0.426
1.0 2.0 1.003 0.078 0.078 2.012 0.378 0.378 1.002 0.078 0.082 0.078 2.008 0.384 0.421 0.384
1.0 2.5 1.018 0.064 0.065 2.351 0.276 0.314 1.015 0.064 0.071 0.065 2.380 0.291 0.408 0.315
2.0 1.5 1.965 0.172 0.175 1.646 0.396 0.422 1.970 0.176 0.196 0.178 1.636 0.401 0.451 0.423
3.0 1.5 2.964 0.265 0.267 1.611 0.389 0.404 2.969 0.267 0.301 0.269 1.604 0.393 0.455 0.407
4.0 1.5 3.948 0.339 0.342 1.631 0.395 0.416 3.956 0.342 0.397 0.345 1.624 0.401 0.454 0.419
0.5 1.5 0.494 0.043 0.043 1.621 0.383 0.402 0.496 0.049 0.050 0.049 1.613 0.391 0.454 0.407
1.5 2.0 1.504 0.117 0.117 2.025 0.373 0.373 1.504 0.121 0.125 0.121 2.029 0.390 0.428 0.390
2.5 2.5 2.544 0.151 0.157 2.357 0.260 0.297 2.537 0.152 0.178 0.157 2.382 0.276 0.406 0.300

n = 100
1.0 1.5 0.996 0.069 0.069 1.544 0.304 0.307 0.997 0.069 0.072 0.069 1.541 0.299 0.325 0.302
1.0 2.0 1.003 0.056 0.056 2.015 0.294 0.294 1.003 0.055 0.056 0.055 2.010 0.291 0.295 0.291
1.0 2.5 1.009 0.043 0.044 2.422 0.206 0.217 1.006 0.042 0.047 0.043 2.445 0.204 0.260 0.211
2.0 1.5 1.991 0.137 0.137 1.560 0.310 0.316 1.994 0.137 0.144 0.137 1.554 0.309 0.309 0.314
3.0 1.5 2.974 0.194 0.196 1.570 0.298 0.306 2.976 0.193 0.211 0.194 1.565 0.295 0.324 0.302
4.0 1.5 3.986 0.263 0.263 1.559 0.299 0.304 3.989 0.263 0.286 0.263 1.556 0.295 0.325 0.300
0.5 1.5 0.496 0.034 0.035 1.574 0.321 0.330 0.496 0.034 0.035 0.034 1.568 0.317 0.323 0.325
1.5 2.0 1.496 0.084 0.084 2.023 0.292 0.293 1.498 0.084 0.084 0.084 2.014 0.290 0.295 0.290
2.5 2.5 2.523 0.108 0.110 2.419 0.200 0.215 2.519 0.107 0.118 0.109 2.433 0.200 0.261 0.211

n = 200
1.0 1.5 1.001 0.051 0.051 1.521 0.236 0.237 1.001 0.051 0.051 0.051 1.518 0.232 0.232 0.233
1.0 2.0 1.001 0.039 0.039 2.018 0.221 0.221 1.001 0.039 0.039 0.039 2.012 0.214 0.209 0.214
1.0 2.5 1.003 0.032 0.032 2.460 0.156 0.161 1.002 0.030 0.032 0.030 2.467 0.148 0.174 0.152
2.0 1.5 1.999 0.102 0.102 1.521 0.232 0.233 1.999 0.102 0.102 0.102 1.521 0.231 0.232 0.232
3.0 1.5 2.990 0.149 0.149 1.526 0.230 0.232 2.992 0.147 0.152 0.147 1.523 0.226 0.232 0.228
4.0 1.5 3.994 0.204 0.204 1.520 0.233 0.234 3.996 0.204 0.204 0.204 1.518 0.231 0.232 0.232
0.5 1.5 0.499 0.024 0.024 1.521 0.222 0.223 0.499 0.024 0.024 0.024 1.520 0.221 0.231 0.221
1.5 2.0 1.498 0.061 0.061 2.011 0.218 0.218 1.499 0.060 0.059 0.060 2.007 0.213 0.210 0.213
2.5 2.5 2.513 0.081 0.082 2.466 0.159 0.163 2.511 0.079 0.080 0.080 2.472 0.154 0.172 0.156



Mathematics 2020, 8, 1398 14 of 17

8. Application

In this section, we present two applications to real data using the Lambert-exponential (LE) and
Lambert–Rayleigh (LR) distributions. With the first application, we provide evidence that the LR
distribution may present a better fit than the Weibull (W), gamma (G), generalized Rayleigh (GR)
Surles and Padgett [23] and Rayleigh (R) models. Similarly, with the second application we show that
the LE distribution presents a better fit than the W, G, generalized exponential (GE) Gupta et al. [1]
and exponential (E) models.

8.1. Nicotine Measurement Data

We considered a dataset of 346 nicotine measurements (milligrams per cigarette) collected
in 1998 by the Federal Trade Commission (FTC), Washington, DC. For a recent analysis of this
data, see Handique et al. [24]. Some descriptive statistics for these data are the following; average
0.852 milligrams per cigarette, standard deviation 0.334 milligrams per cigarette, sample asymmetry
coefficient 0.172 and sample kurtosis coefficient 3.315.

Using results from Section 6.1, moment estimates were computed, leading to the following values:
σ̂M = 0.519 and α̂M = 2.285. Using the moment estimates as initial values, ML estimates were
computed, and they are presented in Table 6 with the standard errors in parenthesis. For each fitted
model, the maximum value of the log-likelihood function is also reported in Table 6. Note that the LR
model has a maximum value of the log-likelihood function larger than the other models.

Table 6. Parameter estimates (standard errors) and maximum values of the log-likelihood functions of
the R, GR, G, W and LR models fitted to the nicotine measurements data.

Parameters
Model

R GR G W LR

σ
0.419 0.799 0.172 0.955 0.524

(0.022) (0.024) (0.013) (0.019) (0.013)

α
- 1.579 4.940 2.718 2.212
- (0.118) (0.363) (0.113) (0.130)

Log-likelihood −136.6 −119.4 −134.8 −113.7 −110.5

AIC 275.2 242.9 273.6 231.5 225.0
BIC 279.1 250.6 281.3 239.2 232.7

In order to compare the distributions, we computed the usual Akaike information criterion (AIC)
Akaike [25] and Bayesian information criterion (BIC) Schwarz [26]. Table 6 reports AIC and BIC values
for each fitted model. We can see that AIC and BIC show a better fit for the LR model. In Figure 4
(left panel), the empirical cdf for nicotine measurements is compared with the cdf of the fitted LR
model, and we can see that the two curves are close. In the same figure (right panel), the histograms
for the nicotine measurement data and the fitted density functions are presented. Here, we see that the
LR distribution fits nicotine measurement data better than the other distributions.

8.2. Monoclonal Gammopathy Data

This dataset comprises survival times (days) from diagnosis to the last follow-up of 241 subjects
diagnosed with apparently benign monoclonal gammopathy at Mayo Clinic (US). Of the 241 subjects,
16 survived until the end of the follow-up and three had monoclonal gammopathy of undetermined
significance (MGUS) detected on the day of death. This dataset was previously analyzed in Kyle [27]
and is currently available under the name mgus in the survival package in R Therneau [28].

Maximum likelihood estimates, with standard errors in parentheses; the maximum values of the
log-likelihood functions; and AIC and BIC values for the E, GE, G, W and LE models are reported in
Table 7. It can be noted that AIC and BIC show better fit of the LE model. In Table 7, for the LE model
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the estimate of α is α̂ = 1.830 > 1 so that the hazard rate function monotonically increases to reach a
plateau at 1/σ̂ = 1/4173.763 = 0.00024. In Figure 5 (left panel), the survival curves estimated by the
fitted LE distribution and by the Kaplan–Meier estimator are close. In the right panel, the hazard rate
function for each distribution fitted to the monoclonal gampathy data is presented. Here, we observe
that the hazard rate of the LE distribution is lower than the hazard rates of the other distributions in
the first 3600 days (approximately) after the diagnosis of MGUS. Opposite behavior was observed for
a time greater than 3600 days.

Table 7. Parameter estimates (standard errors) and maximum values of the log-likelihood functions of
the E, GE, G, W and LE models fitted to the monoclonal gammopathy data.

Parameters
Model

R GR G W LR

σ 5810.491 5270.609 4909.396 6009.851 4173.763
(389.431) (441.299) (534.902) (345.316) (309.337)

α - 1.159 1.174 1.186 1.830
- (0.100) (0.099) (0.067) (0.181)

Log-likelihood −2175.1 −2173.7 −2173.4 −2170.9 −2167.2

AIC 4352.3 4351.5 4350.8 4345.8 4338.5
BIC 4355.8 4358.4 4357.8 4352.7 4345.5
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Figure 4. Left panel: Empirical cdf (solid line) for nicotine measurement data and the fitted
LR distribution (dashed line). Right panel: Histogram of nicotine measurement data and fitted
density functions.
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line) for the survival times of monoclonal gammopathy data. Right panel: Hazard rate function for the
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9. Final Comments

In this paper, we proposed a new probability distribution generator called the Lambert-F generator.
For any baseline distribution F, continuous and with positive support, the Lambert-F version is derived
by applying the generator. The result is a new distributions class with one extra parameter and that
generalizes the baseline distributions. The quantile function of the new class of distributions can be
expressed in closed form in terms of the Lambert W function.

We proved that the hrf of a Lambert-F distribution corresponds to a perturbation of the baseline
hrf, increasing or decreasing the baseline hrf for lower values of X (earlier times). We detailed two
special cases corresponding to two-parameter extensions of the well-known exponential and Rayleigh
distributions. We discussed moments and maximum likelihood estimators for the parameters of the
proposed models. For both methods, we provided guidance on numerical procedures that might be
used. Additionally, we carried out a simulation study to assess the behavior of the estimates. We found
good performances for both estimators, but especially for maximum likelihood estimators, which
yielded estimates with less bias. Finally, we developed two applications to real datasets, thereby
providing evidence that the LE and LR distributions may present a better fit than other two-parameter
distributions such as Weibull, gamma, generalized exponential and generalized Rayleigh.
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