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Abstract: In this paper, we are concerned with the construction of numerical schemes for linear
random differential equations with discrete delay. For the linear deterministic differential equation
with discrete delay, a recent contribution proposed a family of non-standard finite difference (NSFD)
methods from an exact numerical scheme on the whole domain. The family of NSFD schemes
had increasing order of accuracy, was dynamically consistent, and possessed simple computational
properties compared to the exact scheme. In the random setting, when the two equation coefficients
are bounded random variables and the initial condition is a regular stochastic process, we prove that
the randomized NSFD schemes converge in the mean square (m.s.) sense. M.s. convergence allows
for approximating the expectation and the variance of the solution stochastic process. In practice, the
NSFD scheme is applied with symbolic inputs, and afterward the statistics are explicitly computed
by using the linearity of the expectation. This procedure permits retaining the increasing order
of accuracy of the deterministic counterpart. Some numerical examples illustrate the approach.
The theoretical m.s. convergence rate is supported numerically, even when the two equation
coefficients are unbounded random variables. M.s. dynamic consistency is assessed numerically.
A comparison with Euler’s method is performed. Finally, an example dealing with the time evolution
of a photosynthetic bacterial population is presented.

Keywords: delay random differential equation; non-standard finite difference method; mean
square convergence

1. Introduction

Modeling physical systems for which the future state depends on history due to hereditary
characteristics, such as aftereffects or time lags, usually requires the use of delay differential models.
The delay may be discrete or continuous, depending on whether a specific or complete past information
is used. The inclusion of a delay requires specific techniques for the theoretical study of the differential
model [1–4]. In practice, delay differential models play a key role in different scientific and technical
fields [5–10].

In the context of delay differential equations, the construction of non-standard finite difference
(NSFD) numerical schemes has not been much explored. Historically, NSFD schemes were developed
by Mickens in the years 1994 and 2000 [11,12], together with a later edited book in 2005 [13]. Mickens
observed that traditional standard finite difference schemes may be modified, on the basis of exact
numerical schemes for basic ordinary differential equations, so that the essential properties of the
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governing continuous model are mimicked [14]. Until relatively recently, NSFD schemes were
successfully designed and applied for ordinary, partial and fractional differential equations [15].
However, delay differential equations have not been addressed in detail.

Recently, [16] proposed a NSFD scheme for the general linear delay problem{
x′(t) = αx(t) + βx(t− τ), t > 0,

x(t) = f (t), −τ ≤ t ≤ 0,
(1)

(τ > 0) from an exact scheme on the whole domain, providing high order of accuracy and consistent
dynamical behavior with simple computational properties. Such approach was extended to the
non-scalar case in [17].

In modeling, the variability of data, due to limited knowledge and fluctuation of the process
under study, lack of information, bad calibration machines, etc., gives rise to variability in the model
coefficients. Therefore, for a more realistic description of the process, coefficients should be regarded
as random quantities on an abstract probability space. When the coefficients are random variables
and regular stochastic processes, the solution to the model becomes a differentiable stochastic process,
whose realizable trajectories solve the deterministic version of the model. A common treatment of
random differential models uses mean square (m.s.) calculus [18–24]. Of special importance is the
computation of the mean and the variance of the solution stochastic process, or even its probability
density function.

We are interested on delay random differential equations. Specifically, the randomization of (1) as{
x′(t, ω) = α(ω)x(t, ω) + β(ω)x(t− τ, ω), t > 0, ω ∈ Ω,

x(t, ω) = f (t, ω), −τ ≤ t ≤ 0, ω ∈ Ω.
(2)

Here α and β are random variables and f is a stochastic process on a complete probability space
(Ω,F ,P), where Ω is the sample space formed by the outcomes ω ∈ Ω, F is the σ-algebra of events,
and P : F → [0, 1] is the probability measure. The solution x is a differentiable stochastic process.

Only recently, a theoretical study on delay random differential equations was started. General
delay random differential equations were analyzed in the m.s. sense in [25], with the goal of extending
some of the existing results on random differential equations with no delay from the book [18].
Problem (2) was solved in the m.s. sense in [26], and later generalized to equations with a random
forcing term in [27]. On the other hand, in [28] the authors studied (2), but considered the solution
in the sample-path sense and computed its probability density function via the random variable
transformation technique, for certain forms of the initial condition process.

In this paper, we are concerned with computational aspects of delay random differential equations.
Standard finite difference methods have already been applied to random ordinary, partial and fractional
differential equations, by establishing the m.s. convergence, and even the convergence of densities,
of the numerical discretizations towards the stochastic process solution [29–34]. Here we aim at
extending the NSFD method from [16] to (2), by assessing the m.s. convergence of the discretizations.
This permits approximating the expectation and the variance of the solution with high accuracy,
whenever computationally feasible.

The organization of this paper is the following. In Section 2, the main results on m.s. calculus
are exposed. The material for this section is essentially taken from [18]. In Section 3, the NSFD
numerical scheme from [16] is presented. The randomization of the scheme, its m.s. convergence and
its usefulness for approximating moments are discussed in Section 4. Illustration of the theory with
numerical examples is conducted in Section 5. Finally, Section 6 draws the main conclusions.
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2. M.s. Calculus

We are interested in second order real random variables y : Ω→ R, satisfying

E[y2] =
∫

Ω
y(ω)2 dP(ω) < ∞. (3)

We refer the reader to ([18], Ch. 4), [35]. The set of these random variables is a Hilbert space,
denoted as L2(Ω) and endowed with the inner product 〈y1, y2〉 = E[y1y2]. This inner product gives
rise to the norm ‖y‖2 = (E[y2])1/2. By Cauchy–Schwarz inequality ([18], p. 19) E[|y1y2|] ≤ ‖y1‖2‖y2‖2.
Random variables in L2(Ω) are characterized by having finite variance:

V[y] = E[(y−E[y])2] = E[y2]− (E[y])2 < ∞. (4)

This is one of the principal reasons for working with second order random variables, since
the main statistical information for uncertainty quantification, namely the average value and the
dispersion, are well-defined.

Given a stochastic process {z(t) : t ∈ I ⊆ R}, it is of second order if the random variable z(t) is of
second order, for all t ∈ I. By Cauchy–Schwarz inequality, it is straightforward to check that a second
order stochastic process possesses a correlation function, E[z(t1)z(t2)].

Convergence in L2(Ω) is defined through its norm ‖ · ‖2: a sequence of random variables {yn}∞
n=1

converges to y in L2(Ω) if limn→∞ ‖yn − y‖2 = 0. This is referred to as m.s. convergence.
M.s. convergence preserves the convergence of the expectation and the variance. This is a key

fact. In general, if {xn}∞
n=1 and {yn}∞

n=1 are two sequences of second order random variables such that
xn → x and yn → y as n→ ∞ in the m.s. sense, then E[xnyn]→ E[xy] ([18], p. 88).

In the particular case that {xn}∞
n=1 is a sequence of second order random variables such that its

mean and its variance tend to zero, i.e., E[xn] → 0 and V[xn] → 0 as n → ∞, then {xn}∞
n=1 is m.s.

convergent to zero, since (‖xn‖2)
2 = E[(xn)2] = V[xn] + (E[xn])2 → 0 as n → ∞. The converse is

also true.
M.s. convergence gives rise to m.s. calculus, where continuity, differentiability and Riemann

integrability of a stochastic process are naturally defined by taking m.s. limits in the classical definitions.
A stochastic process {z(t) : t ∈ I ⊆ R} is m.s. continuous at t0 ∈ I if z(t)→ z(t0) as t→ t0 in the m.s.
sense. It is m.s. differentiable at t0 ∈ I if limh→0

z(t0+h)−z(t0)
h exists in the m.s. sense, which is denoted

as z′(t0). Finally, z(t) is m.s. Riemann integrable on an interval [a, b] ⊆ I if there exists a sequence
of partitions {Pn}∞

n=1 with mesh tending to 0, Pn = {a = tn
0 < tn

1 < . . . < tn
rn = b}, such that for any

choice of points sn
i ∈ [tn

i−1, tn
i ], i = 1, . . . , rn, the limit limn→∞ ∑rn

i=1 z(sn
i )(t

n
i − tn

i−1) exists in the m.s.

sense, and it is denoted as
∫ b

a z(t)dt.
The following important properties will be used: m.s. continuity on an interval implies m.s.

Riemann integrability ([18] Section 4.5.1 (1)), ‖
∫ b

a z(t)dt‖2 ≤
∫ b

a ‖z(t)‖2 dt for any m.s. Riemann
integrable process z(t) ([18] Section 4.5.1 (3)), and the fundamental theorem of m.s. calculus ([18]
Section 4.5.1 (5), (6)).

Finally, we mention that the essential supremum norm is defined as

‖y‖∞ = inf{C ≥ 0 : |y| ≤ C almost surely}. (5)

The set of random variables satisfying ‖y‖∞ < ∞ gives rise to the Banach space L∞(Ω). Obviously,
for two random variables y1 ∈ L∞(Ω) and y2 ∈ L2(Ω), it holds ‖y1y2‖2 ≤ ‖y1‖∞‖y2‖2 < ∞.
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3. NSFD Methods for Linear Deterministic Differential Equations with Delay

Based on the explicit solution to (1),

x(t) = f (0)
m−1

∑
k=0

βk(t− kτ)k

k!
eα(t−kτ)

+
m−2

∑
k=0

βk+1

k!

∫ 0

−τ
(t− (k + 1)τ − s)keα(t−(k+1)τ−s) f (s)ds

+
βm

(m− 1)!

∫ t−mτ

−τ
(t−mτ − s)m−1eα(t−mτ−s) f (s)ds, (6)

for (m− 1)τ < t ≤ mτ, m ≥ 1, an exact numerical difference scheme for (1) is obtained in [16,17]. It is
detailed in the following theorem.

Theorem 1. ([16], Theorem 2), ([17], Theorem 2) Consider a size mesh h > 0 such that Nh = τ, for some
integer N ≥ 1. Write tn = nh and xn = x(tn), for n ≥ −N. Then the numerical solution given by xn = f (tn),
for −N ≤ n ≤ 0, and by

xn+1 = eαh
m−1

∑
k=0

βkhk

k!
xn−kN +

βm

(m− 1)!

∫ tn−mτ+h

tn−mτ
(tn −mτ + h− s)m−1eα(tn−mτ+h−s) f (s)ds, (7)

where (m− 1)τ ≤ nh < mτ and m ≥ 1, defines an exact numerical scheme for (1).

Having an exact numerical scheme is ideal, since it reproduces the exact values of the solution at
the points of the mesh. However, a drawback of (7) is that definite integrals need to be numerically
computed. The number of definite integrals increases with increasing times. Thus, a NSFD method is
proposed to maintain sufficient accuracy and adequate dynamical properties, but reduce the complexity
by avoiding definite integrals. In the first M intervals [0, τ], . . . , [(M− 1)τ, Mτ], the exact solution (7)
is used (or any other numerical method with sufficiently high accuracy), but afterward the integral
part from (7) is discarded. The precision of the method increases with M.

Theorem 2. ([16], Theorem 3), ([17], Theorem 3) Fix M ≥ 1, and compute the numerical solution to (1) in
the intervals (m− 1)τ ≤ nh ≤ mτ, for 0 ≤ m ≤ M with the exact method (7) or with any other numerical
method of global error at most O(hM). Then, for m ≥ M + 1 and (m− 1)τ ≤ nh < mτ, the expression

xn+1 = eαh
M

∑
k=0

βkhk

k!
xn−kN (8)

defines a NSFD scheme of global error O(hM).

As detailed in ([16], Remark 1), the method (8) has the characteristics of a NSFD method:

xn+1 − xn

(eαh − 1)/α
= αxn +

αeαh

eαh − 1

M

∑
k=1

βkhk

k!
xn−kN . (9)

Furthermore, in the rest of [16], it is proved and illustrated that the method from Theorem 2
is dynamically consistent with (1), for asymptotic stability, positive preserving properties, and
oscillation behavior.
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4. NSFD Methods for Linear Random Differential Equations with Delay: Approximations
of Moments

When α and β are random variables and f is a stochastic process, problem (1) is randomized.
These inputs depend on each outcome ω ∈ Ω and (2) is obtained. The numerical schemes from
Section 3 are also randomized. The exact scheme (7) becomes

xn+1(ω) = eα(ω)h
m−1

∑
k=0

β(ω)khk

k!
xn−kN(ω)

+
β(ω)m

(m− 1)!

∫ tn−mτ+h

tn−mτ
(tn −mτ + h− s)m−1eα(ω)(tn−mτ+h−s) f (s, ω)ds, (10)

where the integral is considered in the m.s. sense (it is assumed that f is a m.s. integrable stochastic
process), while (8) becomes

xn+1(ω) = eα(ω)h
M

∑
k=0

β(ω)khk

k!
xn−kN(ω). (11)

We translate Theorem 2 into m.s. convergence.

Theorem 3. Suppose that α and β are bounded random variables, and that f is a m.s. continuous stochastic
process on [−τ, 0]. Fix M ≥ 1, and compute the numerical stochastic solution to (2) in the intervals (m− 1)τ ≤
nh ≤ mτ, for 0 ≤ m ≤ M with the exact method (10). Then, for m ≥ M + 1 and (m− 1)τ ≤ nh < mτ, the
expression (11) defines a random NSFD scheme of m.s. global error O(hM).

Proof. For n = MN, we have tn = nh = Mτ and tn+1 = (n + 1)h > Mτ. For tk, k ≤ n, the exact
scheme (10) is used, so that ‖x(tk)− xk‖2 = 0. By (10) and (11), one gets

‖x(tn+j+1)− xn+j+1‖2 ≤ ‖eαh‖∞

M

∑
k=0

‖β‖k
∞hk

k!
‖x(tn+j−kN)− xn+j−kN‖2

+
‖β‖m

∞
(m− 1)!

∫ tn+j−mτ+h

tn+j−mτ
(tn+j −mτ + h− s)m−1‖eα(tn+j−mτ+h−s)‖∞‖ f (s)‖2 ds, (12)

for (m− 1)τ ≤ tn+j < mτ, m− 1 ≥ M, j ≥ 0.
Let M0 = ‖β‖∞, and M1, M2 > 0 such that ‖eαs‖∞ < M1 and ‖ f (s)‖2 < M2 for s ∈ [0, h]. We

first consider j = 0, . . . , N − 1 and m− 1 = M. By (12),

‖x(tn+1)− xn+1‖2 ≤
‖β‖m

∞
(m− 1)!

∫ tn−mτ+h

tn−mτ
(tn −mτ + h− s)m−1‖eα(tn−mτ+h−s)‖∞‖ f (s)‖2 ds

≤
Mm

0 M1M2

(m− 1)!

∫ tn−mτ+h

tn−mτ
(tn −mτ + h− s)m−1 ds

=
Mm

0 M1M2

m!
hm ≤ C1hm = C1hM+1, (13)

where C1 is a constant independent of m and h,

‖x(tn+2)− xn+2‖2 ≤ ‖eαh‖∞‖x(tn+1)− xn+1‖2 + C1hM+1 ≤ C1

(
e‖α‖∞h + 1

)
hM+1, (14)

‖x(tn+3)− xn+3‖2 ≤ ‖eαh‖∞‖x(tn+2)− xn+2‖2 + C1hM+1 ≤ C1

(
e2‖α‖∞h + e‖α‖∞h + 1

)
hM+1, (15)

. . .
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‖x(tn+N)− xn+N‖2 ≤ C1

(
N−1

∑
j=0

ej‖α‖∞h

)
hM+1

= C1
eN‖α‖∞h − 1
e‖α‖∞h − 1

hM+1 = C1
e‖α‖∞τ − 1
e‖α‖∞h − 1

hM+1

=

(
C1

(
e‖α‖∞τ − 1

) ‖α‖∞h
e‖α‖∞h − 1

1
‖α‖∞

)
hM ≤ C2hM, (16)

where C2 is a constant that only depends on τ, ‖α‖∞ and ‖β‖∞. Thus,

max
n+1≤j≤n+N

‖x(tj)− xj‖2 = O(hM). (17)

We continue by evaluating ‖x(tn+N+j) − xn+N+j‖2, 1 ≤ j ≤ N, by starting from (12) and by
employing the bounds already obtained:

‖x(tn+N+j)− xn+N+j‖2 ≤ e‖α‖∞h‖x(tn+N+j−1)− xn+N+j−1‖2 + e‖α‖∞h‖β‖∞hC2hM + C1hM+1. (18)

By solving this first order recursive inequality, we derive

‖x(tn+N+j)− xn+N+j‖2 ≤ ej‖α‖∞h‖x(tn+N)−xn+N‖2+
j

∑
k=1

hM+1
(

C1+C2‖β‖∞e‖α‖∞h
)

e‖α‖∞h(j−k)

≤ C2hMeN‖α‖∞h + hM+1
(

C1 + C2‖β‖∞e‖α‖∞h
) e‖α‖∞hj − 1

e‖α‖∞h − 1

≤ C2hMe‖α‖∞τ + hM
(

C1 + C2‖β‖∞e‖α‖∞h
) (

e‖α‖∞τ − 1
)( ‖α‖∞h

e‖α‖∞h − 1

)
1
‖α‖∞

≤ C3hM, (19)

where C3 is a constant that only depends on τ, ‖α‖∞ and ‖β‖∞. Therefore,

max
n+N+1≤j≤n+2N

‖x(tj)− xj‖2 = O(hM). (20)

In general, we proceed by induction. Suppose that ‖x(tj)− xj‖2 ≤ ChM for n + 1 ≤ j ≤ n + lN,
where C = C(τ, ‖α‖∞, ‖β‖∞) > 0 is constant and l ≥ 1. We prove that maxn+lN+1≤j≤n+(l+1)N ‖x(tj)−
xj‖2 = O(hM). Fix 1 ≤ j ≤ N. From (12) and by induction hypothesis,

‖x(tn+lN+j)− xn+lN+j‖2 ≤ e‖α‖∞h‖x(tn+lN+j−1)− xn+lN+j−1‖2

+e‖α‖∞h
M

∑
k=1

‖β‖k
∞hk

k!
ChM + ChM+1. (21)

By solving this first order recursive inequality, we derive (for h < 1)

‖x(tn+lN+j)− xn+lN+j‖2 ≤ ej‖α‖∞h‖x(tn+lN)− xn+lN‖2

+
j

∑
k=1

ChM+1

(
e‖α‖∞h

M

∑
r=1

‖β‖r
∞hr−1

r!
+ 1

)
e‖α‖∞h(j−k)

≤ ChMe‖α‖∞τ + ChM+1
(

e‖α‖∞+‖β‖∞ + 1
) e‖α‖∞hj − 1

e‖α‖∞h − 1
(22)

≤ ChM
(

e‖α‖∞τ +
(

e‖α‖∞+‖β‖∞ + 1
) (

e‖α‖∞τ − 1
) h

e‖α‖∞h − 1

)
≤ C̃hM,
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where C̃ = C̃(τ, ‖α‖∞, ‖β‖∞) > 0 is constant. This concludes the proof by induction.

Remark 1. As shall be seen in the numerical computations from Section 5, the boundedness of α and β from
Theorem 3 is sufficient, but not necessary. Nonetheless, for unbounded α and/or β, if one wants to ensure
the m.s. convergence of the NSFD scheme a priori, it is possible to properly truncate the support of α and β.
Indeed, since limm→∞ P[α ∈ (−m, m)] = 1, one may take a sufficiently big interval (−m∗, m∗) in such a
way that P[α ∈ (−m∗, m∗)] ≈ 1, and truncate the support of α to (−m∗, m∗) (analogously for β). In fact, by
applying the generalized Markov’s inequality, it may be demonstrated that any second order random variable
can be truncated to the interval [mean± 10× deviation], so that this interval contains 99% of the probability
mass irrespective of the probability distribution. In the theory of m.s. calculus, the boundedness of the random
input coefficient must be usually imposed: as proved in ([36], Example p. 541), in order for an autonomous and
homogeneous first order linear random differential equation (i.e., x′(t) = ax(t), where a is a random variable) to
possess a m.s. solution for every m.s. integrable initial condition x(0) = x0, the coefficient a must be bounded.

M.s. convergence guarantees convergence of the expectation and the variance. In the computer,
xn(ω) is explicitly and symbolically expressed in terms of α(ω), β(ω) and f (·, ω), by employing either
the exact scheme (10) along all the integration region or, at cheaper cost, the NSFD scheme from
Theorem 3. By using the linearity of the expectation E, one can explicitly compute E[xn]. If the NSFD
scheme is being used, one is approximating the true expectation of the solution to (2). Complexity is
severely increased for large times t, large N (small h), and moderate or high dimension of the random
space. The variance may also be approximated by symbolically expressing xn(ω)2 and explicitly
computing V[xn] = E[x2

n]− (E[xn])2, although the complexity becomes significantly affected because
the symbolic expression handled is larger.

Notice that working with these symbolic expressions for xn(ω) seems to be necessary. Indeed, if

one applies the expectation operator directly in (11), for instance, then E[xn+1] = ∑M
k=0 E[eαh βkhk

k! xn−kN ].

Since each xn−kN depends on α and β, the expectation E[eαh βkhk

k! xn−kN ] cannot be split as

E[eαh]E[β
k ]hk

k! E[xn−kN ], unless both α and β are nonrandom. So there does not seem to exist a recursive
relation formula for {E[xn]}n.

Notice that by Jensen’s and Cauchy–Schwarz inequalities,

|E[xn]−E[x(tn)]| = |E[xn − x(tn)]| ≤ E[|xn − x(tn)|] ≤ ‖xn − x(tn)‖2. (23)

By triangular, Jensen’s and Cauchy–Schwarz inequalities,

|V[xn]−V[x(tn)]| = |E[(xn)
2]− (E[xn])

2 −E[(x(tn))
2] + (E[x(tn)])

2|
≤ E[|(xn)

2 − (x(tn))
2|] + |(E[xn])

2 − (E[x(tn)])
2|

= E[|xn − x(tn)||xn + x(tn)|] + |E[xn]−E[x(tn)]||E[xn] +E[x(tn)]| (24)

≤ ‖xn − x(tn)‖2‖xn + x(tn)‖2 + |E[xn]−E[x(tn)]|(|E[xn]|+ |E[x(tn)]|)
≤ ‖xn − x(tn)‖2(‖xn‖2 + ‖x(tn)‖2) + |E[xn]−E[x(tn)]|(|E[xn]|+ |E[x(tn)]|).

So the approximations of the expectation and the variance inherit the rate of convergence
corresponding to the m.s. norm, which is O(hM) when the exact numerical scheme (10) is used
for the first M intervals of length τ and (11) is used for the subsequent intervals (Theorem 3).

In the following section, the m.s. convergence of the NSFD scheme is illustrated with some
numerical computations. We point out that the boundedness of α and β from Theorem 3 is sufficient,
but not necessary. It may be possible that a random coefficient is unbounded and the NSFD scheme
converges in the m.s. sense.
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5. Numerical Examples

The theoretical discussion is illustrated with some numerical computations. We consider specific
probability distributions for α, β and/or f , and a fixed delay τ > 0. We denote by xn the discretization
of the random NSFD method from Theorem 3. The exact solution x(tn) is computed with the exact
scheme (10). Both random variables are explicitly and symbolically expressed in terms of α(ω), β(ω)

and f (·, ω). These expansions are employed to compute the expectation and the variance, by using the
linearity of the expectation. To check the accuracy, the absolute errors in the approximations of the
mean value, εN,M = |E[x(tn)]−E[xn]|, and the variance, δN,M = |V[x(tn)]−V[xn]|, are calculated for
different values of N and M. According to the theoretical discussion, the errors should decay asO(hM)

when h→ 0, which entails accuracy up to a significant number of digits. We remark that such level of
accuracy cannot be achieved by Monte Carlo simulation, since its error decreases as the reciprocal of
the square root of the number of realizations.

The implementations and computations are performed with Mathematica R© (Wolfram Research,
Inc, Mathematica, Version 12.0, Champaign, IL, USA, 2019), owing to its capability to handle both
symbolic and numeric computations.

Example 1. Let τ = 0.35. Consider f (t) = 1 and α = −1, while β is a random variable, uniformly distributed
on the interval [0.1, 0.2].

Figure 1 plots absolute errors εN,M of the approximation of the expectation. First, N = 10 is fixed and
M ∈ {1, 2, 3, 4} varies. Second, M = 1 is fixed and N ∈ {5, 7, 10} varies. In addition, third, these errors
are divided by h to show, because of the overlapping, the decrease O(hM) as h→ 0. Observe that the error is
exactly 0 on the first M intervals of length τ. In the fourth panel, E[xn] is plotted, where xn is the output of the
NSFD scheme of Theorem 3; the estimated expected values are validated by Monte Carlo simulation. Figure 2 is
analogous with the variance and the absolute error of its approximation, δN,M. According to ([16], Lemma 4,
Theorem 7), since α + β < 0 and α ≤ β almost surely, the NSFD scheme converges to 0 almost surely as t→ ∞
(it is asymptotically stable almost surely). In both figures, observe that E[xn] and V[xn] tend to 0 as t → ∞,
which means that the NSFD scheme is asymptotically stable in the m.s. sense. Finally, the numerical solution is
always positive because β > 0 almost surely and f (t) > 0 ([16], Theorem 8).

Example 2. Let τ = 0.35. Consider f (t) = 1, α = 0, and β random with Gaussian distribution, of zero
mean and 0.3 standard deviation. Notice that the support of β is unbounded; however, we will see that m.s.
convergence of the NSFD scheme described in Theorem 3 holds.

Figure 3 reports absolute errors εN,M of the approximation of the expectation, where N and M take on the
same values as in Example 1. The decay O(hM) as h→ 0 is captured again. The last panel of the figure plots
the expectation of the numerical solution from the NSFD scheme of Theorem 3, E[xn], together with Monte
Carlo simulation. Figure 4 is analogous with the variance and the absolute error of its approximation, δN,M.
This example is interesting from the dynamics viewpoint. By ([16], Lemma 4), the probability that the zero
solution to the realizations of (2) is asymptotically stable is the probability that β < 0 and τ < τ∗ = 1/|β|, i.e.,
−1/τ < β < 0. Taking into account the Gaussian distribution of β, this probability is ≈ 0.5 up to 12 decimals,
i.e., approximately half of the time a realizable NSFD scheme tends to 0 as t→ ∞, and half of the time it does
not. The m.s. treatment mixes these two behaviors. In the figures, both E[xn] and V[xn] seem to increase as t
advances, which means that the NSFD scheme is unstable in the m.s. sense. Finally, notice that β has one half of
probability of being negative and the mean of the solution is positive ([16], Theorem 8).
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Figure 1. Upper left panel: Absolute errors (log-scale) in the approximation of the mean value with
the NSFD scheme, with M = 1, 2, 3, 4 and N = 10 (h = τ/N). Upper right panel: Absolute errors
(log-scale) in the approximation of the mean value with the NSFD scheme, with N = 5, 7, 10 (h = τ/N)
and M = 1. Lower left panel: Errors from the upper right panel divided by h. Lower right panel:
Approximation of the expectation with the NSFD scheme, with M = 1 and N = 7, and comparison
with Monte Carlo simulation (circles) using 10,000 realizations. This figure corresponds to Example 1.
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Figure 2. Upper left panel: Absolute errors (log-scale) in the approximation of the variance with
the NSFD scheme, with M = 1, 2, 3, 4 and N = 10 (h = τ/N). Upper right panel: Absolute errors
(log-scale) in the approximation of the variance with the NSFD scheme, with N = 5, 7, 10, 20 (h = τ/N)
and M = 1. Lower left panel: Errors from the upper right panel divided by h. Lower right panel:
Approximation of the variance with the NSFD scheme, with M = 1 and N = 7, and comparison with
Monte Carlo simulation (circles) using 10,000 realizations. This figure corresponds to Example 1.
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Figure 3. Upper left panel: Absolute errors (log-scale) in the approximation of the mean value with
the NSFD scheme, with M = 1, 2, 3, 4 and N = 10 (h = τ/N). Upper right panel: Absolute errors
(log-scale) in the approximation of the mean value with the NSFD scheme, with N = 5, 7, 10 (h = τ/N)
and M = 1. Lower left panel: Errors from the upper right panel divided by h. Lower right panel:
Approximation of the expectation with the NSFD scheme, with M = 1 and N = 7, and comparison
with Monte Carlo simulation (circles) using 10,000 realizations. This figure corresponds to Example 2.
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Figure 4. Upper left panel: Absolute errors (log-scale) in the approximation of the variance with the
NSFD scheme, with M = 1, 2, 3, 4 and N = 10 (h = τ/N). Upper right panel: Absolute errors (log-scale)
in the approximation of the variance with the NSFD scheme, with N = 5, 7, 10 (h = τ/N) and M = 1.
Lower left panel: Errors from the upper right panel divided by h. Lower right panel: Approximation
of the variance with the NSFD scheme, with M = 1 and N = 7, and comparison with Monte Carlo
simulation (circles) using 10,000 realizations. This figure corresponds to Example 2.

Example 3. Let τ = 0.35. Consider f (t) = γ, where γ is a random variable. It is assumed that α, β and γ are
independent random quantities, uniformly distributed on the interval [0.1, 0.2].



Mathematics 2020, 8, 1417 11 of 17

As Example 1, Figure 5 reports absolute errors εN,M of the approximation of the expectation. First, for
fixed N = 10 and M ∈ {1, 2, 3, 4}. Second, for fixed M = 2 and N ∈ {5, 7, 10}. In addition, third, these errors
are divided by h2 to highlight, because of the overlapping, the decrease O(hM) as h→ 0. The fourth panel plots
E[xn] with the discretization xn computed via the NSFD scheme of Theorem 3, which is validated by Monte
Carlo simulation. For the variance, computations become more expensive, due to the dimension three of the
random space. In particular, the symbolic expression of the exact scheme (10) becomes unfeasible, so the exact
error δN,M of the variance approximation cannot be reported. In Figure 6, we plot V[xn] with the discretization
xn from the NSFD scheme of Theorem 3. Comparison is performed with Monte Carlo simulation, showing
agreement of the estimates. Based on ([16], Lemma 4, Theorem 7), the condition α + β > 0 almost surely entails
that the NSFD scheme does not approach 0 as t→ ∞ (almost sure instability). This fact agrees with the plots of
E[xn] and V[xn], which seem to increase as t grows; this behavior entails that the NSFD scheme is unstable in
the m.s. sense. Finally, β > 0 and γ > 0 almost surely implies the positivity of the numerical solution ([16],
Theorem 8).

M=1

M=2

M=3

M=4

0.5 1.0 1.5 2.0
t

10-14

10-11

10-8

10-5

0.01

ϵN=10,M

N=5

N=7

N=10

1.0 1.2 1.4 1.6 1.8 2.0
t

5.×10-8

1.×10-7

2.×10-7

5.×10-7

ϵN,M=2

N=5

N=7

N=10

1.0 1.2 1.4 1.6 1.8 2.0
t

1.×10-5

5.×10-5

1.×10-4

ϵN,M=2/h
2

0.5 1.0 1.5 2.0
t

0.16

0.18

0.20

0.22

0.24

0.26

0.28
[xn]

Figure 5. Upper left panel: Absolute errors (log-scale) in the approximation of the mean value with the
NSFD scheme, with M = 1, 2, 3, 4 and N = 10 (h = τ/N). Upper right: Absolute errors (log-scale) in
the approximation of the mean value with the NSFD scheme, with N = 5, 7, 10 (h = τ/N) and M = 2.
Lower left panel: Errors from the upper right panel divided by h2. Lower right panel: Approximation
of the expectation with the NSFD scheme, with M = 2 and N = 7, and comparison with Monte Carlo
simulation (circles) using 10,000 realizations. This figure corresponds to Example 3.
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Figure 6. Approximation of the variance with the NSFD scheme, with M = 1 and N = 5 (h = τ/N),
and comparison with Monte Carlo simulation (circles) using 10,000 realizations. This figure corresponds
to Example 3.
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We would like to remark that even when M = 1 and the global error of the NSFD scheme is O(h), its
error is lower than Euler’s method, given by xn+1 = (1 + αh)xn + βhxn−N . Euler’s method has already
been employed for random differential equations (ordinary and fractional) in the m.s. sense [29,30,34]. In this
Example 3, Figure 7 plots errors εN for approximations of the mean, for comparing Euler’s method and the
NSFD scheme with M = 1 fixed. Observe that in log scale, both errors are located in parallel, but the error
corresponding to the NSFD scheme is lower; this may be due to the non-standard nature of the method and
being error-free on [0, τ]. Although the proposed NSFD method is restricted to the linear random differential
equation with delay, it may provide the foundation for designing new non-standard numerical methods for delay
nonlinear equations.

NSFD, M=1

Euler

0.5 1.0 1.5 2.0
t

10-5

10-4

0.001

0.010

0.100

ϵN=7

NSFD, M=1

Euler

0.5 1.0 1.5 2.0
t

10-5

10-4

0.001

0.010

0.100

ϵN=10

Figure 7. Absolute errors (log-scale) in the approximation of the mean value, with Euler’s method
(dashed lines) and with the NSFD scheme M = 1 (solid lines). For step size h = τ/N, the left panel
corresponds to N = 7 and the right panel to N = 10. This figure corresponds to Example 3.

Remark 2. In the recent literature, the m.s. convergence of Euler’s method has not been formally proved
for delay random differential equations. If randomness is not incorporated into the system by the coefficients,
but by a Wiener noise instead (Itô stochastic delay differential equation, which gives rise to non-differentiable
solutions), then Euler’s method (Euler-Maruyama’s method, which considers discrete increments of the driving
Wiener process) was rigorously studied and its m.s. convergence was proved in [37]. In the context of delay
random differential equations (those with randomness manifested in coefficients and no Wiener noise), we
focus on the linear case (2) studied in this paper assuming, as in Theorem 3, that α and β are bounded
random variables, so that ‖α‖∞ and ‖β‖∞ are finite. The exact m.s. solution to (2) satisfies x(tn+1) =

x(tn) + α
∫ tn+h

tn
x(s)ds + β

∫ tn+h
tn

x(s− τ)ds, where the integrals are m.s. Riemann. If en = x(tn)− xn

denotes the difference between the exact solution and the discretization at the mesh point tn, then

en+1 = en + α
∫ tn+h

tn
(x(s)− xn)ds + β

∫ tn+h

tn
(x(s− τ)− xn−N)ds, (25)

by a simple subtraction. Given any interval [−τ, T], T > 0, the m.s. Lipschitz condition ‖x(s1)− x(s2)‖2 =

‖
∫ s1

s2
x′(s)ds‖2 ≤ |

∫ s1
s2
‖x′(s)‖2 ds| ≤ λ|s1 − s2| holds, λ = λ(T) = max[−τ,T] ‖x′(s)‖2 > 0. Then

‖x(s) − xm‖2 ≤ ‖x(s) − x(tm)‖2 + ‖em‖2 ≤ λh + ‖em‖2, m ≥ −N, s ∈ [tm, tm + h], tm + h ≤ T.
Consequently,

‖en+1‖2 ≤ ‖en‖2 + ‖α‖∞h (λh + ‖en‖2) + ‖β‖∞h (λh + ‖en−N‖2)

= (1 + ‖α‖∞h) ‖en‖2 + ‖β‖∞h‖en−N‖2 + (‖α‖∞ + ‖β‖∞) h2λ. (26)
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For 0 ≤ n ≤ N (notice that en−N = 0), by solving the first order recursive inequality for ‖en‖2, we derive
the following bounds:

‖en‖2 ≤
n

∑
i=1

(‖α‖∞ + ‖β‖∞) h2λ (1 + ‖α‖∞h)n−i

= h2λ (‖α‖∞ + ‖β‖∞)
(1 + ‖α‖∞h)n − 1

‖α‖∞h

≤ hλ
‖α‖∞ + ‖β‖∞

‖α‖∞

[
(1 + ‖α‖∞τ/N)N − 1

]
(27)

≤ hλ
‖α‖∞ + ‖β‖∞

‖α‖∞

(
e‖α‖∞τ − 1

)
= C1h,

where C1 = C1(λ, τ, ‖α‖∞, ‖β‖∞) is constant. Then

max
0≤n≤N

‖en‖2 = O(h). (28)

For N + 1 ≤ n ≤ 2N, based on similar calculations,

‖en‖2 ≤ (1 + ‖α‖∞h)n−N ‖eN‖2 + ∑n
i=N+1 [‖β‖∞‖ei−N‖2 + (‖α‖∞ + ‖β‖∞) λh] h (1 + ‖α‖∞h)n−i

≤ C1he‖α‖∞τ + [C1‖β‖∞ + (‖α‖∞ + ‖β‖∞) λ] h2 (1+‖α‖∞h)n−N−1
‖α‖∞h

≤ C2h,

(29)

where C2 = C2(λ, τ, ‖α‖∞, ‖β‖∞) is constant. Then

max
N+1≤n≤2N

‖en‖2 = O(h). (30)

For 2N + 1 ≤ n ≤ 3N, 3N + 1 ≤ n ≤ 4N, etc. one proceeds similarly. This proves that the random
Euler’s method has m.s. global error O(h). This proof corresponds to the linear case, although it may be
extendible to delay random differential equations satisfying a m.s. Lipschitz condition.

Example 4. In this example, the linear model (2) is considered for fitting the time evolution of a photosynthetic
bacterial population, Rhodobacter capsulatus (R. capsulatus) [38], under infrared lighting conditions. Direct cell
counts were made for the first 7 days, every two to three days, during which the population grew with no effect of
competition for resources (light and/or CO2) that would yield logistic nonlinearities. For days 0, 2, 4 and 7, the
population sizes, measured in cells/mL scaled by one million, were 0.583, 0.635, 1.08 and 3.20, respectively. For
delay τ = 1 and initial function f (t) = 0.583 on [−τ, 0], the least-squares estimates for α and β are 1.20426
and −1.18024, respectively. The effect of small random displacements on the coefficients is studied here. Let
us suppose 0.5% displacements of α and β with respect to their least-squares estimates, with zero mean values.
According to the maximum entropy principle [39], α and −β follow truncated exponential distributions, with
rates 1/1.20426 and 1/1.18024 respectively. The expectation and the variance of the output are approximated
with the random NSFD scheme. Figure 8 plots the results for M = 2 and distinct N (mean values in solid line,
and mean ± 2 × standard deviation in dashed lines), together with the least-squares fitting. Observe that a small
uncertainty of 0.5% for parameters may cause significant changes in the final solution, up to 30% variation for
the seventh day compared to an idealized situation containing no uncertainty. Observe also that as N increases,
the approximations from the NSFD scheme tend to overlap, thus indicating convergence.
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Figure 8. Application of the random NSFD scheme for the model of the R. capsulatus bacterial
population, for M = 2 and different values of N (mean values in solid line, and mean ± 2 × standard
deviation in dashed lines). The least-squares fitting is also plotted. A zoom for a particular region is
included for a better appreciation of convergence as N grows. This figure corresponds to Example 4.

6. Conclusions

In this paper, we have extended a NSFD numerical scheme recently proposed for deterministic
linear differential equations with delay to the random framework. Incorporating randomness into
models is important to account for measurement errors in data. M.s. convergence of the numerical
discretizations has been established when the two equation coefficients are bounded random variables
and the initial condition is a regular stochastic process, with rate of convergence given by O(hM),
where h is the step size and M is the number of intervals of length τ where the exact scheme is
applied. M.s. convergence allows for approximating the expectation and the variance of the solution
at inherited rate O(hM), by symbolically expanding the discretizations in terms of the random inputs.
The numerical examples have illustrated and assessed the proposed approach. The convergence rate
O(hM) has been supported numerically, even when the two equation coefficients are unbounded
random variables. The asymptotic behavior of the expectation and the variance as the time t grows has
been evaluated, graphically and taking into account theoretical results on deterministic stability and
instability of the zero solution. A comparison with Euler’s method has been performed when M = 1;
although both methods have global errors O(h), the error of the NSFD scheme is lower, possibly due
to the non-standard nature of the scheme and being error-free on [0, τ]. Also, we have considered an
example dealing with actual experimental data for a bacterial specie growing under infrared lighting
conditions, and have calculated numerical solutions after randomizing the input parameters according
to the maximum entropy principle.

The advantage of the random NSFD scheme is the high accuracy to approximate some statistics,
which cannot be achieved with Monte Carlo methods. In addition, the procedure is simple: one only
symbolically expands the discretizations in terms of the random inputs and afterward applies the
corresponding statistical operator. However, this strategy possesses some limitations. Obviously, the
necessity of symbolically expressing the discretizations restricts the applicability of the NSFD scheme
to moderate step size h and time variable t, as well as small dimension of the random space. Although
the calculation of the expectation of the discretization seems to be quite feasible in the computer, the
calculation of the variance may become a big issue with this approach, let alone other statistics of order
greater than two. We ask ourselves about the possibility of accurately calculating statistics with the
random NSFD scheme without relying on symbolic expansions. We admit that for the moment, Monte
Carlo simulation seems the best option for large time variable t, small step size h or large dimension
of the random space, where each realization of the governing delay model is numerically solved by
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employing a NSFD scheme. For estimating densities, the symbolic expression is too complex and
kernel methods are the preferable.

Mickens’ methodology on NSFD schemes has shown fruitful applications along the years on
ordinary, partial and fractional deterministic differential equations. However, only very recently, the
application of NSFD numerical schemes to delay deterministic differential equations has been explored,
in the context of linear models. Thus, this is the first contribution that proposes the use of NSFD
schemes for quantifying uncertainty for delay random differential equations. Further study of NSFD
methods for delay deterministic and random differential equations needs to be conducted, especially
for nonlinear equations, for applications to modeling of real-life systems with aftereffects or time lags.

We propose specific lines of research for possible future developments:

• In the deterministic setting, the extension of the NSFD method to nonlinear delay differential
equations. We believe that this extension may be done by linearization or by applying the
empirical rules proposed by Mickens.

• Randomization of the NSFD method for delay random differential equations and applications
without relying on symbolic expansions. Symbolic computations are the main drawback of the
method proposed in the present paper.

• A theoretical analysis of m.s. dynamic consistency.
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