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Abstract: Let S”(c) be a Euclidean sphere of curvature ¢ > 0 and R be a Euclidean line. We prove a
pinching theorem for compact minimal submanifolds immersed in Riemannian warped products
of the type I x ¢ S"(c), where f : I — R™ is a smooth positive function on an open interval I of R.
This allows us to generalize Chen-Cui’s pinching theorem from Riemannian products S (c) x R to
Riemannian warped products I x ¢ S"(c).
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1. Introduction

Let M"*P(c) (c # 0) be an (n + p)-dimensional real space form with constant sectional curvature
c and M" be an n(> 2)-dimensional immersed connected submanifold of M"*?(c). Denote by H the

mean curvature of M". The normalized scalar curvature p and the normal scalar curvature p* are

defined by
2

p= wn—1) KZj<R(€i/ej)€jz ei), 1)
and 1
P = <Z Y (R*(eires 6/3/6“>2> : @

i<ja<p

where R is the curvature tensor of the tangent bundle and R is the normal curvature tensor of
the normal bundle. In 1999, De Smet et al. [1] proposed the following well-known Normal Scalar
Curvature Conjecture or DDVV Conjecture:

DDVYV Conjecture: (c.f. [1]) Let M" be an n(> 2)-dimensional immersed submanifold in a real space form
M"*P(c). Then the inequality

H>>p+pt —c €)

holds at every point p of M". The formula (3) is called DDV'V inequality.

Submanifolds achieving the equality everywhere in (3) are called Wintgen ideal submanifolds
which carry interesting geometry and are not classified completely so far, see [2]. In 2007, Dillen et al.
[3] transferred the conjecture into an algebraic version inequality:

Theorem 1. (c.f. [3]) Let By, By, ..., By be symmetric (n x n)-matrices with trace zero. If

ZH Ba, Bg]||* < (ZHBW) )
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then DDVV Conjecture is true.

In 2008, DDVV Conjecture was solved completely by Ge-Tang [4] and Lu [5] independently
through proving that the above algebraic inequality (4) holds true. Since then, DDVV type problems
for submanifolds were studied in different ambient spaces, refer to [6-17].

Interestingly, Lu [5] simultaneously obtained an important rigidity result for compact minimal
submanifolds immersed in S"*7(c), which improved some classical rigidity results of Simons [18],
Lawson [19], Chern et al. [20], Li-Li [21].

Theorem 2. (c.f. [5]) Let M" be an n(> 2)-dimensional compact minimal submanifold in S"*P(c). If
0< 0o+ Ay <ne, ®)

then M" is a totally geodesic submanifold S"(c), or one of the Clifford torus My ,— (1 <r <n—1), or the
Veronese surface M?. Here o is the squared length of the second fundamental form, and A, is the second largest
eigenvalue of the fundamental matrix as stated in Definition 1. The Clifford torus M, ,—, is a Riemannian
product of the form S" (") x S"~" (-1, which is a minimal hypersurface immersed into S"+1(c).

Besides, it would be interesting and important to study the similar problems in a product space
M"(c) x R. Now we use 3 to denote the unit R direction and write T for the projection of 2 on
M. With using the tensor T, Chen and Cui [22] proved the corresponding interesting DDVV type
inequality and obtained a pinching theorem in M (c) x R. Precisely, the authors obtained the following

two theorems.

Theorem 3. (c.f. [22]) Let M" be an n-dimensional immersed submanifold in M™(¢) x R (m > n > 2).
Then we have

H22p+pL—c(1—i|T|2). (6)

Theorem 4. (c.f. [22]) Let M" be an n-dimensional compact minimal submanifold in S™(c) x R (m > n > 2).
Set a = maxyep |T|?. If
0<oc+A<c(n—(2n+1)a), (7)

theno =0o0roc+ Ay =c(n— (2n+1)a).

Inspired by the above results, the first author [23] further generalized Chen-Cui’s work to a
product manifold of a space form and a Euclidean space of higher dimension. Recently, Roth [24]
extended Theorem 3 to the case that the ambient space is a Riemannian warped product I x r M™(c)
by proving a new DDVV type inequality for submanifolds immersed in I x f M"(c), which is similar
to (3) and (6).

Theorem 5. (c.f. [24]) Let M" be an n-dimensional immersed submanifold in I x ¢ M™(c) (m > n > 2).

Then we have ” ’
c 2 2
H22p+pL+<§2—f2) <1—n\T|2>—1{f|T|2. (8)

Hence, it seems natural and interesting to extend the classical pinching theorems (Theorems 2
and 4) obtained for submanifolds in real space forms, or in the product of a line with a real space form
to warped product manifolds. In this article, we prove the following result:
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Main Theorem: Let M" be an n-dimensional compact minimal submanifold in I x ¢ S™(c) (m > n > 2) with
warping function satisfying c — (f'> — ff"') = c1f* for some c¢; > O at every t € 1. If

0<o+A <cif (n—(2n+1)|T|2>—n|}m|, )

then o = 0 and M" lies in a slice S™(c), or ¢ + Ay = ¢1f? (n — (2n +1)|T|*) — %H'
Remark 1. The assumption that c — (f'> — ff"") = ¢, f* in the Main Theorem is a second-order nonlinear
ordinary differential equation, which can be rewritten as

- }f’2 ~@f -5 =0 (10)

The substitution w(f) = (f'(t))? leads to a first-order linear differential equation w'(f) = %w +

2(c1f3 - J%) By the method of variation of parameters, then the solution of the above differential
equation is given by

where F = [ % df = 2In f and ¢; is a undetermined constant. That is to say,

(7 = wlf) = £+ et [2lef — ) o] an

= f*. (cz+c1f2+fcz)

=cift+eaft+e

So, we can see that f' = +/c1 f* + c2f? + ¢, which is a first-order separable equation.

A trivial example can be obtained by taking I as R = (—o0,4+0) and f(t) = 1 in the Main
Theorem. Then we recover Theorem 4. Moreover, we can see easily that f = ii:g provides a
particular solution of the Equation (11) for ¢ = ¢; = 1 and ¢; = —2, where C is a real constant. Another
non-trivial example is M = (0, %) xS™(c), where f : (0,5) — R*, f(t) = tant. Needless to
say, this function also satisfies (11) for ¢ = ¢; = 1 and ¢ = 2. Hence our theorem can be view as a
generalization of Theorem 4.

2. Preliminaries

Let t be an arc-length parameter of [ and d; = % be the unit vector field tangent to I. We consider
the Riemannian warped product M = I x £ M"™(c) endowed with the Riemannian warped metric
defined by

() =d+f(O*,

where (, ) denotes the standard Riemannian metric of M (c) and f is called the warping function
of the warped product I x f M™(c). Let M" be an n-dimensional immersed connected submanifold
in I x s M™(c) with codimension p = m +1 —n(> 1). We denote by V and V the Riemannian
connections of M" and M, respectively. Moreover, we use V+ for the normal connection of M".

Throughout this paper, we will agree on the following index ranges and use the Einstein
summation convention unless otherwise stated:

1<ABC:---<m+1;
1§l/]/k/ <n/

n+1<apB7y - ---<m+1.
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We choose {¢;} ; and {e, "’*nl 41 to be local orthonormal frames of the tangent bundle TM and
the normal bundle TLM respectively. Let {w4 }"47] be the dual frame of {e4}"%71, and {wap}" 3L | be
the Riemannian connection forms associated with {w 4 } A:l' In particular, {w;;} j—1and {wap }Z;i w1

denote the Riemannian connection forms in TM and the normal connection forms in T-M.

Ehl] j =

From Cartan’s lemma, we get

Denote by h = }; h;’;wi ® w; ® eq the second fundamental form and by o = Zi/]«,a(h‘l?;-)z the

squared length of /. The mean curvature vector is defined by H = ¥, H%, with H* = % Y.i hf; and the
mean curvature H = |H|. Let A, be the shape operator with respective to e,. It is well known that h
and A are related by

(h(ei e), ea) = (Aceisej) (12)

Definition 1. The fundamental matrix F of M isa p X p matrix F = (S'Xﬁ)pxp' where
Sup = (A, Ap) = Zh“hf‘ (13)

We can certainly assume that Ay > Ay > --- > A, be all the eigenvalues of the fundamental
matrix F. In particular, A; and A, are the largest and the second largest eigenvalue of F, respectively.

Obviously, by (13) and the definition of ¢, it follows that

ZSM_Z/\V_Z( 1) =o. (14)

iju
Recall that (c.f. [25], p. 74) the curvature tensor R of M is given by
E(X, Y)= V[X,y] — [Vx, vy] = V[X,y] — vxvy + vaX/ forany X,Y € T(M)

We write
R(ea,ep)ec := Rcpagep

for any e4, ep, ec,ep € T(M).
From the properties of curvature tensor we find

(R(ea,ep)ec,ep) = Repap = Rapep-
Similarly, it is convenient to write
Rijr = (R(e; ej)ex, €1) and szﬁz] (R (e, ep)ei €)).

The first and the second covariant derivatives of h?;. are respectively defined by

VhS = Hyop = Iy — h i — s,y + Mgy, (15)

Vil = higen = Al — b i — By — M i + hgkwﬁa. (16)

We also denote

VR[> =Y (h)?, V2R =Y (hEy)*.
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Then we have the well-known Codazzi equation and Ricci identity as below:

?}‘k - ?ij = —injk, (17)

Wiy — i = h Roitg + 1y Ryt + WER B (18)
Decompose 9; into the tangential and normal parts as follows:
9; =T+ N = Tle; + N%,. (19)

Obviously, we have |T|? + |[N|? = [9;|* = 1.
By Gauss-Weingarten formulae one has
Vg 0 = Vg (T’el + N%e,)
= ¢j(T')e; + T'Veei + T'hien
+¢;(N")eq — N"‘h"-‘ e + N"‘Véea

= T,"jel N* h -e; + N”‘ea + The ijen

= (T] — N®hj)ei + (N + hf}Tl)ea. (20)
We define 1 : M = I xy M"(c) — M"(c) to be the projection map, and 71(X) := X* =

X — (X, 9¢)9; to be the orthogonal projection of X to the tangent space TM" (c). Using Proposition 35
of Chapter 7 in [25], it follows that

T 8_T £y L i
Vg.at = Ve’f Tid at V at —e = 7( i T]at)
] +170¢ €j

frof
f; TJZTZel f T]ZN"‘E,X
= ];(51-]. — TIT!e; — J}TjN"‘ea. (21)

Comparison of (20) and (21) shows that
f ’ f
E h“N"‘ (0 — T'T)), E h"‘ T — T]N"‘ (22)

In [26], the authors deduced the structure equations for a semi-Riemannian submanifold immersed
into a warped product +1 x s Mj(c), where I C R and Mj’(c) is a semi-Riemannian space form of
constant nonzero sectional curvature ¢ and index k. In the Riemannian case, we shall now derive the
following structure equations by the moving frame method.

Proposition 1. (c.f. [24,26]) Let M" be an n-dimensional immersed submanifold in M = I x f M (c) (m >
n > 2). Then

c— 72 " . . . )
Riji —(ffzf) (5ikcsﬂ — 60 + Oy T T  + 53 T'T — 53 T — 6, T' Tk)
f//
o 7 (5 k) +Z (hlk il zl ]k) (23)
= c— (f’z—ff“) : K
—Ruijke =iy — iy = #N“ (5ikT] —6;T ) ’ (24)
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Rigij = Y (i — hfy) (25)
k
Proof. A direct computation gives
ﬁ(ei, €j)€k = E(e* + Tiat, €>-k + Tjat)(ez + Tkat)
= R(ej, €} ey + TkR( e )0t + TIR(e},0¢)e}
+T1Tk R(ef,01)0: + T'R(31, €} e
+ T'T*R (3, ¢;)0r + T'T/R (31, 01 )e; + T T/ TR (9, 94) . (26)
From the expression of the curvature tensor R (c.f. [25], p. 210) one has
ﬁ(el’»‘,e]’-‘)at = ﬁ(at, at)e,t = E(at, at)at = 0,
R(ef,01)ef = —7<eilek>f"at,
f
. f//
,0t)0 =
R(ef, o) 7
e
R(3:,ef)ef = — 7 £y,
1
R(at,e;‘)at —];6’]
On substituting these into (26) we have
(R(ej,ej)er,ep) = <R(e ej)ex + TIR(e},9¢)ef + TITER (e}, 9;)
+ T! R(at, )ek + TlT R(at, )at ’ e;k + T’8t>
— (e, ef) f”
_ * IR T/ jrk
<R(el,e]) -T 7 ey + TIT f
< , k> " .
+Tl ]f f//a TlTk];— ] , 31 +Tlat>
— [ R(p* p¥\p* o*\ _ ] l<el’ek> 11 ] kf/
<R(el,e])ek,el> T'T 7 == f"4+TT f<el,e,>
) , 1"
+T1Tl< Jf">f” T’Tkj; (ehef). (27)
We conclude similarly that
-5 Tl E K\ ¢k lk<a’]>// lfN
(R(ea, ei)ej ex) = <R(ewei )ej/ek> rT 7 —f+TT— 7 (e ex)
er, el "
_I_NaTk< f >f// N“T]fj‘( <el’ek> (28)
and
= = (ezef) Yok
(R(e“,eﬁ)ei,e]«>:<R(e sepler, e> NPT af f”—l—NﬁTlJ; (ex €)
a]<* *> 1" alf//
+ N“T 7 f NTf<ﬁej>. (29)
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Observe that

<E;(, €7> = <€i — Tiat, E’j — T]E)t) = 51] — TiTj, <€Z,€:‘F> = <34x — N"‘at, e — Tiat> = —N“Ti.

Now (27) becomes

(Reeiej)erer) = }zfz |G =TT (0 = TT') = (8 = T'T') (6 — T'T¥)
iy

ik ‘
— ik _fTIT f//T]Tl+5

il — TiTlf//Tka
f
ik il
c_ f2 . . ‘ .
= fzf (5ik5ﬂ — 80 + Oy TIT* + 53 T'T — 53 TVT! — 5 TlTk)
e
+ 7 S TITE + 63 T'T — 03 TVT! — 6, T'T

_ 2 1" ‘ ‘
C(ffof) (5ik5jl — 5il5jk + 51.1 T/ Tk + 5jleTl
1!

— 03 TIT = 5, T'TF) — i

; (65 — 6udye) (30)

Likewise, we can deduce that

. C—f’z . . L
(Rlewei)ej ) = —a— [(—N"‘TJ)(éik — TITH) — (—N*T*)(5;; — T’TJ)]

~N*T/ , . & —NoTk
- f'TiTR g fTiTI
7 i
dij — r'T 11 Oik — T'Tk '
+ 40 N“Tk—li NND‘T]
! 7
c—f’z &k & f// ak arj
-5 <5ijN T" — 6% N Tf) + 7 (51‘]‘N T" — 6N T])
c— (f2 _ g1 .
= I D 75— ), G

and

= C_f/Z . . . .
(R(ew, ep)ei, ¢) = - [(_NaTz)(_NﬁTJ) - (_NaTJ)(_NﬁTZ)}

+ &Tlf”NﬁTJ' — Hf”NﬁTi
f f
BTi , BTi .
- NfT FINYT) + NfT F'N*T" = 0. (32)

Combining (30)—(32) with the standard Gauss, Codazzi and Ricci equations gives the proof of
Proposition 1. [

By Proposition 1, we can obtain a lower bound of | V1|2, which extends Proposition 1 in [27].

Proposition 2. Let M" be an n-dimensional immersed connected submanifold in M = I x FM™(c) (m >
n > 2). Let

1
Mijk = g( ik T Wik + i)
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Then we have

a1 lc— (2 _ £f11%
Z( ?;k)Z — Z(U?jk)z'i_ 2( 1)[ (f ff )] (N“)2|T|2. (33)

Lk ik 34
Proof. It follows from the definition of quk and (24) that

1 1
ik = Mijk + g( ik — Mij) + g( ik — M)
1 — _
= ik — 3 (Raijk + Rajir)
c— (f2 _ 1 ) )
= W?jk + (f3f2 ff )Na(Tl5]'k + Téy — ZTk(SZ']‘>.

Squaring the both sides of the above equation, and summing over 7, j, k, it turns out that

) Z[C_(flz_f //)]

Zk( ?}k)z _ Zk {(ﬂzk) + 3f2 N"‘;?l{’ljk(Tiéjk + Tjﬁl-k — ZTk5i]')
ij, ij,
g2 g2
+ [C (f9f4 ff )] (N“)Z(Tifs]‘k + Tj(sik _ 2T"5i]-)2}
g2 g2 ' '
= Z(ﬂf‘jk)z + [C (f9f4 ff )] (Na)Z Z (TZ(Sjk + Téy — ZTk(Sij)z
ik ik
_ o 12 1112
_ Z}((ﬁf‘jk)z n 2(n—1) [C 3}5{ ff )] (N“)2|T|2.
i,j,

The proof is completed. [

Remark 2. In Proposition 2, suppose that f'> — ff" # c and hiy = 0 for any i,j,k, a, then |T| = 0 or
IN| =0, i.e., M" is either contained in a slice M (c), or d; is everywhere tangent to M". In the latter case,

it is of the form M" = ] x j;P, where | is an open subinterval of I, P is an (n — 1)-dimentional submanifold of
M (c) and f is the restriction of f on I.

3. Proof of Main Theorem

In this section, we will give the proof of our Main Theorem. We shall adopt the similar procedure
as in the proof of [22]. Firstly, we proceed to calculate 1A||A,||?. For arbitrary fixed a, we conclude
from (17) and (18) that

1 21 2 2
SAIAP = S8 L)) = () + hihsg

’,

(1% \2 X 1K %) e
= (hi)” + nHjhi — hijRakik,j — i Raijick

+ B Rk + Hiihg, Rijic + h%hfiRéajk- (34)
From (24) we obtain
_ c— 12 11 )
_hll?;'Rtxkik,j = hf; ((ffsz)Na(TZ(Skk — Tk§ki)>

d
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c— 12 _ 1! i
+ M’i?Nf%(T@kk — TXy)

f2
+ < (fl;z ffﬂ)h“N”‘(Tl St — Tk0ki).- (35)
Note that
HETIN® (T — T¥8) = (n = DIETIN®T = (n — 1)N*(A,T, T).
By (22) one has
NS (T 0 — T0) = —h(hisT' + Jc/TjN“)(Ti5kk — T"6y)
= —(n—DhE(hT + f/TfN”‘)Ti

—(n—1)| AT — (”_fnf/N“(AaT, T),
and

haN“(Tl(skk Tl;ékz) = haN‘x (]’lﬁ]\ﬂS +J}
RN B Nﬁ f . kj .

= (n—1)hEN® (hﬁNﬁ + J} (6 — TIT]))

= (n— 1)N*NPTr(Au Ag) + ”(";W@,m

(0 — TlT])) Ok

- WN“(AaT,T>.

Putting these expressions into (35) gives

c— (2 — FFmy\/
_h%ﬁakik,j = (Tl — 1) <(f2f)) N“<Ath, T>

f
+(n——D[Ciéfu“f/q](NﬂNﬁﬂ(AuAﬁ)—|AaTF>
. (n—l)f/ [C';B(flz f// ] ( ﬁ N thx A,T, T>> (36)

Using Codazzi Equation (24) again, we have
—hRaijiee = (C_(fl;z_f]m)N“(ijsik - Tk5ij)) )
_ <C_(f/;2_f")>/h§;.TkN“(Tf(5ik — T%5;)
N C—U';Z‘ff”')hg;z\rf;(w(sik — Thsy)
+C(faﬁ”%mgpwqu (37)
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First observe that
WETEN® (T8 — T63j) = N*(ALT, T) — n(H, N)|T|2.

Then by (22) again, we have

HENS (T8 — TF6y) = — ( ol } ?T"N"‘) (T](Sl'k - kasi]-)

AT + nH (AT, T) — J;N%Aair, T + "ff,<ﬁ, N)|TP,

and

. !
etk 140 < (189 L)

— HEN" <hkaﬁ + f; (O — Tka)) 8ij

= N*NPTr(AuAp) + ]J:/H“N”‘ ?N“(A T,T)

2 g/ !
~ ?H*N*(H,N) — nffH”‘N"‘ + nj{H"‘N"‘|T|2

= N*NPTr(A Ag) — n2(H, N2 + Lﬂ(ﬁ, NY|T[2

I’l—lfl o
; (H,N) - fN<A,xTT>

Substituting the above expressions into (37) we have

—h Rk = <W>/ (N“(A,XT, T) - n(H, N>|T|2)

fZ
+ C(f,;ffﬁ) (N"‘NﬁTr(A,xAﬁ) +nHY(ALT, T) — | AT — n*(H, N>2)
f'le=(f* = ff")]

n (2n<ﬁ,N)|T|2—2N“(AaT,T> —n(n—1)<ﬁ,N>). (38)

IE
Summing (36) and (38) leads to
— hiiR kit — HiiRaijick

_n{<c—(f’2—f ”))’_Zf’[C—(f’z—f '/)]}(Na AT, T) — (H,N)|TP?)

f? F
e — (f}’j2 )] (NSNPTR(AgAg) + HY(ALT, T) — |4 TP = n(H,N)?).  (39)

Using Gauss Equation (23) we get

® a0
hz]hmz mkjk + hijhkamijk

— BEpR [_(flz_ff”) (5mj5kk — Oukkj

ij" mi f2

+ 8y THTT 4 6T T — 6, THT* — 5kkTmTf)

/!
—];(5mj5kk 5mk5k])+(h’5 hﬁ hikhfj)}
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Cc— (f2 _ g1
+ hEhg,, [(f 7 e, (5mj5ik — Omk0ij
+ 8 T'T! 4 05T T — 8, T'T* — 537" T )

i
- L(§mj5ik — Byidi) + (b b — 1l hﬁ)]

7 b
= I (= ) AufP = TP AE — (1~ D A, TP)

- 0 AP 4 nHPT A2 A) -~ Te(A2 A

+ C‘(fl;z‘f") (||A,X||2 — n2(H*)2 + 2nH" (AT, T) — 2|A,XT|2>

L (MR = () + Te(A?) — (TH(Autp))”

= I [ 1) o P —

1AL+ 20H4 AT, T)] - ”}[ (s

+Tr((AaAp)?) — Tr(AZAZ) + nHPTr(AZ Ap) — SZp. (40)

By Ricci Equation (25) we have
HSHER G = WS (WERE — HERS) = Tr((AgAp)?) — Tr(AZA3). (41)
Substituting (39)—(41) into (34) gives

1 1
SO AR = A (X 0h5)?) = (h)? + highs
L]

= (hfy)? + nHjht + ”{ (W)l

f
_2f/[c_(’;;2_f”ﬂ}(Na AIXTT HN|T| )
# I (= TPy Al — 287 — 20/, TP

+3nH" (A, T, T) + nN*NPTr(A, Ag) — n*(H, N)?)

=L (1ol = nH2) + nHPTH(AZA) — Ao, ARl - S 2)

Assume that M" is a minimal submanifold satisfying c — (> — ff"") = c1 f* ateacht € I, where ¢
is a positive constant. We thus obtain

(C— (f/Z _ff//)), B ZfI[C— (f/Z _ff//)] B
f2

and then (42) becomes

1
SBlAIR = ()% + caf? (= ITP) | Al

— 21| AT + nN“NﬁTr(A,XAﬁ))
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; 1Al = [ Aw AglI? — (43)

Proof of Main Theorem: For fixed x € M", we can take a local coordinate system {U; (x1,x2,..., %)}
and a suitable local orthonormal normal frame around x such that F(x) = diag(A1,Ay,...,A;,) with
At =+ = A > Ayq > -+ > Ap. For simplicity, we denote A1, briefly by A, for1 < a < p,
and define A,; = 0if r = p. Furthermore, for arbitrary integer g4 > 2, we define

fo = Tr(F1) = Z Sayay * Saqaz S“q"‘l

X1eeesllq

to be a smooth function on M". A straightforward calculation gives rise to, at x € M,
2
-1
|qu|2:q22(z)\gc vism) ’ (44)
k © 9xp

where the covariant derivative of S, is given by

asaﬁ 0 d
V%SQ‘B: axk +w Wery <a )Sw—kwm (a k>571x

Here and subsequently, we use A, instead of Ay, forn +1 <a <n+p.
Applying the Cauchy-Schwarz inequality to (44) gives

VAP =7 D (A0

2
v%sm)) < if ZAZ*Z(V%SM)Z. (45)
X .Yk

k ka

Combining the definition of f; and (43), we obtain

1 1 1 _
Tqu =5 )Y /\S)\ﬁ(v 2 Sa/%) +§Z()‘Z 1A||Ao¢|\2)
q s+t=q—2ua,Bk o
_1 )\S)\ /\‘I 1 2
) Z ﬁvasfxﬁ Z( Z ijk )
s+t=q—2u,Bk « ijk
_ n
- ¥ NAw AL = fya = ",
aFp
+c1f? {(n —|TP) fg+n Y AL(N")? —2n ZAZHAJF} ) (46)
/4 4
Observe that
L L AM(Vas) > L LAV’
st+t=q—2ua,Bk s+t=q—2 a,k oxk
= (g-1) LAl (V5 Su)?,
ak axk

Y ALNY2>0
o
Using the Cauchy-Schwarz inequality we get

-1 1
YA AT = Y AL hgh T
o a,i,fk

<EAL [T ;%)2\/@@ = fITP
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Applying the above estimates to (46), it follows that

qu >q Z)ﬂ 2(V . Sw)+ 5 (M L 080?)

i,jk
Y N Aw AGIPAL — - "
aFp f
+of? (n —(@n+1) |T|2>fq. (47)

It is straightforward to show that
P
f=rils Y ALz,
a=r+1

p
fq= r)\‘{ + Z A< r)\? +(p— r))\ < r)\ +(p— )/\zﬂ,
a=r+1

P
+1 +1 +1 +1 +1
forr=rAT"+ ) 1/\36 < AT+ (p )AL S AT+ (p—r)oAl
a=r+

Following Lu’s paper ([5], Lemma 2), we see that
4 2 2 v 2 2
Y 1Ay AglI2 < AP (X 1461 + 142]12). (48)
p=2 p=2

From Lemma 1 in [20] we have
I[As, Al < 2[| Axll*(| AglI? (49)

forany 1 <a,B <p.
By applying (48) and (49) we conclude

" An AglPAY T = Y 1A, Agl 220" + 2 Y [ Aw Ag)PAL7"
a#p a=1a#p a=r+1a#p

1 1
SrnAluZ(z||Aﬁ||2+||Az|| W2 YT AR AL
B=2 a=r+1a#p

P
<r( X A2 + 1422) 1412 +2(p = r)rl,
B=2

where the last step is based on
: 2 2,9-1 z 2419 q q
L Y APIAgIPA < ), ) IAlPAL, < > OAr1 = (P = 1)y
a=r+1a#p a=r+1a#p a=r+1

Substituting the above estimates into (47), we thus obtain

fqu g—1 ZA" (v 5, Sua) ) 2y (AL ()?)

a i,jk

p
—2r( Y 14pI2 + A2) AT — 4(p — r)onl,
B=2
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1 27’[ i
— 27}\3’+ —2(p— )U)\ZH |]{ | (r)\;’ +(p— r))tfﬂ)

+ 201 f2 (n —(2n+ 1)|T|2)r)\‘17

== DT (Y 5 5u) 21 (M D 0?)

ak ox i,jk
2n(p —1)|f"|
—6(p —1)oAL — f/\irl
g ¢ 2 nlf"|
+2m1[c1f (n—@n+1)|T]%) =0 — Ay — i } (50)
Letting g4 = ( fq)% and by (44), we get
2 2 L 2
Vgl = IV <2(2 " (V.4 Sw) <Co (51)
« *k
for some constant C. It follows that [,, Ag; = 0.
By (50) and (45) one has
1 .g-1 2 2
Agy :Efq Afq+ *(a_l)fq |qu|
—2 2 g0 -1
>(-1ff Dz (V5. 50) 42 L (M L (50°)
wk x « ik
1
—6(p— ”)‘qu AZ+1 - (f)|f|fq /\Z+1
1 1 "
+2rAl [clfz(n(2n+1)|T|2)a)\2n|; |]

11 2
+ q(q 1 f, |Vf|
> %_1 g-1 a \2 %_1 q
>2f, Z(/\,x Z( iik) ) —6(p—r)of] Ay
o z]
_<—fr)f"fq PUB U [e1f2(n = 20+ 1)|TP)

_U_M—”g”] (52)

Integrating the both sides of the formula (52) and using [,, Ag; = 0, it follows that

O>/ f,, Aq 12;{( iik) ) —3(p— )/ qu )‘ZH
ij,

'J;/ f,f_ ,H+/ mzfq [clf (n—(2n+1)|T)
0A2Mfﬂ. (53)
For fixed x € M, we see that
lim AZH = lim 1 < lim 1(/\7“)‘1 =0
gm0 fy g g v\ Aq ’
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g-1 PN A q-1
lim Z = lim (2¢) © < lim (=) 7 =0forva>r+1,
g—o0 ;75 g—o0 fq g—o0 fq
A |
lim —L T = lim (—1) i —.
g0 1 g—o0 fq r

As g — oo, applying the above estimates to (53), we have

0> [ 1Y L0+ [ 1Al @+t —o - "L e

ijka<r f

It follows from the hypothesis (9) that

L0607 =0, 41200 ot 0in) o 2= 1) <o

ijka<r f

One thus obtains [|A1][2 = 0, or & + Az = ey f2 (n — (20 + 1)|T?) — 2L,
The first case shows that M is a totally geodesic submanifold in I x ¢ §"(c). Since ¢ = 0, we infer

that hf;k = 0 for any i, j, k, «. It follows immediately from Remark 2 and the compactness of M that M
lies in a slice S™(c). This is the desired conclusion. [
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