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Abstract: In this paper, we introduce the concept of d∗-complete topological spaces, which include
earlier defined classes of complete metric spaces and quasi b-metric spaces. Further, we prove
some fixed point results for mappings defined on d∗-complete topological spaces, generalizing earlier
results of Tasković, Ćirić and Prešić, Prešić, Bryant, Marjanović, Yen, Caccioppoli, Reich and Bianchini.
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1. Introduction

In 1920 in his PhD. dissertation, S. Banach formulated and proved a contraction mapping principle,
which was published in 1922 [1]. It is one of the most important theorems in classical functional analysis
because it gives:

(i) The existence of fixed point;
(ii) The uniqueness of such a fixed point;
(iii) Method for getting approximative fixed points;
(iv) Error estimates for approximative fixed point.

There are many (partial) generalizations considering only statements (i), (ii) and (iii) of the
contraction mapping principle. Some of them are proved for non-metric spaces, in which the distance
function need not be symmetric and need not satisfy triangle inequality. The notion of d-complete
L spaces, or Kasahara spaces was introduced by S. Kasahara [2] (see also I. Rus [3]). In these spaces,
the class of convergent sequences is axiomatic introduced, because these need not be topological spaces.
The topological approach to Kasahara spaces was given in form of d-complete topological spaces by
T. Hicks [4].

In this paper, we introduce the concept of d∗-complete topological spaces and prove that these
include earlier defined classes of complete metric spaces and quasi b-metric spaces (M. H. Shah and
N. Hussain [5]). Further, we prove some fixed point results for mappings defined on d∗-complete
topological spaces which generalize earlier results of M. Tasković [6], Lj. Ćirić and S. B. Prešić [7],
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S. B. Prešić [8,9], V. Bryant [10], M. Marjanović [11], C. L. Yen [12], R. Caccioppoli [13], S. Reich [14]
and R. Bianchini [15].

2. Preliminaries

Let X be a nonempty set and f : X → X be an arbitrary mapping. x ∈ X is a fixed point for f
if x = f (x). For ϑ0 ∈ X, we say that a sequence (ϑn) defined by ϑn = f n(ϑ0) is a sequence of Picard
iterates of f at point ϑ0 or (ϑn) is the orbit of f at point ϑ0.

The next statement was presented in [16]. Its first part was discussed by D. Adamović [17].

Lemma 1. (Arand̄elović-Kečkić [16]) Let X 6= ∅ and a mapping f : X → X. Let p be a natural number so
that f p possesses a unique fixed point, say u∗. Then

(1) u∗ is the unique fixed point of f ;
(2) if X is a topological space and any sequence of Picard iterates defined by f p is convergent to u∗, then the

sequence of Picard iterates defined by f is convergent to u∗.

Let X be a Hausdorff topological space and d : X× X → [0, ∞) be a given function. We define the
following three properties:

(α) For any ϑ, θ ∈ X, d(ϑ, θ) = 0 if and only if ϑ = θ;
(β) For each sequence (ϑn) ⊆ X, ∑∞

n=0 d(ϑn, ϑn+1) < ∞ implies that (ϑn) is convergent;
(γ) For every sequence (ϑn) ⊆ X, if there exist L > 0 and λ ∈ [0, 1) such that d(ϑn, ϑn+1) ≤ Lλn for

n = 0, 1, 2, . . ., then (ϑn) is a convergent sequence.

The pair (X, d) is a d-complete topological space if it satisfies (α) and (β).
The pair (X, d) is a d∗-complete topological space if it satisfies (α) and (γ).
It is obvious that complete metric spaces are examples of d∗-complete topological spaces, while the

converse it is not true in general. The following example explains this fact.

Example 1. Let R be the set of real numbers with the usual topology, Q ⊆ R be the set of rational numbers
with relative topology induced from real numbers R and d : Q×Q→ [0, ∞) be given as

d(ϑ, θ) =


0, if ϑ = θ;

ϑ− θ, if there is k ∈ {1, 2, . . .} so that ϑ = 2−k and θ = 2−k−1;

1, otherwise .

Clearly, the ordered pair (X, d) is a d∗-complete topological space. It is not a complete metric space because
the symmetry does not hold.

It is clearly also that any d∗-complete topological space (X, d) is d-complete, but the converse is
not true.

Example 2. Let R be the set of real numbers with the usual topology, Q ⊆ R be the set of rational numbers
with relative topology induced from real numbers R and d : Q×Q→ [0, ∞) be given as

d(ϑ, θ) =


0, if ϑ = θ;

θ − ϑ, if there is n ∈ {1, 2, . . .} so that ϑ = ∑n
i=1

1
i2 and θ = ∑n+1

i=1
1
i2 ;

ϑ− θ, if there is k ∈ {1, 2, . . .} so that ϑ = 2−k and θ = 2−k−1;

1, otherwise .
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Clearly, the ordered pair (X, d) is a d-complete topological space. Furthermore, it is not a d∗-complete
topological space. Indeed, there are no L > 0 and λ ∈ [0, 1) such that

d(ϑn, ϑn+1) =
1

(n + 1)2 ≤ Lλn, (1)

for all n ∈ N, where the sequence (ϑn) is given as ϑn = ∑n
i=1

1
i2 , n ∈ N.

Remark 1. Let n0 =
⌊

6Lλ
(1−λ)3

⌋
+ 1, then inequality

1
(n + 1)2 > Lλn, (2)

holds for all n ≥ n0. Namely, (2) follows from

(1 + h)n+2 >

(
n + 2

3

)
h3, (3)

where h = 1
λ − 1.

Definition 1. Let X and Y be topological spaces. A mapping f : X → Y is said to be sequentially continuous if
for each sequence (ϑn) ⊆ X so that lim

n→∞
ϑn = p, it follows that lim

n→∞
f (ϑn) = f (p).

3. Quasi b-Metric Spaces

The concept of a quasi b-metric space was discussed by Shah and Hussain in [5]. In this section,
we will show that each left complete quasi b-metric space is a d∗-complete topological space.

Definition 2. Let X be a non-empty set and d : X × X → [0, ∞) be a given function. (X, d) is said to be a
quasi b-metric space if there is s ∈ [1, ∞) such that for all ρ, ς, τ ∈ X:

(a) d(ρ, ς) = 0 if and only if ρ = ς;
(b) d(ρ, τ) ≤ s[d(ρ, ς) + d(ς, τ)].

Every quasi b-metric space can be considered as a topological space, on which the topology is
introduced by taking, for any ϑ ∈ X, the collection {Bn(ϑ) : n = 1, 2, . . .} as a base of neighborhood
filter of the point ϑ. Here, the ball {Bn(ϑ)} is defined by

Bn(ϑ) =

{
θ ∈ X : d(ϑ, θ) <

1
n

}
.

According to this definition for each ϑ ∈ X and (ϑn) ⊆ X, from lim
n→∞

d(ϑ, ϑn) = 0, it follows that

lim
n→∞

ϑn = ϑ.

Further, (ϑn) ⊆ X is said to be a left Cauchy sequence, if for every ε > 0, there is a positive integer
n0 so that d(ϑn, ϑm) < ε for all m > n ≥ n0.

A quasi b-metric space (X, d) is said to be left complete if each its left Cauchy sequence
is convergent.

Now, we need the following Lemma, which generalizes the result formulated and proved by
R. Miculescu and A. Mihail [18] for b-metric spaces (for other related details, see [19–22]). Our proof is
similar to [18], but for the convenience of the reader we shall give it.
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Lemma 2. Let (X, d) be a quasi b-metric space with constant s and (ϑn) ⊆ X. Then

d(ϑ0, ϑk) ≤ sn
k−1

∑
i=0

d(ϑi, ϑi+1),

for any n ∈ N and every k ∈ {1, 2, . . . , 2n}.

Proof. We use the method of mathematical induction in the proof. Denote by P(n) the statement

d(ϑ0, ϑk) ≤ sn
k−1

∑
i=0

d(ϑi, ϑi+1), k ∈ {1, 2, . . . , 2n − 1, 2n}.

Obviously, P(0) is true. Now, we prove that P(n)⇒ P(n + 1), ∀n ≥ 0.
Let P(n) be true for some positive integer n.
Then for any k ∈ {1, 2, . . . , 2n − 1, 2n}, by P(n) we obtain

d(ϑ0, ϑk) ≤ sn
k−1

∑
i=0

d(ϑi, ϑi+1),

which implies

d(ϑ0, ϑk) ≤ sn+1
k−1

∑
i=0

d(ϑi, ϑi+1),

because s ≥ 1. For every k ∈ {2n + 1, 2n + 2, . . . , 2n+1 − 1, 2n+1}, we have

d(ϑ0, ϑk) ≤ s[d(ϑ0, ϑ2n) + d(ϑ2n , ϑk]

≤ s[sn
2n−1

∑
i=0

d(ϑi, ϑi+1) + sn
k

∑
i=2n

d(ϑi, ϑi+1)]

= sn+1
k−1

∑
i=0

d(ϑi, ϑi+1).

So, by induction, P(n) holds for every n ≥ 0.

The following theorem is a generalization of recent results of R. Miculescu and A. Mihail [18] for
b-metric spaces. The proof is similar to [18]. Again, for the convenience of the reader, we present it.

Theorem 1. Every left complete quasi b-metric space is a d∗-complete topological space.

Proof. Let (X, d) be a left complete quasi b-metric space with constant s, λ ∈ [0, 1) and (ϑn) ⊆ X
such that

d(ϑn+1, ϑn+2) ≤ λd(ϑn, ϑn+1), n = 0, 1, 2, . . . .

We shall prove that (ϑn) is a left Cauchy sequence.
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Let m, k be arbitrary positive integers and j = [log2(k)]. Then

d(ϑm+1, ϑm+k) ≤ sd(ϑm+1, ϑm+2) + sd(ϑm+2, ϑm+k)

≤ sd(ϑm+1, ϑm+2) + s2d(ϑm+2, ϑm+22) + s2d(ϑm+22 , ϑm+k)

≤ sd(ϑm+1, ϑm+2) + s2d(ϑm+2, ϑm+22) + s3d(ϑm+22 , ϑm+23)

+ s3d(ϑm+23 , ϑm+k)

...

≤
j

∑
n=1

snd(ϑm+2n−1 , ϑm+2n) + sj+1d(ϑm+2j , ϑm+k).

By Lemma 2, we obtain

d(ϑm+1, ϑm+k) ≤
j

∑
n=1

snd(ϑm+2n−1 , ϑm+2n) + sj+1d(ϑm+2j , ϑm+k)

≤
j

∑
n=1

s2n(
m+2n−1−1

∑
i=m

d(ϑ2n−1+i, ϑ2n−1+i+1))

+ s2j+2
m+k−2j−1

∑
i=m

d(ϑi+2j , ϑ1+i+2j)

≤
j+1

∑
n=1

s2n
m+2n−1−1

∑
i=m

d(ϑ2n−1+i, ϑ2n−1+i+1)

≤ d(ϑ0, ϑ1)
j+1

∑
n=1

s2n
2n−1−1

∑
i=0

λm+2n−1+i

≤ d(ϑ0, ϑ1)λ
m

1− λ

j+1

∑
n=0

s2nλ2n−1

=
d(ϑ0, ϑ1)λ

m

1− λ

j+1

∑
n=0

λ2n logλ(s)+2n−1
.

For each M > 0, there is a positive integer n0 such that

2n logλ(s) + 2n−1 − n ≥ M

for any n0 ∈ {n0 + 1, n0 + 2, . . .} because

lim
n→∞

2n logλ(s) + 2n−1 − n = ∞. (4)

From (4), we get that
λ2n logλ(s)+2n−1 ≤ λM+n,

for each n ∈ {n0 + 1, n0 + 2, . . .}. So, there is a real number S > 0 such that

∞

∑
n=1

λ2n logλ(s)+2n−1
= S.

This implies that

d(ϑm+1, ϑm+k) ≤
d(ϑ0, ϑ1)λ

m

1− λ
S,

for all m, k ∈ N. So, (ϑn) is a left Cauchy sequence.
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Remark 2. Let Q and d be defined as in Example 1. Suppose that (Q, d) is a quasi b-metric space. Then there
exists s ≥ 1 such that d(ρ, τ) ≤ s[d(ρ, ς) + d(ς, τ)] for all ρ, ς, τ ∈ X. Let l be a positive integer such that
s < 2l , ρ = 2−l , ς = 2−l−1 and τ = 2−l−2. Hence d(ρ, τ) = 1, d(ρ, ς) = 2−l−1 and d(ς, τ) = 2−l−2.
We get that

1 = d(ρ, τ) ≤ s[d(ρ, ς) + d(ς, τ)] < 2l(2−l−1 + 2−l−2) =
3
4

,

which is contradiction.
So we obtain that class of d∗-complete topological spaces is more general then class of left complete quasi

b-metric spaces.

4. Main Results

Now, we shall prove that the product of d∗-complete topological spaces is a d∗-complete
topological space.

Theorem 2. Let (X1, d1),. . . ,(Xn, dn) be d∗-complete topological spaces, X = X1 × · · · × Xn be the product
space and d : X× X → [0, ∞) be defined by

d((p1, . . . , pn), (q1, . . . , qn)) = max{d1(p1, q1), . . . , dn(pn, qn)},

where pi, qi ∈ Xi for any i = 1, 2, . . . , n. Then (X1 × · · · × Xn, d) is a d∗-complete topological space.

Proof. Let (yn) ⊆ X be a sequence defined by

yk = (ϑk1, . . . , ϑkn), k = 0, 1, 2 . . . .

If there are L > 0 and λ ∈ [0, 1) such that d(yk, yk+1) ≤ λkL for k = 0, 1, 2, . . ., then for every
1 ≤ i ≤ n, we get that d(ϑki, ϑ(k+1)i) ≤ λkL, which implies that the sequence (ϑki) ⊆ Xi is convergent
for each i = 1, . . . , n, because (Xi, di) is a d∗-complete topological space. So (yk) is a convergent
sequence in X, because all its coordinate sequences (ϑki) for 1 ≤ i ≤ n, are convergent.

Lemma 3. Let X1, . . . , Xn be Hausdorff topological spaces, X = X1 × · · · × Xn, d : X × X → [0, ∞) be a
mapping defined by

d((ϑ1, . . . , ϑn), (y1, . . . , yn)) = max{d1(ϑ1, y1), . . . , dn(ϑn, yn)},

and fi : X → Xi be sequentially continuous functions and F : X → X be defined by

F(ϑ) = ( f1(ϑ1), ..., fn(ϑn)),

where ϑ = (ϑ1, ..., ϑn) ∈ X. Then F is a sequentially continuous function.

Proof. Let (yk) ⊆ X be a sequence defined by

yk = (ϑk1, . . . , ϑkn), k = 0, 1, 2 . . . ,

such that lim
k→∞

ϑki = ϑi for each i = 1, . . . , n. Let y = (ϑ1, . . . , ϑn). That is, (yk) is convergent to y. Then

lim
k→∞

F(yk) = lim
k→∞

( f1(ϑk1, . . . , ϑkn), . . . , fn(ϑk1, . . . , ϑkn)) =

( lim
k→∞

f1(ϑk1, . . . , ϑkn), . . . , lim
k→∞

fn(ϑk1, . . . , ϑkn)) =

( f1( lim
k→∞

ϑk1, . . . , lim
k→∞

ϑkn), . . . , fn( lim
k→∞

ϑk1, . . . , lim
k→∞

ϑkn)) =

( f1(ϑ1, . . . , ϑn), . . . , fn(ϑ1, . . . , ϑn))) = F(y).
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Next theorem generalizes earlier results presented by M. Tasković [6] on complete metric spaces
(case n = 2) to d∗-complete topological spaces.

Theorem 3. Let (X1, d1),. . . ,(Xn, dn) be d∗-complete topological spaces, X = X1 × · · · × Xn, d : X× X →
[0, ∞) be a function defined by

d((ϑ1, . . . , ϑn), (y1, . . . , yn)) = max{d1(ϑ1, y1), . . . , dn(ϑn, yn)},

fi : X → Xi be sequentially continuous functions and F : X → X be defined by

F(ϑ) = ( f1(ϑ), ..., fn(ϑ)),

where ϑ = (ϑ1, ..., ϑn). If there is 0 ≤ λ < 1 such that

d(F(ϑ), F(θ)) ≤ λd(ϑ, θ),

for all ϑ, θ ∈ X, then

(1) F admits a unique fixed point, say p ∈ X;
(2) for every ϑ0 ∈ X, the sequence of Picard iterates (ϑn) defined by F at ϑ0 converges to p.

Proof. By Lemma 3, we get that F is sequentially continuous. Let ϑ0 ∈ X be arbitrary, and (ϑn) be a
sequence of Picard iterations defined by F at ϑ0. We have

d(ϑn+1, ϑn+2) ≤ λd(ϑn, ϑn+1), n = 0, 1, 2, . . . ,

which implies that (ϑn) is a convergent sequence because (X, d) is a d∗-complete topological space.
Let p = lim

n→∞
ϑn(∈ X). Then

p = lim
n→∞

ϑn = lim
n→∞

ϑn+1 = lim
n→∞

F(ϑn) = F(p),

because X is a Hausdorff topological space and F is a sequentially continuous mapping.
Let q = F(q). Then from d(F(p), F(q)) ≤ λd(p, q), we obtain d(p, q) ≤ λd(p, q). We get easily

the uniqueness.

The next theorem extends earlier result proved by Lj. Ćirić and S. B. Prešić, [7] for complete metric
spaces to d∗-complete topological spaces.

Theorem 4. Let (X, d) be a d∗-complete topological space and f : Xn → X be a sequentially continuous
mapping. If there is 0 ≤ λ < 1 so that

d( f (ϑ1, . . . , ϑn), f (ϑ2, . . . , ϑn+1)) ≤ λ max{d(ϑ1, ϑ2), . . . , d(ϑn, ϑn+1)},

holds for every ϑ1, . . . , ϑn, ϑn+1 ∈ X. Then

(I) there is p ∈ X so that
p = f (p, . . . , p︸ ︷︷ ︸

n times

);

(II) for arbitrary ϑ1, . . . , ϑn ∈ X, the sequence (ϑn) ⊆ X defined by

ϑk+n = f (ϑk, . . . , ϑk+n−1), k = 1, 2, . . . ,
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is convergent and
lim
k→∞

ϑk = f ( lim
k→∞

ϑk, . . . , lim
k→∞

ϑk︸ ︷︷ ︸
n times

);

(III) if
d( f (τ, . . . , τ︸ ︷︷ ︸

n times

), f (υ, . . . , υ︸ ︷︷ ︸
n times

)) < d(τ, υ)

for all τ, υ ∈ X, then the point p is unique.

Proof. Assertions (I) and (II). Let d : Xn × Xn → [0, ∞) be defined by

d((ϑ1, . . . , ϑn), (y1, . . . , yn)) = max{d1(ϑ1, y1), . . . , dn(ϑn, yn)}.

From Theorem 2, it follows that (X, d) is a d∗-complete topological space. Let F : Xn → Xn be
defined by

F(ϑ1, . . . , ϑn) = (ϑ2, . . . , ϑn−1, ϑn, f (ϑ1, . . . , ϑn)).

We have that F is a sequentially continuous mapping on Xn, because f is a sequentially continuous
mapping on X.

Let (yk) ⊆ Xn be a sequence defined by

yk = (ϑk, ϑk+1, . . . , ϑk+n−1),

for arbitrary ϑ1, . . . , ϑn ∈ X and (ϑn) ⊆ X be defined by

ϑk+n = f (ϑk, . . . , ϑk+n−1), k = 1, 2, . . . .

We get that
d(yk+1, yk+2) ≤ λd(yk, yk+1) k = 1, 2, . . . ,

which implies that (yk) is a convergent sequence because (Xn, d) is a d∗-complete topological space.
Let z = lim

k→∞
yk. Since Xn is a Hausdorff topological space and F is a sequentially continuous mapping

on Xn, one writes
z = lim

k→∞
yk = lim

k→∞
yk+1 = lim

k→∞
F(yk) = F(z).

From z = F(z), it follows

lim
k→∞

yk = ( lim
k→∞

ϑk+1, lim
k→∞

ϑk+2, . . . , lim
k→∞

ϑk+n) = ( lim
k→∞

ϑk, lim
k→∞

ϑk, . . . , lim
k→∞

ϑk),

which implies
lim
k→∞

ϑk = f ( lim
k→∞

ϑk, . . . , lim
k→∞

ϑk︸ ︷︷ ︸
n times

).

Let p = lim
k→∞

ϑk. Hence, p = f (p, . . . , p︸ ︷︷ ︸
n times

).

Assertion (III). Suppose there is q ∈ X (with q 6= p) so that q = f (q, . . . , q︸ ︷︷ ︸
n times

). In view of the

assumption that
d( f (u, . . . , u︸ ︷︷ ︸

n times

), f (v, . . . , v︸ ︷︷ ︸
n times

) < d(u, v)
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for each u, v ∈ X, then
d( f (p, . . . , p︸ ︷︷ ︸

n times

), f (q, . . . , q︸ ︷︷ ︸
n times

) < d(p, q).

That is, 0 < d(p, q) < d(p, q), which is a contradiction. Consequently, p = q, and so the
uniqueness is ensured.

The following corollary corresponds to the result proved by S. B. Prešić [8,9] in the setting of
d∗-complete topological spaces.

Corollary 1. Let (X, d) be a d∗-complete topological space and f : Xn → X be a sequentially continuous

mapping. If there are 0 ≤ λ1, . . . , λn < 1 such that
n

∑
i=1

λi < 1 and

d( f (ϑ1, . . . , ϑn), f (ϑ2, . . . , ϑn+1)) ≤ λ1d(ϑ1, ϑ2) + · · ·+ λnd(ϑn, ϑn+1),

holds for every ϑ1, . . . , ϑn, ϑn+1 ∈ X, then

(i) there is p ∈ X so that
p = f (p, . . . , p︸ ︷︷ ︸

n times

);

(ii) for arbitrary ϑ1, . . . , ϑn ∈ X, the sequence (ϑn) ⊆ X defined by

ϑk+n = f (ϑk, . . . , ϑk+n−1), k = 1, 2, . . . ,

is convergent and
lim
k→∞

ϑk = f (lim ϑk, . . . , lim ϑk︸ ︷︷ ︸
n times

);

(iii) if
d( f (u, . . . , u︸ ︷︷ ︸

n times

), f (v, . . . , v︸ ︷︷ ︸
n times

)) < d(u, v),

for each u, v ∈ X, then the fixed point p is unique.

Proof. It follows from Theorem 4 and relation

λ1d(ϑ1, ϑ2) + · · ·+ λnd(ϑn, ϑn+1) ≤
n

∑
i=1

λi max
1≤i≤n

d(ϑi, ϑi+1).

The next theorem extends earlier results presented by V. Bryant [10], M. Marjanović [11],
C. L. Yen [12], R. Caccioppoli [13], S. Reich [14] and R. Bianchini [15] for complete metric spaces
to d∗-complete topological spaces.

Theorem 5. Let (X, d) be a d∗-complete topological space, λ ∈ [0, 1) and f : X → X be a sequentially
continuous mapping such that

d( f n+1(ϑ), f n+1(θ)) ≤ λ max
0≤i≤n

{d( f i(ϑ), f i(θ)), d( f i(ϑ), f i+1(ϑ)), d( f i(θ), f i+1(θ))},

for each ϑ, θ ∈ X. Then

(1) f admits a unique fixed point p ∈ X;
(2) for each ϑ ∈ X, the sequence of Picard iterates ( f n(ϑ)) converges to p.
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Proof. Let ϑ1 ∈ X be arbitrary, (ϑn) be a sequence defined by f at ϑ1. We get that

d(ϑn+1, ϑn+2) ≤ λ max{d(ϑ1, ϑ2), . . . , d(ϑn, ϑn+1)}, (5)

holds for every n. By Theorem 4, there is p ∈ X so that p = lim
n→∞

ϑn and

p = f n+1(p).

Suppose q = f n+1(q). Then from

d( f n+1(p), f n+1(q)) ≤ λ max
0≤i≤n

{d( f i(p), f i(q)), d( f j(p), f i+1(p)), d( f i(q), f i+1(q))},

we obtain
d(p, q) ≤ λd(p, q).

Hence, p = q, i.e., f n has a unique fixed point.
From (5), it follows that

d( f (ϑ), f (θ)) ≤ λd(ϑ, θ),

which implies that
d( f k(ϑ), f k(θ)) ≤ λkd(ϑ, θ).

Let ϑ0 ∈ X be arbitrary, and (ϑk) be a sequence of Picard iteration defined by f at ϑ0. So,

d(ϑk+1, ϑk+2) ≤ d(ϑk+1, ϑk+2) ≤ λd(ϑk, ϑk+1) ≤ λk+1d(ϑ0, ϑ1).

Hence (ϑk) is a convergent sequence. Let lim
k→∞

ϑk = p. So

p = lim
k→∞

ϑk = lim
k→∞

ϑk+1 = lim
k→∞

f (ϑk) = f (p),

because f is sequentially continuous. Hence, p = f (p).
We prove that f n+1 has a unique fixed point p, which is the limit of all sequences of Picard

iterations defined by f n+1ϑ. By Lemma 1, it follows that f has a unique fixed point p ∈ X and for each
ϑ ∈ X, the sequence of Picard iterates defined by f at ϑ converges to p.

The next corollary extends the known results presented by S. Reich [14] and R. Bianchini [15]
from complete metric spaces to d∗-complete topological spaces.

Corollary 2. Let (X, d) be a d∗-complete topological space, λ ∈ [0, 1) and f : X → X be a self-mapping on X.
Suppose that f is a sequentially continuous mapping. If

d( f (ϑ), f (θ)) ≤ λ max{d(ϑ, θ), d(ϑ, f (ϑ)), d(θ, f (θ))}, (6)

for each ϑ, θ ∈ X, then

(I) f has a unique fixed point p ∈ X;
(II) for each ϑ ∈ X, the sequence of Picard iterates ( f n(ϑ)) converges to p.

In theorem of R. Bianchini [15], the inequality

d( f (x), f (y)) ≤ λ max{d(x, f (x)), d(y, f (y))},
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was used instead of inequality (6). In theorem of S. Reich [14], the inequality

d( f (ϑ), f (θ)) ≤ αd(ϑ, θ) + βd(ϑ, f (θ)) + γd(θ, f (θ)),

where α, β, γ ∈ [0, 1) and α + β + γ < 1, was used instead of inequality (6).
From Theorem 5, the next corollary extends famous results presented by V. Bryant [10] for

complete metric spaces to d∗-complete topological spaces.

Corollary 3. Let (X, d) be a d∗-complete topological spaces, λ ∈ [0, 1) and f : X → X. Suppose that f is a
sequentially continuous mapping. If there is a positive integer n so that

d( f n(ϑ), f n(θ)) ≤ λd(ϑ, θ),

for each ϑ, θ ∈ X, then f has a unique fixed point, which is the limit of the sequence of Picard iterates of f at an
arbitrary point ϑ ∈ X.

By Corollary 3, we obtain the following result which extends the theorem of C. L. Yen [12] from
complete metric spaces to d∗-complete topological spaces.

Corollary 4. Let (X, d) be a d∗-complete topological spaces, λ ∈ [0, 1) and f : X → X. Suppose that f is a
sequentially continuous mapping. If there exist positive integers m, n such that

d( f m(ϑ), f n(ϑ)) ≤ λd(ϑ, θ),

for each ϑ, θ ∈ X, then f has a unique fixed point, which is the limit of the sequence of Picard iterates of f at an
arbitrary point ϑ ∈ X.

Proof. Put ϑ = f n(z) and θ = f m(z). We get that f m+n satisfies all conditions of Corollary 2.

By Corollary 2, the next result extends the known theorem of R. Caccioppoli from complete metric
spaces to d∗-complete topological spaces.

Corollary 5. Let (X, d) be a d∗-complete topological space, λ ∈ [0, 1) and f : X → X. Suppose that f is a
sequentially continuous mapping. If there is a sequence of nonnegative reals (cn) so that ∑+∞

n=1 cn < ∞ and

d( f n(ϑ), f n(θ)) ≤ cnd(ϑ, θ),

for each ϑ, θ ∈ X, then f has a unique fixed point, which is the limit of the sequence of Picard iterates of f at an
arbitrary point ϑ ∈ X.

Proof. For some positive integer n, we have cn < 1. Now, the statement follows from Corollary 2.

5. Conclusions

In this paper, we introduce the concept of d∗-complete topological spaces. We give an example of
a d∗-complete topological space, which is not a complete metric space. We show that the product of
d∗-complete topological spaces is also a d∗-complete topological space. We also establish that every
left complete quasi b-metric space is a d∗-complete topological space. Moreover, we prove some fixed
point results for contraction mappings in the setting of d∗-complete topological spaces. These obtained
results are generalizations of many known ones in the literature.
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9. Prešić, S.B. Sur une classe d’inéquations aux différences finite et sur la convergence de certaines suites. Publ. de

l’Inst. Math. Belgrade 1965, 5, 75–78.
10. Bryant, V. A remark on a fixed point theorem for iterated mappings. Am. Math. Mon. 1968, 75, 399–400.

[CrossRef]
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