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Abstract: In this work, we study the canal surfaces foliated by pseudo spheres S2
1 along a Frenet

curve in terms of their Gauss maps in Minkowski 3-space. Such kind of surfaces with pointwise
1-type Gauss maps are classified completely. For example, the canal surface with proper pointwise
1-type Gauss map of the first kind if and only if it is a part of a minimal surface of revolution.
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1. Introduction

In the theory of surface, a kind of surface called canal surfaces will shaped by sweeping a family
of spheres whose centers lie on a space curve in Euclidean 3-space. The geometric characters of such
surfaces have been studied by many experts and geometers [1–3]. For example, the authors of [1]
investigated the geometric properties of such surfaces, including the Gaussian curvature, the mean
curvature and their relationships. As time goes on, the construction idea of canal surfaces in Euclidean
3-space is extended into the spaces with indefinite metric, especially into Lorentz–Minkowski space.
In Minkowski 3-space, a canal surface can be formed as the envelope of a family of pseudo-Riemannian
space forms, i.e., pseudo spheres S2

1, pseudo hyperbolic spheres H2
0 and lightlike cones Q2 [4–6].

According to the classification of curves in Minkowski space, i.e., spacelike curve, timelike curve and
lightlike (null) curve, there are nine types of canal surfaces in Minkowski 3-space. The parametric
expressions and the fundamental geometric properties are stated by discussing the linear Weingarten
canal surfaces in [4,5].

The idea of finite type immersion of Riemannian manifolds into Euclidean space (resp. pseudo
Euclidean space) was introduced by B.Y. Chen in the late 1970s, which was extended into the differential
maps on the submanifolds such as the Gauss maps. A submanifold M in Euclidean space (resp. pseudo
Euclidean space) whose Gauss map G satisfies ∆G = f (G+ C) is said to have pointwise 1-type Gauss
map for a non-zero smooth function f and a constant vector C, where ∆ is the Laplacian defined on M
stated by

∆ = − 1√
|det(gij)|

∑
i,j

∂

∂xi (
√
|det(gij)|gij ∂

∂xj ), (1)

where gij are the components of the inverse matrix of the first fundamental form of M. In particular,
it is said to be of the first kind or the second kind when the vector C is zero or non-zero, respectively.
Furthermore, G is said to be of proper pointwise 1-type if the function f is not constant, then a
non-proper pointwise 1-type Gauss map is of ordinary 1-type. When the smooth function f vanishes,
G is said to be harmonic [7–9].
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Based on the conclusions obtained in [1], the canal surface with pointwise 1-type Gauss map is
discussed in [2]. In order to do further and complete geometric investigation for canal surfaces in
Minkowski 3-space, the canal surfaces foliated by pseudo spheres S2

1 along Frenet curves to be studied
in the present work. In Section 2, some basic facts including the Frenet formulas of Frenet curves,
the expression forms, and the relationships between the Gaussian curvatures and the mean curvatures
of three types of canal surfaces are recalled. In Section 3, three types of canal surfaces with pointwise
1-type Gauss maps are classified completely.

The surfaces are smooth, regular, topologically connected unless otherwise stated in this paper.

2. Preliminaries

The Minkowski 3-space E3
1 is provided with the standard indefinite flat metric given by

〈·, ·〉 = dx2
1 + dx2

2 − dx2
3

in terms of the natural coordinate system (x1, x2, x3). A vector v is called to be spacelike, timelike and
lightlike (null), if 〈v, v〉 > 0 or v = 0, 〈v, v〉 < 0 and 〈v, v〉 = 0, (v 6= 0), respectively. The norm of
the vector v is defined by ‖v‖ =

√
|〈v, v〉|. According to the causal character of the tangent vectors,

the curves are divided into spacelike, timelike, or lightlike (null) curves. Furthermore, a spacelike
curve is classified into the first kind, the second kind spacelike curve or the null type spacelike curve
(the pseudo null curve) when the normal vector is spacelike, timelike or lightlike, separately.

Remark 1 ([10]). Timelike curves and spacelike curves with spacelike or timelike normal vectors are called
Frenet curves in Minkowski space.

Proposition 1 ([4]). Let c(s) : I → E3
1 be a Frenet curve parameterized by arc length s with Frenet frame

{α, β, γ}. Then, the following Frenet equations are satisfied:
α′(s) = κ(s)β(s),

β′(s) = −ε1κ(s)α(s) + ε2τ(s)γ(s),

γ′(s) = τ(s)β(s),

where α is the tangent vector, β and γ is the normal vector and the binormal vector of c(s), respectively.
When c(s) is a timelike curve, ε1 = ε2 = −1; when c(s) is a spacelike curve of the first kind, ε1 = ε2 = 1;
when c(s) is a spacelike curve of the second kind, ε1 = −ε2 = −1. The function κ(s), τ(s) is said to be the
curvature and the torsion of c(s), respectively.

Proposition 2 ([4]). Let p be a fixed point, r > 0 be a constant in E3
1. Then, the pseudo-Riemannian space

forms, i.e., the de-Sitter space S2
1(p, r), the hyperbolic space H2

0(p, r) and the lightlike cone Q2
1(p) are defined by

M2(ε) = {x ∈ E3
1 : 〈x− p, x− p〉 = εr2} =


S2

1(p, r) | ε = 1;

H2
0(p, r) | ε = −1;

Q2
1(p) | ε = 0.

In particular, when r = 1 and the center p is the origin, we write them by S2
1, H2

0 and Q2 simply.

Definition 1 ([6]). A surface M in E3
1 is called a canal surface which is formed as the envelope of a family of

pseudo spheres S2
1 (resp. pseudo hyperbolic spheres H2

0 or lightlike cones Q2) whose centers lie on a space curve
c(s) framed by {α, β, γ}. M can be parameterized by

x(s, θ) = c(s) + λ(s, θ)α(s) + µ(s, θ)β(s) + ω(s, θ)γ(s),
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where λ, µ, and ω are differential functions of s and θ, ‖x(s, θ)− c(s)‖2 = εr2(s), (ε = ±1 or 0). The curve
c(s) is called the center curve, r(s) is called the radial function of M.

Precisely, if M is foliated by pseudo spheres S2
1 (resp. pseudo hyperbolic spheres H2

0 or lightlike
cones Q2), then ε = 1 (resp. −1 or 0) and M is said to be of type M+ (resp. M− or M0). In addition,
the canal surface of type M+ can be classified into M1

+ (resp. M2
+ or M3

+) when c(s) is spacelike
(resp. timelike or null). Moreover, when c(s) is the first kind, the second kind spacelike curve and the
pseudo null curve, M1

+, is denoted by M11
+ , M12

+ and M13
+ , respectively. Similarly, the canal surfaces

M− (resp. M0) can be classified into M1
−, M2

− and M3
− (resp. M1

0, M2
0 and M3

0). Naturally, M1
− (resp.

M1
0) can be divided into M11

− , M12
− and M13

− (resp. M11
0 , M12

0 and M13
0 ) [5].

Remark 2. In the present work, we consider the canal surfaces foliated by pseudo spheres S2
1 which have Frenet

curves as center curves, i.e., the canal surfaces of type M11
+ , M12

+ and M2
+.

In [4], the canal surfaces M11
+ , M12

+ and M2
+ are expressed by

M11
+ : x(s, θ) = c(s) + r(s){−r′(s)α +

√
1− r′2(s) cosh θβ +

√
1− r′2(s) sinh θγ};

M12
+ : x(s, θ) = c(s) + r(s){−r′(s)α +

√
1− r′2(s) sinh θβ +

√
1− r′2(s) cosh θγ};

M2
+ : x(s, θ) = c(s) + r(s){r′(s)α +

√
1 + r′2(s) cos θβ +

√
1 + r′2(s) sin θγ}.

For convenience, the authors assumed −r′(s) = cos ϕ for M11
+ and M12

+ , r′(s) = tan ϕ for M2
+,

where ϕ = ϕ(s) is a smooth function, then the canal surfaces M11
+ , M12

+ and M2
+ are rewritten by

M11
+ : x(s, θ) = c(s) + r(s)(cos ϕ(s)α + sin ϕ(s) cosh θβ + sin ϕ(s) sinh θγ); (2)

M12
+ : x(s, θ) = c(s) + r(s)(cos ϕ(s)α + sin ϕ(s) sinh θβ + sin ϕ(s) cosh θγ); (3)

M2
+ : x(s, θ) = c(s) + r(s)(tan ϕ(s)α + sec ϕ(s) cos θβ + sec ϕ(s) sin θγ). (4)

Example 1. Let c(s) = (s, 0, 0) be a spacelike curve, the radial function r(s) = sin s, then the canal surface
M11

+ (M12
+ ) can be expressed as (see Figure 1)

x(s, θ) = (− sin s cos s + s, sin2 s cosh θ, sin2 s sinh θ).

Example 2. Let c(s) = (sin s
2 , cos s

2 ,
√

5
2 s) be a timelike curve, the radial function r(s) = sin s, then the canal

surface M2
+ can be expressed as (see Figure 2)

x(s, θ) ={sin
s
2
+

1
4

sin 2s cos
s
2
− sin s

√
1 + cos2 s(sin

s
2

cos θ −
√

5
2

cos
s
2

sin θ), cos
s
2
− 1

4
sin 2s sin

s
2
−

sin s
√

1 + cos2 s(cos
s
2

cos θ +

√
5

2
sin

s
2

sin θ),

√
5

2
s +
√

5
4

sin 2s +
1
2

sin s
√

1 + cos2 s sin θ}.

Figure 1. M11
+ (M12

+ ) with r(s) = sin s.
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Figure 2. M2
+ with r(s) = sin s.

Proposition 3 ([4]). For the canal surface M11
+ (resp. M12

+ ,M2
+), the Gaussian curvature K and the mean

curvature H satisfy

H = −1
2
(Kr +

1
r
).

Remark 3. By Proposition 3, the principal curvatures κ1, κ2 of the canal surface M11
+ (resp. M12

+ ,M2
+) are

given by

κ1 = −Kr, κ2 = −1
r

.

3. Main Conclusions

In this section, the classifications of three types of canal surfaces are discussed in terms of their
Gauss maps. We prove the results for M11

+ and omit the proofs for M12
+ and M2

+ since they can be
similarly done to those of M11

+ in what follows.

3.1. The Canal Surfaces of Type M11
+ with Pointwise 1-Type Gauss Maps

From Equation (2), the canal surface M11
+ is parameterized as

x(s, θ) = c(s) + r(s)(cos ϕ(s)α + sin ϕ(s) cosh θβ + sin ϕ(s) sinh θγ),

where cos ϕ(s) = −r′(s), (ϕ ∈ [0, π)) is a smooth function.
Through direct calculations, we have initially

xs = x1
s α + x2

s β + x3
s γ, xθ = x1

θ β + x2
θγ,

where
x1

s = −rr′′ − rκ sin ϕ cosh θ + sin2 ϕ;

x2
s = r′ sin ϕ cosh θ − rr′ϕ′ cosh θ + rτ sin ϕ sinh θ − rr′κ;

x3
s = r′ sin ϕ sinh θ − rr′ϕ′ sinh θ + rτ sin ϕ cosh θ;

x1
θ = r sin ϕ sinh θ;

x2
θ = r sin ϕ cosh θ.

(5)

Thus, the Gauss map G of M11
+ is

G = cos ϕα + sin ϕ cosh θβ + sin ϕ sinh θγ, (6)

which points towards M11
+ inside and 〈G,G〉 = 1.

Meanwhile, the quantities of the first fundamental form are obtained as

g11 =
P2

1 − r2R2
1

sin2 ϕ
, g12 = −r2R1, g22 = −r2 sin2 ϕ, (7)
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and the quantities of the second fundamental form are written by

h11 =
rR2

1 − P1Q1

sin2 ϕ
, h12 = rR1, h22 = r sin2 ϕ, (8)

where
P1 = rr′′ + rκ sin ϕ cosh θ − sin2 ϕ = rQ1 − sin2 ϕ,

Q1 = r′′ + κ sin ϕ cosh θ,

R1 = τ sin2 ϕ + r′κ sin ϕ sinh θ.

(9)

From Equations (7) and (8), the Gaussian curvature K and the mean curvature H of M11
+ are

K =
Q1

rP1
, H = −2P1 + sin2 ϕ

2rP1
. (10)

Remark 4. From g11g22 − g2
12 = −r2P2

1 , due to regularity, we see that P1 6= 0 everywhere.

Serving the following discussion, the Laplacian of the Gauss map G of M11
+ needs to be calculated.

First, from the first fundamental form of M11
+ , we have

g11 =
sin2 ϕ

P2
1

, g12 = g21 = −R1

P2
1

, g22 =
r2R2

1 − P2
1

r2P2
1 sin2 ϕ

. (11)

Substituting (6), (7), and (11) into (1), and by putting

U1 = g22Hs − g12Hθ , V1 = −g12Hs + g11Hθ , (12)

where

Hs =
2r2r′κ2 sin2 ϕ cosh2 θ − (2rr′κ − r2κ′) sin3 ϕ cosh θ + 5r2r′r′′κ sin ϕ cosh θ

2r2P2
1

+

−2rr′r′′ sin2 ϕ + r2r′′′ sin2 ϕ + 4r2r′r′′2 + r′ sin4 ϕ

2r2P2
1

,

Hθ =
κ sin3 ϕ sinh θ

2P2
1

,

(13)

after complicated arrangements, we get

∆G =
1

r2P2
1
{[(r2Q2

1 + P2
1 ) cos ϕ− 2x1

s U1]α + [(r2Q2
1 + P2

1 ) sin ϕ cosh θ − 2(x2
s U1 + x1

θV1)]β+

[(r2Q2
1 + P2

1 ) sin ϕ sinh θ − 2(x3
s U1 + x2

θV1)]γ}.
(14)

Assume that a canal surface M11
+ satisfies ∆G = f (G + C). Without loss of generality,

we may suppose
C = C1α + C2β + C3γ, (15)

where C1 = 〈C, α〉, C2 = 〈C, β〉, C3 = −〈C, γ〉.
Substituting (6), (14), and (15) into ∆G = f (G+ C), we obtain the following equation system:

(r2Q2
1 + P2

1 ) cos ϕ− 2x1
s U1 = r2P2

1 (cos ϕ + C1) f ,
(r2Q2

1 + P2
1 ) sin ϕ cosh θ − 2(x2

s U1 + x1
θV1) = r2P2

1 (sin ϕ cosh θ + C2) f ,
(r2Q2

1 + P2
1 ) sin ϕ sinh θ − 2(x3

s U1 + x2
θV1) = r2P2

1 (sin ϕ sinh θ + C3) f .
(16)
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From the last two equations of (16), we have

2U1(rτ sin2 ϕ + rr′κ sin ϕ sinh θ + x3
s C2 − x2

s C3) + 2V1(r sin2 ϕ + x2
θC2 − x1

θC3)

= sin ϕ(2P2
1 + 2P1 sin2 ϕ + sin4 ϕ)(C2 sinh θ − C3 cosh θ).

(17)

Rearranging (17) with the help of (5), (9), and (12), we get

2(g22Hs − g12Hθ)(rτ sin2 ϕ + rr′κ sin ϕ sinh θ + x3
s C2 − x2

s C3) + 2(−g12Hs + g11Hθ)

(r sin2 ϕ + r sin ϕ cosh θC2 − r sin ϕ sinh θC3)

= sin ϕ[(rκ sin ϕ cosh θ + rr′′ − sin2 ϕ)2 + (rκ sin ϕ cosh θ + rr′′)2](C2 sinh θ − C3 cosh θ).

(18)

Since {cosh(mθ), sinh(mθ)|m ∈ N} constructs a set of linearly independent functions, in view of
the coefficients of sinh 5θ and cosh 5θ in (18) by the aid of (5), (7), and (13), we have{

r6κ4 sin5 ϕC3 = 0,
r6κ4 sin5 ϕC2 = 0.

(19)

From (19), we consider a non-empty open subset O = {p ∈M11
+ | κ(p) 6= 0} of M11

+ . Since r 6= 0,
sin ϕ 6= 0, then we have C2 = C3 = 0 on O. However, if C2 = C3 = 0, (18) gives

r2R2
1 + g11 sin2 ϕ = P2

1 = 0

which contradicts the regularity of M11
+ . Hence, κ ≡ 0, M11

+ is a surface of revolution.
Putting c(s) = (s, 0, 0) and α = (1, 0, 0), β = (0, 1, 0), γ = (0, 0, 1), M11

+ can be represented by

x(s, θ) = (s + r(s) cos ϕ, r(s) sin ϕ cosh θ, r(s) sin ϕ sinh θ).

Furthermore, when κ = 0, the first equation of (16) gives

f =
(2P2

1 + 2P1 sin2 ϕ + sin4 ϕ) cos ϕ− 2r2 sin2 ϕP1Hs

r2P2
1 (cos ϕ + C1)

. (20)

Because P1, Hs are all functions of s when κ = 0, Equation (20) yields f = f (s). Then, by the last
two equations of (16), we obtain{

(r2Q2
1 + P2

1 ) sin ϕ cosh θ + 2r2r′ sin2 ϕHs(sin ϕ− rϕ′) cosh θ = r2P2
1 (sin ϕ cosh θ + C2) f ,

(r2Q2
1 + P2

1 ) sin ϕ sinh θ + 2r2r′ sin2 ϕHs(sin ϕ− rϕ′) sinh θ = r2P2
1 (sin ϕ sinh θ + C3) f .

(21)

Because r 6= 0, P1 6= 0 and f = f (s), Equation system (21) implies C2 = C3 = 0. In addition,

f (s) =
2P2

1 + 2P1 sin2 ϕ + sin4 ϕ + 2r2HsP1 cos ϕ

r2P2
1

. (22)

Combining (20) and (22), we get

2r2HsP1(1− C1r′) + C1(2P2
1 + 2P1 sin2 ϕ + sin4 ϕ) = 0. (23)

Substituting (23) into (22), we have

f (s) = − 2Hs

C1P1
=

P2
1 + r2Q2

1
r2P2

1 (1− C1r′)
=

4H2 − 2K
1− C1r′

. (24)
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Noticing that the principal curvatures are given by

κ1 = − r′′

rr′′ + r′2 − 1
, κ2 = −1

r
(25)

when κ = 0, and thus the Gaussian curvature K, the mean curvature H can be abbreviated as

K =
r′′

r(rr′′ + r′2 − 1)
, H = − 2rr′′ + r′2 − 1

2r(rr′′ + r′2 − 1)
. (26)

Due to f 6= 0, the mean curvature cannot be a constant. With the help of (10), Equation (23) can be
rewritten as

2r2Hs(1 + rH)(C1r′ − 1) = C1(2r2H2 + 2rH + 1)(r′2 − 1). (27)

Simplifying (27) with the help of (26), the radial function r(s) satisfies the following equation:[
2rr′′ + r′2 − 1

r(rr′′ + r′2 − 1)

]′
=

C1

1− C1r′
(rr′′)2 + (rr′′ + r′2 − 1)2

r2(rr′′ + r′2 − 1)
. (28)

Conversely, if M11
+ is a surface of revolution which satisfies (28), then ∆G = f (G+ C) is satisfied

for a non-zero function f as stated by (24) and a constant vector C = (C1, 0, 0) in which C1 is a
non-zero constant.

Theorem 1. A canal surface M11
+ has a proper pointwise 1-type Gauss map of the second kind iff it is a surface

of revolution with the following form:

x(s, θ) = (s + r(s) cos ϕ, r(s) sin ϕ cosh θ, r(s) sin ϕ sinh θ)

which satisfies (28).

Corollary 1. A canal surface M11
+ with proper pointwise 1-type Gauss map of the second kind satisfies ∆G =

f (G+ C) for a constant vector C = (C1, 0, 0) and non-zero smooth function

f (s) =
4H2 − 2K
1− C1r′

,

where H and K are given by (26), and C1 is a non-zero constant.

Corollary 2. A canal surface M11
+ has 1-type Gauss map of the second kind iff it is a surface of revolution

represented as
x(s, θ) = (s + r(s) cos ϕ, r(s) sin ϕ cosh θ, r(s) sin ϕ sinh θ)

which satisfies (30).

Proof. When a canal surface M11
+ satisfies ∆G = λ(G+ C), (λ ∈ R− {0}, C 6= 0), by Theorem 1, M11

+

is a surface of revolution which satisfies (28). By Corollary 1, we get[
2rr′′ + r′2 − 1

r(rr′′ + r′2 − 1)

]′
= λC1(rr′′ + r′2 − 1). (29)

From (28) and (29), we get

(rr′′ + r′2 − 1)2(λr2(1− C1r′)− 1)− (rr′′)2 = 0. (30)

The converse is straightforward.
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Theorem 2. A canal surface M11
+ has proper pointwise 1-type Gauss map of the first kind iff it is minimal.

Precisely, it is a part of a surface of revolution as

x(s, θ) = (s + r(s) cos ϕ(s), r(s) sin ϕ(s) cosh θ, r(s) sin ϕ(s) sinh θ)

which satisfies (33).

Proof. A canal surface M11
+ has proper pointwise 1-type Gauss map of the first kind, i.e., ∆G = fG for

some smooth function f . From Equation (14), we have
(r2Q2

1 + P2
1 ) cos ϕ− 2x1

s U1 = r2P2
1 cos ϕ f ,

(r2Q2
1 + P2

1 ) sin ϕ cosh θ − 2(x2
s U1 + x1

θV1) = r2P2
1 sin ϕ cosh θ f ,

(r2Q2
1 + P2

1 ) sin ϕ sinh θ − 2(x3
s U1 + x2

θV1) = r2P2
1 sin ϕ sinh θ f .

(31)

From the last two equations of (31), we get

(g22Hs − g12Hθ)(τ sin2 ϕ + r′κ sin ϕ sinh θ) + (−g12Hs + g11Hθ) sin2 ϕ = 0, (32)

with the help of Equation (7), we obtain P2
1 Hθ = 0. Therefore, Hθ = 0 due to P1 6= 0. Furthermore,

from the first two equations of (31), we get 2r2P1Hs = 0. It is obvious that Hs = 0. Then, the mean
curvature of M11

+ is constant.
By the Corollary 3.6 of [4], i.e., the canal surface M11

+ with non-zero constant mean curvature does
not exist, thus the canal surface M11

+ is minimal. From the Theorem 3.8 of [4], it is a part of a surface of
revolution with the following form:

x(s, θ) = (s + r(s) cos ϕ(s), r(s) sin ϕ(s) cosh θ, r(s) sin ϕ(s) sinh θ)

which satisfies

s = c2 ±
∫ √ r

r− c1
dr, (0 < c1 < r, c2 ∈ R). (33)

Looking back the Equation (31) with the conclusions obtained above, we have

f (s) = −2K =
2
r2 . (34)

Conversely, suppose that M11
+ is a surface of revolution satisfying (33), M11

+ is minimal from the
Theorem 3.8 of [4] and ∆G = fG is satisfied for some non-zero function f given by (34).

Corollary 3. A canal surface M11
+ with proper pointwise 1-type Gauss map of the first kind satisfies ∆G = 2

r2 G.

Assume that a canal surface M11
+ satisfies ∆G = λG, (λ ∈ R− {0}). By Corollary 3, we have

λ = 2
r2 is a constant, i.e., r is a constant. Thus, we have the following result.

Corollary 4. A canal surface M11
+ has 1-type Gauss map of the first kind iff it is a circular cylinder.

From Corollary 3, the following conclusion is straightforward since 2
r2 6= 0.

Corollary 5. The canal surface M11
+ with harmonic Gauss map does not exist.

3.2. The Canal Surfaces of Type M12
+ with Pointwise 1-Type Gauss Maps

From Equation (3), the canal surface M12
+ is parameterized as

x(s, θ) = c(s) + r(s)(cos ϕ(s)α + sin ϕ(s) sinh θβ + sin ϕ(s) cosh θγ),
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where cos ϕ(s) = −r′(s), (ϕ ∈ [0, π)) is a smooth function.
Through direct calculations, we have initially

xs = x1
s α + x2

s β + x3
s γ, xθ = x1

θ β + x2
θγ,

where
x1

s = −rr′′ + rκ sin ϕ sinh θ + sin2 ϕ;

x2
s = r′ sin ϕ sinh θ − rr′ϕ′ sinh θ + rτ sin ϕ cosh θ − rr′κ;

x3
s = r′ sin ϕ cosh θ − rr′ϕ′ cosh θ + rτ sin ϕ sinh θ;

x1
θ = r sin ϕ cosh θ;

x2
θ = r sin ϕ sinh θ.

Thus, the Gauss map G of M12
+ is

G = − cos ϕα− sin ϕ sinh θβ− sin ϕ cosh θγ, (35)

which points towards M12
+ inside and 〈G,G〉 = 1.

Meanwhile, the quantities of the first fundamental form are obtained as

g11 =
P2

2 − r2R2
2

sin2 ϕ
, g12 = r2R2, g22 = −r2 sin2 ϕ, (36)

the quantities of the second fundamental form are written by

h11 =
−rR2

2 + P2Q2

sin2 ϕ
, h12 = rR2, h22 = −r sin2 ϕ, (37)

where
P2 = −rr′′ + rκ sin ϕ sinh θ + sin2 ϕ = rQ2 + sin2 ϕ,

Q2 = −r′′ + κ sin ϕ sinh θ,

R2 = r′κ sin ϕ cosh θ − τ sin2 ϕ.

From Equations (36) and (37), the Gaussian curvature K and the mean curvature H of M12
+ are

K =
Q2

rP2
, H =

2P2 − sin2 ϕ

2rP2
.

Remark 5. From g11g22 − g2
12 = −r2P2

2 , due to regularity, we see that P2 6= 0 everywhere.

Next, the Laplacian of the Gauss map G of M12
+ is to be calculated. First, from the first fundamental

form of M12
+ , we have

g11 =
sin2 ϕ

P2
2

, g12 = g21 =
R2

P2
2

, g22 =
r2R2

2 − P2
2

r2P2
2 sin2 ϕ

. (38)

Substituting (35), (36), and (38) into (1), by putting

U2 = g22Hs − g12Hθ , V2 = −g12Hs + g11Hθ ,
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where

Hs =
−2r2r′κ2 sin2 ϕ sinh2 θ − (2rr′κ − r2κ′) sin3 ϕ sinh θ + 5r2r′r′′κ sin ϕ sinh θ

2r2P2
2

+

2rr′r′′ sin2 ϕ− r2r′′′ sin2 ϕ− 4r2r′r′′2 − r′ sin4 ϕ

2r2P2
2

,

Hθ =
κ sin3 ϕ cosh θ

2P2
2

,

after complicated arrangements, we get

∆G =− 1
r2P2

2
{[(r2Q2

2 + P2
2 ) cos ϕ + 2x1

s U2]α + [(r2Q2
2 + P2

2 ) sin ϕ sinh θ + 2(x2
s U2 + x1

θV2)]β+

[(r2Q2
2 + P2

2 ) sin ϕ cosh θ + 2(x3
s U2 + x2

θV2)]γ}.

Due to discussions similar to those of M11
+ , we have the following conclusions directly.

Theorem 3. A canal surface M12
+ has proper pointwise 1-type Gauss map of the second kind iff it is a surface of

revolution with the following form:

x(s, θ) = (s + r(s) cos ϕ, r(s) sin ϕ cosh θ, r(s) sin ϕ sinh θ)

which satisfies [
2rr′′ + r′2 − 1

r(rr′′ + r′2 − 1)

]′
=

C1

1 + C1r′
(rr′′)2 + (rr′′ + r′2 − 1)2

r2(rr′′ + r′2 − 1)
,

where C1 is a non-zero constant.

Corollary 6. A canal surface M12
+ with proper pointwise 1-type Gauss map of the second kind satisfies ∆G =

f (G+ C) for a constant vector C = (C1, 0, 0) and non-zero smooth function

f (s) =
4H2 − 2K
1 + C1r′

,

where C1 is a non-zero constant, H and K are given by

K =
r′′

r(rr′′ + r′2 − 1)
, H =

2rr′′ + r′2 − 1
2r(rr′′ + r′2 − 1)

.

Corollary 7. A canal surface M12
+ has 1-type Gauss map of the second kind iff it is a surface of revolution

represented as
x(s, θ) = (s + r(s) cos ϕ, r(s) sin ϕ cosh θ, r(s) sin ϕ sinh θ)

which satisfies
(rr′′ + r′2 − 1)2(λr2(1 + C1r′) + 1) + (rr′′)2 = 0.

Theorem 4. A canal surface M12
+ has proper pointwise 1-type Gauss map of the first kind iff it is minimal.

Precisely, it is a part of a surface of revolution as

x(s, θ) = (s + r(s) cos ϕ(s), r(s) sin ϕ(s) cosh θ, r(s) sin ϕ(s) sinh θ)

which satisfies

s = c2 ±
∫ √ r

r− c1
dr, (0 < c1 < r, c2 ∈ R).
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Corollary 8. A canal surface M12
+ with proper pointwise 1-type Gauss map of the first kind satisfies ∆G = 2

r2 G.

Corollary 9. A canal surface M12
+ has 1-type Gauss map of the first kind iff it is a circular cylinder.

Corollary 10. The canal surface M12
+ with harmonic Gauss map does not exist.

3.3. The Canal Surfaces of Type M2
+ with Pointwise 1-Type Gauss Maps

From Equation (4), the canal surface M2
+ is parameterized as

x(s, θ) = c(s) + r(s)(tan ϕ(s)α + sec ϕ(s) cos θβ + sec ϕ(s) sin θγ),

where tan ϕ(s) = r′(s), (ϕ ∈ (−π
2 , π

2 )) is a smooth function.
Through direct calculations, we have initially

xs = x1
s α + x2

s β + x3
s γ, xθ = x1

θ β + x2
θγ,

where
x1

s = rr′′ + rκ sec ϕ cos θ + sec2 ϕ;

x2
s = r′ sec ϕ cos θ + rr′ϕ′ sec ϕ cos θ + rτ sec ϕ sin θ + rr′κ;

x3
s = r′ sec ϕ sin θ + rr′ϕ′ sec ϕ sin θ − rτ sec ϕ cos θ;

x1
θ = −r sec ϕ sin θ;

x2
θ = r sec ϕ cos θ.

Thus, the Gauss map G of M2
+ is

G = tan ϕα + sec ϕ cos θβ + sec ϕ sin θγ, (39)

which points towards M2
+ inside and 〈G,G〉 = 1.

Meanwhile, the quantities of the first fundamental form are obtained as

g11 = −
P2

3 − r2R2
3

sec2 ϕ
, g12 = −r2R3, g22 = r2 sec2 ϕ, (40)

and the quantities of the second fundamental form are written by

h11 =
−rR2

3 + P3Q3

sec2 ϕ
, h12 = rR3, h22 = −r sec2 ϕ, (41)

where
P3 = rr′′ + rκ sec ϕ cos θ + sec2 ϕ = rQ3 + sec2 ϕ,

Q3 = r′′ + κ sec ϕ cos θ,

R3 = r′κ sec ϕ sin θ + τ sec2 ϕ.

From Equations (40) and (41), the Gaussian curvature K and the mean curvature H of M2
+ are

K =
Q3

rP3
, H =

−2P3 + sec2 ϕ

2rP3
. (42)

Remark 6. From g11g22 − g2
12 = −r2P2

3 , due to regularity, we see that P3 6= 0 everywhere.
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In the following, the Laplacian of the Gauss map G of M2
+ is to be calculated. First, from the first

fundamental form of M2
+, we have

g11 = − sec2 ϕ

P2
3

, g12 = g21 = −R3

P2
3

, g22 =
P2

3 − r2R2
3

r2P2
3 sec2 ϕ

. (43)

Substituting (39), (40), and (43) into (1), by putting

U3 = g22Hs − g12Hθ , V3 = −g12Hs + g11Hθ ,

where

Hs =
2r2r′κ2 sec2 ϕ cos2 θ + (2rr′κ − r2κ′) sec3 ϕ cos θ + 5r2r′r′′κ sec ϕ cos θ

2r2P2
3

+

2rr′r′′ sec2 ϕ− r2r′′′ sec2 ϕ + 4r2r′r′′2 + r′ sec4 ϕ

2r2P2
3

,

Hθ =
κ sec3 ϕ sin θ

2P2
3

,

through complicated arrangements, we get

∆G =
1

r2P2
3
{[(r2Q2

3 + P2
3 ) tan ϕ− 2x1

s U3]α + [(r2Q2
3 + P2

3 ) sec ϕ cos θ − 2(x2
s U3 + x1

θV3)]β+

[(r2Q2
3 + P2

3 ) sec ϕ sin θ − 2(x3
s U3 + x2

θV3)]γ}.

Due to discussions similar to those of M11
+ and M12

+ , the following results for M2
+ can be

given directly.

Theorem 5. A canal surface M2
+ has proper pointwise 1-type Gauss map of the second kind iff it is a surface of

revolution with the following form:

x(s, θ) = (r(s) sec ϕ sin θ, r(s) sec ϕ cos θ, s + r(s) tan ϕ)

which satisfies [
2rr′′ + r′2 + 1

r(rr′′ + r′2 + 1)

]′
=

C1

1− C1r′
(rr′′)2 + (rr′′ + r′2 + 1)2

r2(rr′′ + r′2 + 1)
,

where C1 is a non-zero constant.

Corollary 11. A canal surface M2
+ with proper pointwise 1-type Gauss map of the second kind satisfies

∆G = f (G+ C) for a constant vector C = (C1, 0, 0) and non-zero smooth function

f (s) =
4H2 − 2K
1− C1r′

,

where C1 is a non-zero constant, H and K are given by

K =
r′′

r(rr′′ + r′2 + 1)
, H = − 2rr′′ + r′2 + 1

2r(rr′′ + r′2 + 1)
.

Corollary 12. A canal surface M2
+ has 1-type Gauss map of the second kind iff it is a surface of revolution

represented as
x(s, θ) = (r(s) sec ϕ sin θ, r(s) sec ϕ cos θ, s + r(s) tan ϕ)
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where r(s) satisfies
(rr′′ + r′2 + 1)2(λr2(1− C1r′)− 1)− (rr′′)2 = 0.

Theorem 6. A canal surface M2
+ has proper pointwise 1-type Gauss map of the first kind iff it is minimal.

Precisely, it is a part of a surface of revolution as

x(s, θ) = (r(s) sec ϕ sin θ, r(s) sec ϕ cos θ, s + r(s) tan ϕ),

which satisfies

s = c2 ±
∫ √ r

c1 − r
dr, (c1 > r > 0, c2 ∈ R).

Corollary 13. A canal surface M2
+ with proper pointwise 1-type Gauss map of the first kind satisfies ∆G = 2

r2 G.

Corollary 14. A canal surface M2
+ has 1-type Gauss map of the first kind iff it is a circular cylinder.

Corollary 15. The canal surface M2
+ with harmonic Gauss map does not exist.

Until now, the canal surfaces foliated by pseudo spheres S2
1 along the Frenet curves, i.e., M11

+ ,
M12

+ , and M2
+ have been classified in terms of their Gauss maps completely. The similar works for the

canal surfaces M11
− , M12

− and M2
− will be done in the near future. At the same time, considering that

the canal surfaces M0 foliated by lightlike cones Q2 along a space curve are degenerate [4,5], the canal
surfaces M13

+ , M3
+ (resp. M13

− , M3
−) foliated by pseudo spheres S2

1 (resp. pseudo hyperbolic spheres H2
0)

along a pseudo null curve or a null curve, respectively, are to be investigated in our future works.
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