Boundedness of a Class of Oscillatory Singular Integral Operators and Their Commutators with Rough Kernel on Weighted Central Morrey Spaces
Abstract
:1. Introduction
- (A)
- and ;
- (B)
- and , where and .
2. Preliminaries
3. Proofs of Main Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morrey, C.B. On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 1938, 43, 126–166. [Google Scholar] [CrossRef]
- Peetre, J. On the theory of Mp,λ. J. Funct. Anal. 1969, 4, 71–87. [Google Scholar]
- Adams, D.R. A note on Riesz potentials. Duke Math. J. 1975, 42, 765–778. [Google Scholar] [CrossRef]
- Chiarenza, F.; Frasca, M. Morrey spaces and Hardy-Littlewood maximal function. Rend.-Lincei-Mat. Appl. 1987, 7, 273–279. [Google Scholar]
- Burenkov, V.I.; Jain, P.; Tararykova, T.V. On boundedness of the Hardy operator in Morrey-type spaces. Math. J. 2012, 2, 52–80. [Google Scholar]
- Liu, Y.; Chen, D. The boundedness of maximal Bochner-Riesz operator and maximal commutator on Morrey type spaces. Anal. Theory Appl. 2008, 24, 321–329. [Google Scholar] [CrossRef]
- He, Q.; Yan, D. Bilinear fractional integral operators on Morrey spaces. Positivity 2020. [Google Scholar] [CrossRef]
- Mizuhara, T. Commutators of singular integral operators on Morrey spaces with general growth functions. In Harmonic Analysis and Nonlinear Partial Differential Equations; Sūrikaisekikenkyūsho Kōkyūroku: Kyoto, Japan, 1999; Volume 1102, pp. 49–63. [Google Scholar]
- Komori, Y.; Mizuhara, T. Factorization of functions in H1(ℝn) and generalized Morrey spaces. Math. Nachrichten 2006, 279, 619–624. [Google Scholar] [CrossRef]
- Komori, Y.; Shirai, S. Weighted Morrey spaces and a singular integral operator. Math. Nachrichten 2009, 282, 219–231. [Google Scholar] [CrossRef]
- Phong, D.H.; Stein, E.M. Singular integrals related to the Radon transform and boundary value problems. Proc. Natl. Acad. Sci. USA 1984, 80, 7697–7701. [Google Scholar] [CrossRef] [Green Version]
- Ricci, F.; Stein, E.M. Harmonic analysis on nilpotent groups and singular integrals I. Oscillatory integrals. J. Funct. Anal. 1987, 73, 179–194. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Y. Criterion on Lp-boundedness for a class of oscillatory singular integrals with rough kernels. Rev. Mat. Iberoam. 1992, 8, 115–134. [Google Scholar]
- Jiang, Y.; Lu, S. Oscillatory singular integrals with rough kernel. J. Beijing Norm. Univ. 1995, 27, 135–145. [Google Scholar]
- Yu, X.; Zhang, H.; Zhao, G. Weighted boundedness of some integral operators on weighted λ-central Morrey space. J. Appl. Math. Univ. Engl. Ed. (Ser. B) 2016, 31, 331–342. [Google Scholar] [CrossRef]
- Hu, G. Lp(ℝn) boundedness for the commutator of a homogeneous singular integral operator. Stud. Math. 2003, 154, 13–27. [Google Scholar] [CrossRef]
- Grafakos, L.; Stefanov, A. Lp Bounds for singular integrals and maximal singular integrals with rough kernels. Indiana Univ. Math. J. 1998, 47, 455–469. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ding, Y. Lp bounds for the commutators of singular integrals and maximal singular integrals with rough kernels. Trans. Am. Math. Soc. 2014, 367, 1585–1608. [Google Scholar] [CrossRef]
- Lu, S.; Ding, Y.; Yan, D. Singular Integral and Related Topics; World Scientific Publishing: Singapore, 2011. [Google Scholar]
- Grafakos, L. Classical and Modern Fourier Analysis; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Lu, S. Four Lectures on Real Hp Spaces; World Scientific Publishing: Singapore, 1995. [Google Scholar]
- Chen, Y.; Zhu, K. Lp Bounds for the commutators of oscillatory singular integrals with rough kernels. Abstr. Appl. Anal. 2014, 2014, 393147. [Google Scholar] [CrossRef]
- Ding, Y.; Lu, S. Weighted Lp-boundedness for higher order commutators of oscillatory singular integrals. Tohoku Math. J. 1996, 48, 437–449. [Google Scholar] [CrossRef]
- Shi, M.; Arai, R.; Nakai, E. Commutators of integral operators with functions in Campanato spaces on Orlicz-Morrey spaces. arXiv 2020, arXiv:2007.00468v1. [Google Scholar]
- Fu, Z.; Shi, S.; Lu, S. Boundedness of oscillatory integral operators and their commutators on weighted Morrey spaces. Sci. Sin. 2013, 43, 147–158. [Google Scholar]
- Guliyev, V.S. Local generalized Morrey spaces and singular integrals with rough kernel. Azerbaijan J. Math. 2013, 3, 79–94. [Google Scholar]
- Torchinsky, A. Real-Variable Methods in Harmonic Analysis; Academic Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Muckenhoupt, B.; Wheeden, R. Weighted bounded mean oscillation and Hilbert transform. Stud. Math. 1976, 54, 221–237. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Yan, D.; Wei, M. Boundedness of a Class of Oscillatory Singular Integral Operators and Their Commutators with Rough Kernel on Weighted Central Morrey Spaces. Mathematics 2020, 8, 1455. https://doi.org/10.3390/math8091455
Zhou Y, Yan D, Wei M. Boundedness of a Class of Oscillatory Singular Integral Operators and Their Commutators with Rough Kernel on Weighted Central Morrey Spaces. Mathematics. 2020; 8(9):1455. https://doi.org/10.3390/math8091455
Chicago/Turabian StyleZhou, Yongliang, Dunyan Yan, and Mingquan Wei. 2020. "Boundedness of a Class of Oscillatory Singular Integral Operators and Their Commutators with Rough Kernel on Weighted Central Morrey Spaces" Mathematics 8, no. 9: 1455. https://doi.org/10.3390/math8091455
APA StyleZhou, Y., Yan, D., & Wei, M. (2020). Boundedness of a Class of Oscillatory Singular Integral Operators and Their Commutators with Rough Kernel on Weighted Central Morrey Spaces. Mathematics, 8(9), 1455. https://doi.org/10.3390/math8091455