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Abstract: A numeric investigation is executed to understand the impact of moving-wall direction,
thermal radiation, entropy generation and nanofluid volume fraction on combined convection and
energy transfer of nanoliquids in a differential heated box. The top wall of the enclosed box is assumed
to move either to the left or the right direction which affects the stream inside the box. The horizontal
barriers are engaged to be adiabatic. The derived mathematical model is solved by the control volume
technique. The results are presented graphically to know the impact of the dissimilar ways of moving
wall, Richardson number, Bejan number, thermal radiation, cup mixing and average temperatures.
It is concluded that the stream and the thermal distribution are intensely affected by the moving-wall
direction. It is established that the thermal radiation enhances the convection energy transport inside
the enclosure.
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1. Introduction

The combined convective movement and thermal energy transfer have been examined in a huge
number of studies for decades because of its applications in numerous fields of technological sciences.
Since the communal interaction among the viscous, buoyancy, and inertia forces on the stream has
been a vital matter for joint convection in a lid-driven enclosed box, the moving wall’s direction of
the cavity becomes significant in these studies [1–4]. Therefore, the current work keenly involves the
influence of moving-wall direction on convective stream in lid-driven cavities. Combined convection
together with heat transfer have been examined under several conditions in enormous studies [5–9].
Sivasankaran et al. [10] numerically explored the mixed convective stream and the energy transport in
an inclined enclosed space with discrete heating. Sivasankaran and Pan [11] discovered the influence of
discrete heaters and coolers on convection in a closed box. Mekroussi et al. [12] explored the combined
convection in a top-driven inclined wavy walled box. Combined convection flow due to nonuniform
heating in an enclosed box is discovered in some studies [13–15].

Nanofluids are pioneering fluids in the field of thermal science and it has been used actively
to analyze the energy transport in thermal systems [16–22]. Sheremet et al. [21] discovered the
buoyant flow and entropy generation of nanoliquid in a closed box with variable border temperature.
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Alsabery et al. [22] numerically explored the entropy generation and convection of nanoliquid in a
wavy walled box. Santra et al. [23] deliberated the energy transfer augmentation of a water–copper
nanoliquid in a differentially heated box. Abu-Nada and Oztop [24] discovered the outcome of
inclination of the box on convection of a Cu–water nanofluid. Ghasemi and Aminossadati [25] explored
the buoyant convection of a CuO nanoliquid in an inclined box numerically. Bhuvaneswari et al. [26]
completed a numeric work to get the impact of variable liquid properties on convective stream
of a nanoliquid in a square box. Sivasankaran et al. [27] inspected the partial slip influence on
magneto-convection in a 2-sided wall-driven porous enclosed space filled with a Cu–water nanoliquid.
Rashad et al. [28] discovered the magneto-convection of heat generating nanoliquids in a trapezoidal
box with discrete heating.

The interaction connecting natural/mixed convection and thermal radiation has gained significant
consideration due to its uses in various arenas. Very few studies on the interaction of thermal radiation
and convective stream have been reported in the literature [29–34]. Mansour et al. [29] discovered the
outcome of radiation on buoyant convection in a porous wavy enclosed space using the non-equilibrium
thermal model. They found that average heat transport decreased by increasing the surface waviness
of the wall. The doubly diffusive convection with radiation in an enclosed box was explored by
Moufekkir et al. [30]. Mahapatra et al. [31] explored the influence of heat generation and thermal
radiation on magneto-convective stream in an inclined enclosed space with one hot side and chilled
from the adjacent side. They concluded that the direction of the magnetic field influenced much on the
stream pattern. Saleem et al. [32] scrutinized the impact of radiation on buoyant convection in an open
box. They demonstrated that radiative heat transport increased as the optical thickness of the liquid
increased. Zhang et al. [33] explored the effects of thermal radiation on magneto-convection in a cavity.

Since no study on combined convection of a nanoliquid in a wall-driven box with thermal radiation
and entropy generation is reported in the literature, the current investigation is interested to investigate
numerically the effect of entropy, thermal radiation and the direction of wall movement of an enclosed
box on the convective stream and energy transfer of a nanoliquid.

2. Mathematical Modeling

The physical model displayed in Figure 1 is a 2-dimensional square enclosed box of size L packed
with a water-based Al2O3-nanofluid. The stream is unsteady, incompressible and laminar. The velocity
components (u, v) in Cartesian coordinates (x, y) are pointed to in Figure 1. The vertical walls of
the enclosed domain have uniform temperature distributions. The horizontal barriers are thermally
insulated. The gravity performances in the opposite of y-direction. The nanoliquid in the enclosed
box is considered as a dilute liquid–solid mixture with a constant volume fraction of nanosized
particles (Al2O3) distributed within the water. The nanoparticles and water are in thermal-equilibrium.
The nanoliquid properties are presumed to be constant, except the density. The linear variation of
density (with temperature) is given as ρ = ρ0[1− β(θ− θ0)], where β being the quantity of thermal
expansion (Boussinesq approximation), θ is temperature and ρ0 is density at reference. The viscous
dissipation is discounted here. The mathematical model for conservation of quantities is:
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Figure 1. Physical model.

The subscript “nf” and “0” denote the nanofluid and reference state, respectively. The parameters
cp, g, p, t,α,µ are specific heat, acceleration due to gravity, pressure, time, thermal diffusivity and
the dynamic viscosity, respectively. The heat flux due to radiation along the x and y directions are
set by qrx = −4σ∗

3K′
∂θ4

∂x and qry = −4σ∗
3K′

∂θ4

∂y , where σ* is Stefan-Boltzmann constant and K′ is mean
absorption coefficient. By Rosseland estimate for radiation (medium is optically thick), the thermal
variances within the stream are reflected to be too small. Expanding θ4 about θ0 through Taylor series
and neglecting the higher order terms obtained from Taylor series, θ4 is expressed as a function of
temperature θ. That is,

θ4 = θ0
4 + 4θ0

3(θ− θ0) + . . .

Then, by approximating we get,
θ4 � 4θ0

3θ− 3θ0
4

Therefore, the radiative heat flux reduces to

qrx =
−16σ∗θ3

0

3K′
∂θ
∂x

and qry =
−16σ∗θ3

0

3K′
∂θ
∂y

(5)

Substituting Equation (5) into Equation (4), we get
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)
(6)

Initially, the velocity and temperature are zero. When t > 0, u = v = 0 except at top wall and
u = +U0 (Case -1), u = −U0 (Case-2), v = 0 on the top wall. For temperature, ∂θ∂y = 0 on the top
and the bottom portions. The right and left walls are lower (θ = θc) and higher (θ = θh) temperature.

The properties of the nanoliquid in the current model are defined below.
Density:

ρn f = ρ f (1−φ) + φρp (7)

Thermal expansion coefficient:

(ρβ)n f = (ρβ) f (1−φ) + φ(ρβ)p (8)

Specific heat:
(ρcp)n f = (ρcp) f (1−φ) + φ(ρcp)p (9)
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The Maxwell formula is used for thermal conductivity:

kn f = k f


2 + k∗p f + 2φ

(
k∗p f − 1

)
2 + k∗p f −φ

(
k∗p f − 1

)
, k∗p f =

kp

k f
(10)

The dynamic viscosity of nanoliquid (Ho et al. [35]) is calculated as:

µn f = µ f (1−φ)
−2.5 (11)

where the subscript “f ” and “p” denote base–fluid and nanoparticle, respectively. The physical
constants of the water and nanoparticles (Al2O3) are available in Ref [35].

The leading equations are nondimensionalized by using the subsequent variables:
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0
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The consequent nondimensional model equations are
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The nondimensional quantities appearing above are the Grashof number Gr = (gβ f ∆θL3)/(ν2
f ),

Radiation parameter Rd = (4σ∗θ0
3)/(k f K′), Richardson number Ri = Gr/Re2, Reynolds number

Re = (U0L)/(ν f ) and the Prandtl number Pr = ν f /α f . The boundary settings are

U = V = 0, X = 0, 1 & Y = 0

U = +1 (Case 1), & U = −1 (Case 2), V = 0, Y = 1

∂T
∂Y

= 0 Y = 0 & 1 (17)

T = 1 X = 0 & T = 0 X = 1

when U = +1 indicates that the wall moves to the right-side and U = −1 implies that the wall moves
to the left-side in its axis, respectively.

The drag coefficient estimates the total frictional drag exerted on the wall. The drag coefficient
along the moving top wall is calculated as C fx =

(
∂U
∂Y

)
Y = 1

, respectively. The averaged drag coefficient
is calculated as

C fx =

1∫
0

C fx dX, respectively. (18)

The energy transport rate across the enclosed box is a vital parameter in thermal industrial
applications. The local Nusselt number alongside the hot barrier of the enclosed box is defined as
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Nu =
(
−

kn f
k f

(
1 +

4k f
3kn f

Rd
)
∂T
∂X

)
X = 0

. The averaged Nusselt number alongside the heated barrier is

expressed as follows:

Nu =

1∫
0

Nu dY (19)

3. Cup Mixing Temperature and RMSD

The temperature of cup mixing is defined to discover the thermal mixing inside the chamber.
The velocity weighted average temperature is most appropriate for convection flow than space averaged
temperature. The temperature of cup mixing, and averaged temperature based on area are given as [34]

TCup =

s
V̂(X, Y) T(X, Y)dXdY

s
V̂(X, Y)dXdY

(20)

where V̂(X, Y) =
√

U2 + V2 and

Tavg =

s
T(X, Y)dXdY
s

dXdY
(21)

The root-mean square deviation (RMSD) is deduced to calculate the degree of temperature
uniformity in all considered cases. They are deduced based on temperature of cup mixing and average
temperature based on area as follows:

RMSDTcup =

√∑N
i = 1

(
Ti − TCup

)2

N
(22)

RMSDTavg =

√∑N
i = 1

(
Ti − Tavg

)2

N
(23)

The greater values of RMSD point out poorer temperature regularity in the chamber and vice
versa. Moreover, RMSD cannot exceed one because the dimensionless temperature differs between
zero and one. These parameters are estimated by the gained values of flow and thermal fields in the
same computational code.

4. Entropy Generation

The buoyance induced convection in a closed chamber discovers significant awareness in thermal
engineering applications. However, the practice of entropy generation supports to spot the ideal
conditions for many applications. Since the generation of entropy is as a result of the irreversible
procedure of transfer of heat and viscosity, generation of entropy can be estimated from the well-known
thermal and velocity fields.

The entropy generation is expressed by two quantities, i.e., heat transfer (first term in below
equation) and liquid friction (last term in below equation) [18,21,22,34].

SGen =
kn f

T2
c

[(
∂θ
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)2
+

(
∂θ
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)2
+

(
16σ∗θ3

0
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+

(
∂θ
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)2
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+
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2
[(
∂u
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)2
+

(
∂v
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)2
]
+

(
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)2
}

(24)

The dimensionless entropy generation is acquired by using (10)

Stotal = S∗heat + S∗f luid

S∗heat =

(kn f

k f

)(
1 +

4Rd
3

)( ∂T
∂X

)2

+

(
∂T
∂Y

)2 (25)
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S∗f luid = φ2

(
µn f

µ f

)2

(∂U
∂X

)2

+

(
∂V
∂Y

)2+ (
∂U
∂Y

+
∂V
∂X

)2
 (26)

where φ2 = U0
θ0L2 . The global entropy generation attains by integrating the local entropy production

inside the chamber.

SGtotal =

∫
V

Stotal(X, Y)dA (27)

The local Bejan number states the strength of generation of entropy owing to thermal transference
irreversibility. It is derived as

Beloc =
S∗heat
Stotal

(28)

For any point in the chamber, when Beloc >
1
2 , the heat transfer irreversibility is dominating.

When Beloc <
1
2 , the liquid friction irreversibility dominates. If Beloc = 1

2 , the thermal and viscous
irreversibilities are equal. The average value of Bejan number demonstrates the relative importance of
the thermal energy transfer irreversibility for the entire chamber.

Be =

∫
A Beloc(X, Y)dA∫

A dA
(29)

5. Numeric Technique

The nondimensional Equations (12)–(15) with boundary conditions (16) are solved by the control
volume technique with the “SIMPLE algorithm”. A nonuniform grid of 122 × 122 is taken to investigate
the problem. The justification of the numeric code is very essential in the simulation. An internal code
is tested against the available results for free convection of nanoliquid in a box [35] and it is shown in
Table 1. Second, the problem of combined convection stream in a lid-driven box [36,37] is employed
to compare the results of the current code (See Table 2). A good agreement among these results is
obtained. Hence, the results offer a guarantee in the accuracy of the current computational code to
inspect the problem.

Table 1. Comparison of Nu results for free convection of nanoliquids in a square box.

Ra (Rayleigh Number) Volume Fraction
Nu

Ho et al. [35] Present

103 0.01 1.129 1.137
0.04 1.199 1.205

104 0.01 2.264 2.229
0.04 2.305 2.335

105 0.01 4.699 4.683
0.04 4.810 4.791

106 0.01 9.165 9.170
0.04 9.428 9.513

Table 2. Comparison of average Nusselt numbers for mixed convection in a lid-driven box.

Gr
Re = 400 Re = 1000

Present Work Iwatsu et al. [37] Sharif [36] Present Work Iwatsu et al. [37] Sharif [36]

102 4.09 3.84 4.05 6.48 6.33 6.55
104 3.85 3.62 3.82 6.47 6.29 6.50
106 1.10 1.22 1.17 1.66 1.77 1.81



Mathematics 2020, 8, 1471 7 of 19

6. Results and Discussion

Numeric simulations are executed to examine the mixed convective stream and energy transfer of
nanoliquids in a wall-driven enclosed box with thermal radiation and entropy generation. The average
and cup mixing temperature and its RMSD values are also calculated. The calculations are carried out
for a Richardson number (Ri) ranging from 0.01 to 102, a volume fraction (φ) of nanoparticles from 0–4
and a radiation parameter from 0 to 10. The Grashof number is used as 104 and the Reynolds number
varies from 10 to 103. The Prandtl number is taken as Pr = 6.7. The influence of convective stream and
energy transport are assessed for several values of the volume fraction of nanoparticles, Richardson
number, radiation parameter and the moving-wall directions. The results are depicted graphically for
various combinations of parameters and the discussions are given below.

Figure 2 depicts the stream arrangement for several values of the pertinent parameters Rd and
Ri for Case 1 (U0 = +1) with Φ = 0.02. In Case 1, wall is moving towards the right side, whereas
the lid moves from the right-side to left-side in Case 2. The moving-wall direction is very important
and produces the shear force with the adjoining fluid along the upper portion of the box. Since the
convective flow is driven by both the buoyant force and the shear stress due to the moving lid,
the Richardson number clearly demonstrates the three regimes of convection (free, mixed and forced).
The single clockwise rotating eddy appears in the forced convective regime (Ri < 1) for all given values
of the radiation parameter. Due to the strong shear force, the core area of the eddy travels towards
the right–top corner of the enclosed box. When Ri = 1, that is, in the combined convective regime,
the magnitude of both forces (shear and buoyancy) are comparable, the core region moving the center
part of the portion of the enclosed box. In the buoyant convective regime, that is, Ri = 100, the variation
on the flow pattern is clearly visible here. There is no change on the stream pattern in the forced
convection regime when changing the radiation parameter. However, the evidence on the effect of the
radiation parameter is clearly seen in the buoyancy convection regime upon raising the values of the
radiation parameter for Case 1.

Figure 3 exhibits the convective stream for several values of Ri and Rd for Case 2, with Φ = 0.02.
The flow pattern is completely different from Case 1. The dual cell gets for all values of Ri and Rd as it
occupies the entire box. Since the shear force is dominant at Ri = 0.01, the core section of the eddy
moves towards the left–top corner of the enclosed box. The counter acting eddy could not occupy the
whole space as in Case 1, where the movement of liquid particles is aiding with the buoyant force.
The buoyant force by the hot liquid along the hot wall produces the clockwise-rotating eddy along the
hot wall. However, the shear force dominates here, the eddy by the moving-lid occupies most the
box. When rising the Richardson number values to Ri = 1, the mixed convection exists, where both the
shear and buoyancy forces are comparable, and the eddy produced by these forces occupies about half
of the enclosure in the situation. The natural convection mode at Ri = 100 depicts different phenomena
on the stream pattern compared to the other two modes. The eddy by the buoyancy force dominates
and occupies most the enclosed box. It is also detected that the eddy by the shear force is weakened on
raising the values of the radiation parameter.
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Figure 2. Streamlines for different Rd and Ri values with U0 = +1 (Case 1), and Φ = 0.02. (a) Rd = 0;
(b) Rd = 1; (c) Rd = 5; (d) Rd = 10.
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Figure 3. Streamlines for different Rd and Ri values with U0 = −1 (Case 2) and Φ = 0.02. (a) Rd = 0;
(b) Rd = 1; (c) Rd = 5; (d) Rd = 10.
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Figure 4 depicts the thermal distribution for several values of the radiation parameter and the
Richardson number for Case 1 with Φ = 0.02. The thermal boundary layers are shaped along the hot
wall for all assumed values of the radiation parameter in the forced convection regime. The temperature
boundary layers is weakened for higher values of the radiation (Rd = 10) in the combined convection
regime. The horizontal thermal stratification appears in the central region of the enclosed box in the
absence of radiation or lower values of the radiation parameter for the natural convection regime.
The temperature gradients near wall(s) disappear on rising the value of the radiation parameter.
Figure 5 exhibits the isotherms for an opposite moving lid (Case 2) with the same parameters in
Figure 4. The thermal layers at the boundary do not appear along the hot wall in forced convection
regime as in Case 1. Due to the dual cell structure in the flow field, the thermal layers at the boundary
are collapsed along the hot wall in Case 2.

Figure 6 depicts the drag coefficient for several values of Rd and Ri for both cases of the moving
lid directions. In Case 1, the skin friction declines upon raising the values of Ri. However, in Case 2,
the skin friction behaves nonlinearly, that is, the skin friction grows up to Ri = 1 and then it declines
upon raising the values of Ri. It is detected that there is no change on the averaged skin friction
for numerous values of Rd when Ri = 0.01 and Ri = 0.1, that is, in the forced convective regime.
The skin friction declines upon rising the values of the radiation parameter in the combined and natural
convective regimes.

Since the energy transport rate is a key factor in the thermal systems, the (average) energy transfer
rate is depicted via the Nusselt number to explore the effect on various pertinent parameters. The local
energy transport along the heated wall is computed by the local Nusselt number and it is depicted in
Figure 7 for both cases of moving-wall directions. It is clearly exhibited from Figure 7a,c,e that the
energy transport is diminished upon raising the values of the Richardson number for Case 1. That is,
the local energy transport along the hot wall is enhanced in the forced convective regime. It is almost
thrice the value of local Nusselt number for free-convection regime. Case 2 also provides a similar
trend on the energy transport upon raising the values of Ri number. It is detected that the local heat
transport rises upon raising the radiation parameter for all convection regimes. The highest local
energy transfer is observed at the bottom of the heated wall for Case 1 and then it decreases along the
wall height. However, the highest local energy transfer is detected at the top of the heated wall for
Ri = 0.01 and Ri = 1 in Case 2. However, the opposite trend is found for the free-convection regime
in Case 2. The moving lid direction supports the fluid motion with the aiding of the buoyancy force.
However, in Case 2, the moving lid direction suppresses the buoyancy force at the top section of the
heated wall, and it results the dual cellular motion inside the enclosure. In the dual cell structure,
the two cells hit at the top–left corner and provides the highest local heat energy transfer at this point,
which is clearly seen from Figure 7b. The high amount of shear force has driven the heated fluid
particles vigorously at this situation. Hence, the local heat energy transfer gives a similar trend in both
cases for the natural convection regime.
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Figure 4. Isotherms for diverse Rd and Ri values with U0 = +1 (Case 1) and Φ = 0.02. (a) Rd = 0;
(b) Rd = 1; (c) Rd = 5; (d) Rd = 10.
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Figure 5. Isotherms for different Rd and Ri values with U0 = −1 (Case 2) and Φ = 0.02. (a) Rd = 0;
(b) Rd = 1; (c) Rd = 5; (d) Rd = 10.
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Figure 6. Drag coefficient versus Ri for different Rd. (a) Case 1; (b) Case 2.

Figure 7. Local Nusselt number for diverse Ri and Rd. (a,c,e) Case 1; (b,d,f) Case 2.
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Figure 8 demonstrates the averaged Nusselt number for several values of Rd and Ri for Case 1
(U0 = +1) and Case 2 (U0 = −1). The averaged heat transport rate is enhanced upon raising the values
of the radiation parameter for both cases of the moving-wall directions. It is detected that the averaged
heat transfer declines upon raising the values of Ri. Further, scrutinizing these figures, it is found that
the moving-wall direction affects the thermal energy transfer rate evidently. When the wall moves
from the right-side to left-side (Case 2), the heat energy transfer rate is less due to the dual-eddy
structure. The effect of nanometer sized particle volume fraction on the averaged energy transport is
examined and it is portrayed in Figure 9a,b for several values of the Richardson number and two cases
of moving-wall directions in the presence of radiation with Rd = 5. The averaged heat transport rate
decreases upon raising the values of the nanoparticle volume fraction from 0%~4% in mixed and free
convective regimes for both moving-wall cases. But, the averaged heat transport rate rises with the
nanoparticles volume fraction in Case 1 at Ri = 0.01. In Case 2 at Ri = 0.01, the averaged heat transfer
increases first up to Φ = 2% and then it decreases upon raising the value of Φ. Comparing these
two cases in Figure 9a,b, it is detected that the averaged Nusselt number is always high for Case 1 than
that of Case 2. This is because of the dual eddy structure in Case 2. The energy transfer from the hotter
region to the colder region taken by a single cell is faster than the energy transport by the two cells
inside the enclosed box. Since the energy exchange between the two cells takes some time which slows
down the overall energy transport within the enclosed box.

Figure 8. Averaged Nusselt number versus Ri for different Rd. (a) Case 1; (b) Case 2.

Figure 9. Averaged Nusselt number versus Φ for different Ri with Rd = 5. (a) Case 1; (b) Case 2.

Figure 10 shows the increment level of the averaged energy transport for different radiation values
compared with the absence of radiation parameter. The data clearly show the increasing level of
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averaged energy transport while raising the values of Rd in both cases of moving wall. The increment
level is very high in the natural convection regime in both cases. Figure 11 demonstrates the cup-mixing
temperature for various values of Ri and Rd parameters. The behavior of cup-mixing temperature
is nonlinear fashion for Case 1, however, Case 2 shows almost a linear fashion. The deviation in
cup-mixing temperature with Rd is high at forced convection regime for Case 2. However, it is almost
same in free-convection case. The Tcup values are almost constant when changing the values of Rd in
free-convection flow for Case 2. Figure 12 demonstrates the average temperature for different Ri and Rd
values. The higher Tcup values indicates the well mixing of fluid with higher temperature. It is obviously
seen from Figure 12 that the Tavg is almost constant for all values of Rd in free-convection regime.
The maxima of Tavg attains at Ri = 100 for all Rd values in Case 1, see Figure 12a. From Figure 12b,
we observe that the deviation of Tavg is high at Ri = 0.01 in Case 2.

Figure 10. Increment of averaged Nusselt number. (a) Case 1; (b) Case 2.

Figure 11. Cup-mixing temperature for different Ri and Rd values. (a) Case 1; (b) Case 2.

Figures 13 and 14 portray the RMSDTcup and RMSDTavg for both cases with different Ri and Rd
values. Since the nondimensional temperature varies between 0 and 1, the RMSD values are below 1 in
the present examination. It is noticed from Figure 13a that the RMSDTcup increases first and decreases
on raising the Ri values for Case 1. The opposite trend is observed for Case 2 in the absence of thermal
radiation. However, RMSDTcup increases linearly with Ri for Rd ≥ 5 for Case 2. It is observed from
Figure 14, RMSDTavg rises linearly with Richardson number in Case 1 for all values of Rd. It is also
detected from Figure 14 that the RMSDTavg rises when growing the Rd values. However, in Case 2,
it behaves nonlinearly for either absence of Rd or low values of Rd. However, it acts as same as Case 1
for higher values of Rd (≥5). RMSDTavg attains its maxima at strong free-convection region in the
presence of thermal radiation. Since the RMSD values are lower in all cases, we get higher temperature
uniformity inside the box.
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Figure 12. Averaged temperature for different Ri and Rd values. (a) Case 1; (b) Case 2.

Figure 13. RMSDTcup for different Ri and Rd values. (a) Case 1; (b) Case 2.

Figure 14. RMSDTavg for different Ri and Rd values. (a) Case 1; (b) Case 2.

Figure 15 portrays the influence of Bejan number for both cases with different Ri and Rd values.
The values of Be are almost constant on raising the Ri values until Ri = 10, but, after this, it suddenly
fall down at Ri = 100 for both direction of moving-wall. When raising the Rd values, the Bejan number
is increased. It results that the radiation parameter boosted up the entropy generation inside the box.
It is clear that Be lies between 0 and 1. If Be tends to 0 then the irreversibility due to fluid friction
controls. If Be tends to 1, the irreversibility due to thermal transfer is leading. In all cases, the values of
Be is tends to 1, it results that the irreversibility due to thermal transfer is dominant here.
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Figure 15. Bejan number for different Ri and Rd values. (a) Case 1; (b) Case 2.

7. Conclusions

The impacts of the direction of a moving wall, thermal radiation and entropy on combined
convective stream and energy transfer of nanoliquids in a lid-driven enclosed box is numerically
explored. The leading mathematical model is solved by the control volume technique. The following
remarkable discoveries are detected from the study:

# The moving-wall direction drastically affects the stream field inside the enclosure. Single and
dual cell structures are formed in Case 1 and Case 2, respectively for all values of Ri, radiation
parameter and all nanoliquids;

# The skin friction declines upon raising the values of the Richardson number for Case 1. It increases
up to Ri = 1 and then decreases upon raising the Richardson number in Case 2;

# The higher local energy transport is attained at bottom of the heat wall for Case 1 and at top of
the hot wall for Case 2 in the forced and mixed convective flow regimes. The free-convection
mode provides a similar trend on both cases, that is, the highest heat transfer attains near the
bottom of the barrier;

# The thermal radiation parameter enhances the energy transport across the enclosure for all given
values of Ri and φ in both directions of the moving wall;

# The moving-wall direction greatly influences the energy transfer rate. The Case 1 (moving-wall
from left to right) provides a higher heat transfer rate than that of Case 2 for all values of Ri and
the radiation parameter;

# The averaged heat transport declines upon rising the volume fraction of nanoparticle in free
and mixed convection regimes for both moving-wall directions. The averaged heat transport
increases with the nanoparticles volume fraction in Case 1. It rises first and then declines upon
raising the values of nanoparticles volume fraction in Case 2;

# The Bejan number enhances on raising the Rd values. Entropy generation dominates by
thermal transfer;

# The lower values of RMSD in all cases illustrates the higher temperature uniformity inside the box;
# The Tcup and Tavg values are almost constant when changing the values of Rd in free-convection

flow for Case 2. The cup-mixing temperature behaves non-linear fashion for Case 1 and almost a
linear fashion for Case 2.
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