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Abstract: Chronic viral infections can persist for decades spanning thousands of viral generations,
leading to a highly diverse population of viruses with its own complex evolutionary history.
We propose an expandable mathematical framework for understanding how the emergence of
genetic and phenotypic diversity affects the population-level control of those infections by both
non-curative treatment and chemo-prophylactic measures. Our frameworks allows both neutral and
phenotypic evolution, and we consider the specific evolution of contagiousness, resistance to therapy,
and efficacy of prophylaxis. We compute both the controlled and uncontrolled, population-level basic
reproduction number accounting for the within-host evolutionary process where new phenotypes
emerge and are lost in infected persons, which we also extend to include both treatment and
prophylactic control efforts. We used these results to discuss the conditions under which the
relative efficacy of prophylactic versus therapeutic methods of control are superior. Finally, we give
expressions for the endemic equilibrium of these models for certain constrained versions of the
within-host evolutionary model providing a potential method for estimating within-host evolutionary
parameters from population-level genetic sequence data.

Keywords: multi-strain infectious diseases; mathematical modeling; basic reproduction number;
sensitivity analysis

1. Introduction

Pathogens that lead to persistent chronic infection in people must mitigate both the innate and
adaptive immune systems. Strategies for evading the innate immune system are complex including
direct subversion of host signaling pathways [1]. Pathogens such as HIV avoid the adaptive immune
system by simply evolving new phenotypes faster than the host immune system can adapt, leading to
a rapid co-evolutionary race. Because HIV has a short generation time and generates a massive number
of new viral particles each day [2], this evolutionary race creates a large potential for the emergence
of new viral strains and phenotypes. This rapid evolutionary process is one of the many reasons
that HIV is exceedingly difficult to treat. Mutations that evolve in a single host are also known to
be transmitted. In 2014–2016, 6 out of 11 countries looking for the presence of pre-treatment drug
resistance (i.e., presence of a drug resistant phenotype in persons unexposed to the drug) reported
greater than 10% of new infections were resistant to one or more non-nucleoside reverse-transcriptase
inhibitor, which is related to both treatment failure and death [3]. The rapid emergence of new viral
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phenotypes within infected persons is not just a clinical problem, it is an epidemiological problem.
Chemo-prophylactic measures that focus on protecting uninfected persons using similar drugs to
those used for treating infected persons are not immune to evolutionary derailment. In King Country,
Washington, 0.5% of people living with HIV were found to have resistance mutations to the drugs
used for prophylaxis [3]. However, with the emergence of chemo- and bio-prophylactic agents
(i.e., anti-HIV antibodies for prevention), we must consider the possibility that population-level
administration of these agents can shift the ever evolving landscape of chronic viral infections to more
resistant variants.

This paper is motivated by a need for mathematical models that integrate within-host genetic
diversity and phenotypic evolution with epidemiological dynamics and consider the effects of
joint therapeutic and prophylactic controls. We also attempted to balance the complexity of the
model to be usable as a data analysis tool with the desire to understand the mathematical and
statistical properties of the model using analytical methods. Our model accounts for within-host
evolution among multiple phenotypes characterized by variable contagiousness, resistance to
prophylactic measures, and resistance to therapeutic measures. Our framework allows for new
phenotypes to emerge in chronic infection that can be both transmitted and possibly lost in later hosts.
We consider both the epidemiological and evolutionary effects of both therapy for infected persons
and chemo-prophylaxis-type measures for uninfected persons.

There has been a number of results devoted to the analysis of different aspects of the evolutionary
and epidemiological dynamics of a multi-strain pathogen. While there is a wide spectrum of
different models covering different aspects of virus/immune system evolution and their interaction,
most developed models are too complex to be analyzed analytically thus, their analysis restricts to
carrying out and analyzing the results of numerical simulations. Our model is related to the approach
of Lythgoe et al. [4] that considers the possibility of a person infected with a virus of type i can transmit
a virus of type j at a time-dependent rate βij(t). While this approach presents a detailed model of
the within-host viral evolution, it requires a substantial amount of data that is not readily available:
virus reproduction, mutation and death rates. Furthermore, since we need to take into account the
duration of the infection at the time when transmission occurs, the system dynamics is governed by
integro-differential equations, which are difficult to deal with. On the other hand, such a detailed
approach turns out to be an overkill as the total pool of infected contain the individuals at different
stages of disease and hence, the transmission rates undergo a sort of averaging over the whole set of
infected. Therefore, we employ a simpler formalism in which we treat the virus evolutionary dynamics
in a more coarse grained fashion. This allows us to balance our mutual goals of a sufficiently complex
model that can still be approached analytically.

Complex multi-strain models have been proposed for influenza [5,6] and dengue [7] that focus
on both cross-reactivity among circulating strains and coinfection [8] rather than the emergence of
new strains within infected hosts. Much of this work is often based on complex models that are
intended to explain specific biological phenomena that are too complex to be understood by applied
analysis methods. On the other hand, there has been a number of papers devoted to the analytic
analysis of certain aspects of multi-strain virus dynamics. However, most of the papers either deal with
rather restricted setups or study only certain aspects of the system dynamics. We mention stability
analysis of within-host multi-strain virus dynamics with mutations [9]; analysis of a multi-strain
(actually two-strain) disease with environmental transmission, no mutations [10]; bifurcation analysis
of a number of (rather simple) multi-strain epidemiological models without mutation [11].

Further information about different approaches to modeling the evolutionary and population-based
dynamics of multi-strain pathogens as well as the description of the problems that arise in this
connection can be found in [12,13]

It should be noted that most research effort aimed at studying the dynamics of multi-strain viruses
does not take into account the possibility of within-host mutations and concentrate on modeling
different immune system responses in reaction to re-infection or coinfection. In contrast to that, we are
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more concerned with the effect of mutations on both the within-host and population-level distribution
of viral strains and on how both the emergence and loss of phenotypes within infected persons alters
the population-level control of chronic viral infections.

2. Description of the Models and Their Structural Properties

2.1. A Baseline Model of a Chronic Multi-Strain Virus Infection

In the baseline version of the model we consider the within-host evolution and transmission of
distinct strains that have the same phenotype. This type of neutral genotypic evolution is the basis of
both the molecular epidemiology and phylodynamics of viral infections. In order to account for virus
variability, the whole set of viruses is divided into n types (strains), Vi, i = 1, . . . , n (in the following,
we will use the words virus strain and virus type interchangeably). This space defines the evolutionary
domain of the model (i.e., only these pre-specified strains can exists); however, the analytical results
we present are valid for any number of strains. We assume that all infections are founded by a single
virus of type i. During the acute infection stage, we assume that the patient’s viral population consists
of only the founding-type virus, while during the chronic stage, the original virus is allowed to mutate
thus producing new strains according to the within-host evolutionary model. Therefore, we assume
that each chronically infected individual’s viral population contains a distribution of viral strains
dependent on both the founding viral type and the time from infection.

To model the population-level process of disease propagation we assume an SI model with two
stages of disease: an initial acute stage followed by a longer chronic stage. Furthermore, we extend the
set of state variables to include the individuals enrolled into treatment. In doing so we assume that the
treatment is completely efficient and the patients are fully compliant with the treatment.

When writing the differential equations of the model we assume the inflow to be equal to the
outflow hence, the total population size remains constant. Therefore, we write the model equations for
the fractions of the respective cohorts in the total population. This implies, in particular, that the sum
of all the states is equal to 1. We have the following set of DEs (state variables and parameters defined
in Table 1):

İAi = φi(X)S− γIAi − µIAi

İCi = γIAi − uT ICi − µICi

Ṫ = uT

n

∑
i=1

ICi − µT

Ṡ = µ−
n

∑
i=1

φi(X)S− µS

(1)

where X = [IA1, . . . , IAn, IC1, . . . , ICn, T, S] is the (2n + 2)-dimensional state vector, i ranges from 1
to n, and the respective forces of infection are defined as

φi(X) = βA IAi + βC

n

∑
j=1

αij ICj. (2)

In Equation (2), αij ∈ [0, 1] denotes the average fraction of type i viruses in the viral population
of an individual initially infected by the type j virus. It should thus hold that ∑n

i=1 αij = 1 for all
j = 1, . . . , n. Furthermore, we assume that αii 6= 0 for all i = 1, . . . , n. This means that the viral
population of an individual infected with the type i virus always contains a non-zero amount of
the corresponding strain. Parameters βA and βC are the transmission rates of acute and chronically
infected individuals. In the baseline model, the viruses are phenotypically homogeneous, therefore the
probability that a susceptible individual contracts a disease depends only on the disease stage of the
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infected contact, but not on the type of virus. That is to say, a susceptible can be equally well infected
by any virus.

Furthermore, we assume a homogeneous contact structure, i.e., we assume that a susceptible
individual can have contact with any infected person with the same probability. The only distinction
is made between acutely and chronically infected individuals that are assumed to have different
transmissibility coefficients βA and βC. Specifically, we assume that βA and βC differ by a
proportionality coefficient ξ: βA = ξβC (we shall still occasionally write βA if it makes the notation
more straightforward). With this, expression Equation (2) turns into

φi(X) = βC

(
ξ IAi +

n

∑
j=1

αij ICj

)
. (3)

2.2. A Generalized Model with Differentially Effective Control, Variable Transmissibility and Prophylaxis

We generalize the baseline model by allowing different strains to have different phenotypes by
relaxing the model assumptions along the following lines:

• The efficacy of the treatment program depends on the viral strain. That is, the treatment program
fails with certain probability, which varies depending on the virus strain, causing the treated
individuals to thus revert back to active chronic infection.

• Virus strains have different levels of contagiousness.
• The efficacy of prophylactic measures depends on the viral strain. While on prophylaxis,

an individual acquires protection against the virus depending on the specific viral strain.

To account for different failure rates of treatment we divide the group of people on treatment into
n compartments Ti, where i corresponds to the virus strain. Furthermore, we add a cohort of people
receiving prophylaxis, denoted by P. While on prophylaxis, the individuals acquire variable protection
against different virus strains denoted by ψi ∈ [0, 1] with ψi = 1 corresponding to full protection.
Thus we have the following model:

İAi = φi(X)S + (1− ψi)φi(X)P− γIAi − µIAi

İCi = γIAi + ζiTi − uT ICi − µICi

Ṫi = uT ICi − ζiTi − µTi

Ṡ = µ− uPS−
n

∑
i=1

φi(X)S + δP− µS

Ṗ = uPS−
n

∑
i=1

(1− ψi)φi(X)P− δP− µP

(4)

where ζi ≥ 0 is the failure rate associated with the ith control, δ is the inverse duration of prophylaxis,
and uT , resp., uP are the rates at which people are administered to either treatment or prophylaxis.
To account for variable transmissibility of different virus strains we define a set of transmissibility rates
βAi and βCi, i = 1, . . . , n. Similarly to the baseline case, the transmissibility rates for the corresponding
acute and chronic stages are assumed to be proportional, i.e., βAi = ξβCi. The proportionality
coefficient ξ does not depend on the virus type i and is determined by the number of virions in the
blood, which is assumed to be the same for all virus types. The forces of infection φi(X) are defined as

φi(X) = βCi

(
ξ IAi +

n

∑
j=1

αij ICj

)
. (5)

Note that setting either ζi = 0 or ψi = 0 or βCi = βC for all i = 1, . . . , n, we obtain different
variations of the baseline model.
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Notation. We let 0, 1, and E denote the matrices of zeros, ones, and the identity matrix (the use of
notation E instead of I for the identity matrix is common in German and Russian mathematical texts
(Germ., Einheitsmatrix); here we use it to avoid confusing notation I with the letter I used for infected
compartments). The sizes of the respective matrices are indicated as subscripts. A single subscript, for
example, as in En, denotes a square [n× n] matrix of respective type. Furthermore, IA and IC denote
the column vectors of respective variables and A denotes the matrix of α’s:

IA =

 IA1
...

IAn

 , IC =

 IC1
...

ICn

 , and A =

α11 . . . α1n
...

. . .
...

αn1 . . . αnn

 . (6)

Note that A is a non-negative, column stochastic matrix, i.e., all its columns sum to 1. Necessary
facts about special classes of matrices that will be used throughout the text are presented in Appendix A.

All parameters and variables used in the model are listed in Table 1. Note that all quantities used
are assumed to take on non-negative values and the index i always runs from 1 to n.

Table 1. Model parameters. Parameters indicated with an asterisk are used only in the extended
model Equation (4).

State Variable Range Description

IAi [0, 1] Fraction of acutely infected individuals infected by the virus of type i.
ICi [0, 1] Fraction of chronically infected individuals infected by the virus of type i.
S [0, 1] Fraction of susceptible individuals

T [0, 1] Fraction of patients involved in treatment

Ti
∗ [0, 1] Fraction of patients infected by the virus of type i that are involved in treatment

P∗ [0, 1] Fraction of patients involved in prophylaxis

Parameter Range Description

uT Rate at which chronically infected are enrolled into treatment (controlled parameter)

uP
∗ Rate at which susceptible individuals are enrolled into prophylaxis (controlled parameter)

γ Inverse duration of the acute phase

µ Mortality rate

αij [0, 1] Fraction of type i viruses in the viral population of an individual initially infected by the type j virus.

βA, βC Transmissibility rates of acute and chronically infected individuals.

ξ Proportionality coefficient of the transmissibility in acute and chronic stages

ζi
∗ Failure rate of treatment for individuals infected by the virus of type i

δ∗ Failure rate of prophylaxis

ψi
∗ [0, 1] The level of protection against the virus strain i, which is conferred by prophylaxis; ψi = 1 corresponds to full protection

2.3. Structural Analysis

In this subsection we consider only the baseline model Equation (1) since the extended model has
the same properties and can be readily analyzed along the same lines.

Non-negativity of the solutions. The Equation (1) can be written as

d
dt


IA
IC
T
S

 =


βC [ξ IA + A IC] S− (γ + µ) IA

γ IA − µ IC
−µT

µ− βC1[1×n] [ξ IA + A IC] S− µS

+


0[n×1]
− IC

1[1×n] IC

0

 uT = Ψ(X) + Ψu(X)uT . (7)

The vector-valued functions Ψ(X) and Ψu(X) are essentially non-negative, i.e., for all j = 1, . . . , m,
m = 2n + 2, it holds that Ψj( X̃) ≥ 0 (resp., Ψu

j ( X̃) ≥ 0) for any X̃ ∈ Rm
≥0 such that X̃j = 0 (see [14]

for details). This implies that solutions of Equation (1) are non-negative. That is to say, for any
non-negative initial condition X(0) = X0 ∈ Rm

≥0 and any non-negative control uT the solution of
Equation (1) belongs to Rm

≥0 for all t ≥ 0.
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Boundedness of solutions. Observe that the m-simplex ∆m, formed as the convex hull of m unit
vectors ej, j = 1, . . . , m, is invariant with respect to Equation (1):

X(0) ∈ ∆m ⇒ X(t) ∈ ∆m,

where ∆m = {X ∈ Rm
≥0|∑

m
j=1 Xj = 1}. This result follows immediately from the fact that the states Xi

represent the fractions of the respective groups within the total population and hence sum to 1.

3. Local Analysis at a Disease-Free Equilibrium

Below, we will compute the basic reproduction number for both the baseline and extended models
and present a number of related results. To distinguish between the basic reproduction numbers related
to different models we will add a superscript denoting the particular model: α for the baseline model
Equation (1) and β for the extended model Equation (4).

3.1. Basic Reproduction Number for the Baseline Model

The system Equation (1) has a unique disease-free equilibrium (DFE) XDFE = [0, . . . , 0, 1].
To analyze the stability property of the system Equation (1) at the DFE we compute the controlled basic
reproduction number R0 using the classical next-generation method [15] (see [16] for an extension of
the method that takes into account the action of a control).

Theorem 1. For any choice of parameters αij ≥ 0 such that ∑i αij = 1 and αii 6= 0 for all i, j = 1, . . . , n,
the controlled basic reproduction number of the system Equation (1) is given by

Rα
0(uT) = βC

ξ(uT + µ) + γ

(γ + µ)(uT + µ)
=

ξβC
γ + µ

+
βCγ

(γ + µ)(uT + µ)
. (8)

Proof. See Appendix B.

Note that the αij values do not affect the basic reproduction number, which makes sense in this
context as mutation from one strain into another does not imply any change in a relevant phenotype
such as contagiousness or resistance to therapy. In this context, a different strain simply carries a
distinct mutation (or pattern of mutations) that makes it identifiable from other strains. However,
understanding the distribution of strains with the same phenotype is an important aspect of molecular
epidemiology, which is dependent on the specific αij values. This relationship between within-host
mutations and endemic equilibrium of infection types is discussed below.

Sensitivity analysis. When devising an intervention strategy, the main question to be answered
is whether the proposed treatment or prophylaxis scheme is capable of eliminating the infection,
i.e., driving the basic reproduction number below 1. To address this issue we introduce the sensitivity
parameter(s) R1 that quantify the efficiency of sufficiently small controls in reducing the value of
R0, [16]. In particular, the controlled basic reproduction number Rα

0(uT) is expanded as

Rα
0(uT) = Rα

0 + Rα
1uT +O(u2

T), (9)

where Rα
0 = Rα

0(0) = βC
γ+ξµ

µ(γ+µ)
, Rα

1 = − βCγ

µ2(γ+µ)
, andO(u2

T) is a high-order term, which is proportional
in magnitude to the square of the control uT . Before proceeding with further analysis, we define the
notion of efficiency of a control.

Definition 1. Let the uncontrolled basic reproduction number be larger than 1, i.e., R0(0) > 1. A control u is
said to be

1. Locally efficient if the respective sensitivity parameter is negative, i.e., R1 < 0;
2. (Globally) efficient if there exists a non-negative value u∗ such that R0(u∗) = 1.
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Furthermore, we say that a control is unconditionally locally (globally) efficient if 1. (2.) holds for all
admissible values of parameters. Otherwise the control is said to be conditionally efficient.

We can immediately observe that uT is unconditionally locally efficient. However,
an unconditionally locally efficient control may fail to reach the stated goal of eliminating the infection,
i.e., reducing R0 below 1. The following result illustrates that.

Lemma 1. The control uT is globally efficient if βC satisfies

ξβC < γ + µ. (10)

Proof. This result can be easily checked by observing the expression for Rα(uT) in Equation (8) and
noting that the second summand vanishes as uT tends to infinity.

Remark 1. Note that the condition Equation (10) can be alternatively rewritten as βAθA < 1,
where θA = 1/(γ + µ) denotes the average duration of the acute stage.

The result of Lemma 1 implies that the control uT is only conditionally globally efficient.
That is, it can be used to completely eliminate the infection only if the transmissibility βC
satisfies Equation (10).

3.2. Basic Reproduction Number for the Extended Model

In contrast to the baseline case, the disease free equilibrium for the modified model Equation (4)
is shifted due to the action of the control uP. So, we have

XDFE = [01×n, 01×n, 01×n, PDFE, SDFE], (11)

where SDFE(uP) = δ+µ
δ+µ+uP

and PDFE(uP) = 1 − SDFE(uP) = uP
δ+µ+uP

. Local stability of the

DFE Equation (11) is determined by Rβ
0 (uT , uP). Before we proceed with the analysis, we note

that the results to follow will be formulated using matrix notation. In particular, we will write
BC = diag(βC1, . . . , βCn), Ψ = diag(ψ1, . . . , ψn), and Z = diag(ζ1, . . . , ζn) to denote the
diagonal matrices of transmissibility rates, protection factors and treatment failure rates.

Theorem 2. The controlled basic reproduction number of the system Equation (4) is given by

Rβ
0 (uT , uP) =

β̄C(γ + ξµ)

(γ + µ)µ
ρ (Q(uP)N(uT)) , (12)

where β̄C = maxi βCi, B̄C = β̄−1
C BC, Q(uP) = B̄C [En − PDFE(uP)Ψ], N(uT) =

1
γ+ξµ [ξµ En + γ A∆(uT)],

and ∆(uT) = (Z + (µ + uT)En)−1(Z + µ En).

Proof. See Appendix B.

Note that the basic reproduction number of the extended system is a product of two terms: the first
one closely resembles Rα

0 as in Equation (9), while the second term is the spectral radius of the product
of two matrices, where the first one depends only on uP and the second one depends only on uT .

Before we proceed with the analysis, we formulate an important result on stochastic matrices that
we need to obtain further results.

Lemma 2. Let Σ be a non-negative, column stochastic matrix. Then for any α ∈ [0, 1], the convex combination
Σα = α E + (1 − α)Σ is a column stochastic matrix as well. Furthermore, the left and right dominant
eigenvectors of Σ coincide with those of Σα.
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Proof. Consider the ith column of the matrix Σα, i = 1, . . . , n. Summing its components and using
the fact that Σ is column stochastic we get α1 + (1− α)1 = 1. This implies that Σα is column stochastic
as well. Further, let v be the right dominant eigenvector of Σ, i.e., Σv = v. We have

Σαv = α Ev + (1− α)Σv = αv + (1− α)v = v,

hence, it is the right dominant eigenvector of Σα as well. The case of a left dominant eigenvector is
shown analogously.

Sensitivity analysis. We begin this paragraph by writing down an expansion of Rβ
0 (uT , uP).

Theorem 3. Let A be irreducible and let w0 and v0 be the left and the right dominant eigenvectors of
Q(0)N(0) = B̄C Ā, corresponding to ρ ( B̄C Ā) and normalized such that w>0 v0 = 1. The controlled basic
reproduction number Rβ

0 (uT , uP) can be written as

Rβ
0 (uT , uP) = Rβ

0 + Rβ
1,TuT + Rβ

1,PuP +O(‖(uT , uP)‖2), (13)

where Rβ
0 = β̄C(γ+ξµ)

(γ+µ)µ
ρ( B̄C Ā), Rβ

1,T = −w>0
[

Rβ
0 En − ξ

(γ+µ)
BC

]
(Z + µ En)−1v0,

and Rβ
1,P = −Rβ

0
1

(δ+µ)
w>0 Ψv0.

Proof. See Appendix B.

This result has a number of important consequences as formulated below. We first consider
a slightly simplified setup. Let there be no variability in transmission rates, i.e., BC = βC En and
B̄C = En. Then, according to Lemma 2, the vectors w0 and v0 coincide with those of A. In particular,
we have w0 = 1[n×1] since the matrix A is column stochastic. The respective coefficients turn into

Rβ
0 = Rα

0 , Rβ
1,T = −Rβ

0
γ

γ+ξµ w>0 (Z + µ En)−1v0, and Rβ
1,P = −Rβ

0
1

(δ+µ)
w>0 Ψv0. That is, we can write

Rβ
0 (uT , uP) = Rβ

0

(
1− γ

γ + ξµ
w>0 (Z + µ En)

−1v0 · uT −
1

(δ + µ)
w>0 Ψv0 · uP

)
+O(‖(uT , uP)‖2).

Obviously, both controls are unconditionally locally efficient. We can also observe that the control
uT is locally more efficient than uP if it holds that

γ

γ + ξµ
w>0 (Z + µ En)

−1v0 >
1

(δ + µ)
w>0 Ψv0. (14)

The inequality Equation (14) implies that the control uT decreases the basic reproduction number
to a larger extent, as the respective sensitivity coefficient Rβ

1,T is larger in absolute value than Rβ
1,P.

Obviously, we have that uP is locally more efficient if the opposite holds true. The inequality
Equation (14) can be interpreted as follows. Note that τi = 1/(ζi + µ) and π = 1/(δ + µ) are
the average duration of being either on treatment or on prophylaxis and recall that w>0 = [1, . . . , 1].
Then we can write Equation (14) as

∑
i

γ

γ + ξµ
τiv0i > ∑

i
ψiπv0i.

Here, the factor γ/(γ + ξµ) is interpreted as the degree of protection given by the treatment.
Note that this number decreases with increasing ξ, i.e., when the acute stage is much more contagious
compared to the chronic stage. If ξ = 1, the fraction γ/(γ + µ) merely corresponds to the fraction
of people that survive to the chronic stage. Note that this interpretation has to do with the fact
that we assume the acute stage is short enough that people will not start treatment while they
are in the acute stage of infection. Therefore, the duration and contagiousness of the acute stage
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of infection are potentially strong determinants of the efficacy of therapy as a population-level
control. This assumption is reasonable for diseases like HIV, but may need to be revisited for
application to other diseases. Next, we note that the components of the vector v0 are proportional
to the stationary distribution of different strains of the virus in the baseline model (see Section 4 for
more details on that). Thus, we can interpret the sensitivity parameters Rβ

1,T and Rβ
1,P as a sum of

products average duration of the medical intervention × protection conferred by the intervention taken with
the weights corresponding to the stationary distribution of the virus strains.

Following the same line, one can attempt to compare the efficiency of two controls in the general
case. To start with, we write Equation (13) as

Rβ
0 (uT , uP) = Rβ

0

(
1− w>0

[
En −

ξ

(γ + µ)Rβ
0

BC

]
(Z + µ En)

−1v0uT −
1

(δ + µ)
w>0 Ψv0uP

)
+O(‖(uT , uP)‖2)

As above, we say that uT is locally more efficient than uP if

∑
i

[
1− βAiθA

Rβ
0

]
τiw0iv0i > ∑

i
ψiπw0iv0i, (15)

where β Ai is the contagiousness of the ith strain during the acute stage and θA is the average duration
of the acute stage (cf. Remark 1).

Similarly to the previous case, we interpret the expression in front of τi as the degree of protection
given by the treatment to those infected with the i-type virus. Note that a sufficient condition for this
expression to be positive is βAiθA < 1. In contrast to the previous case, the components w0iv0i do not
have that clear interpretation. However, their behavior is pretty close to that of v0i.

Finally, we observe that for sufficiently large controls uT and uP we have

lim
uT→∞
uP→∞

Rβ
0 (uT , uP) =

ξ

(γ + µ)
ρ (BC [En −Ψ]) =

ξ

(γ + µ)
max

i
(βCi(1− ψi)),

which yields the result that agrees with the result of Lemma 1.

Lemma 3. The controls uT and uP are jointly globally efficient if

ξ max
i

(βCi(1− ψi)) < γ + µ.

4. Endemic Equilibrium

In contrast to the unique disease-free equilibrium, there can be one, many (a continuum), and no
endemic equilibria at all. Which case realizes in our system depends on the value of the basic
reproduction number and on the structure of the matrix A as will be shown below. For the general
case, the endemic equilibrium can be computed using a rather involved semi-analytic procedure
and offers a little insight into the structure of the respective equilibrium. Therefore, we restrict
ourselves to the baseline model. The general model is considered in Section 5 that is devoted to
the numerical simulations.

We begin by stating a general result on the endemic equilibrium.

Theorem 4. Let A be an irreducible non-negative column stochastic matrix such that all diagonal elements
are non-zero. Then the endemic equilibrium for the system Equation (1) exists and is unique if R0 > 1.
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Let, furthermore, v> = [v1, . . . , vn] be the right normalized eigenvector of A corresponding to the dominant
eigenvalue of A and satisfying ∑n

i=1 vi = 1. The components of the endemic equilibrium state are given by

I∗Ai =
µ

(γ + µ)

(
1− 1

R0

)
vi, I∗Ci =

γµ

(γ + µ)(uT + µ)

(
1− 1

R0

)
vi,

T∗ =
γuT

(γ + µ)(uT + µ)

(
1− 1

R0

)
, S∗ =

1
R0

.
(16)

Proof. See Appendix B.

Note that the only additional property of the matrix A that is involved in this theorem is that A
is irreducible. For the definition of irreducibility and further details see Appendix A.

The obtained result can be used to compute a number of derived quantities. For instance, we have
that the total prevalence at the endemic equilibrium is equal to

Π = 1− S∗ =
R0 − 1

R0

and the ratio of transmissions through acutely infected to the transmission through chronically infected
is given by

rAC =
ξβC ∑n

i=1 IAi

βC ∑n
i=1 ICi

=
ξβCiAΣ

βCiCΣ
=

ξβC(uT + µ)

βCγ
. (17)

Using the statistical estimations of these two parameters one can recover ξ and βC.
Before we proceed to the next result we recall that αij can be interpreted as the probability of

catching a virus of type i through the contact with an individual initially infected by the virus of type j.
So, we can make the following observation.

Lemma 4. At the endemic equilibrium, the probability of encountering a chronically infected in the ith category
is equal to the probability of catching the type i virus through the contact with a randomly chosen chronically
infected individual:

I∗Ci =
n

∑
j=1

αij I∗Cj.

Proof. Using the expression for I∗Ci from Equation (16), we can write

n

∑
j=1

αij I∗Cj =
γµ

(γ + µ)(uT + µ)

(
1− 1

R0

) n

∑
j=1

αijvj.

However, since v is the dominant eigenvector of A, it holds that ∑n
j=1 αijvj = vi, whence the

result follows.

If the matrix A is reducible, the results of Theorem 4 do not apply any longer. However, we can
formulate a weaker version of the theorem. First, we note that a reducible matrix can be transformed
to the normal form by means of a properly chosen permutation matrix:

Ã = PAP> =


Ã1 ∗ . . . ∗
0 Ã2 . . . ∗
...

. . . ∗
0 0 . . . Ãk

 , (18)

where Ai, i = 1, . . . , k are irreducible matrices and asterisks denote arbitrary non-negative matrices.
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Theorem 5. Let A be a reducible non-negative matrix with non-zero diagonal elements such that it can be
transformed into the normal form Equation (18) by an appropriate simultaneous permutation of rows and
columns. Then A has at most k unit eigenvalues. Furthermore, let v = {v1, . . . , vq} be the set of normalized
eigenvectors corresponding to the unit eigenvalues, q ≤ k. Then the set of endemic equilibria is defined as follows:

I∗Ai =
µ

(γ + µ)

(
1− 1

R0

)
v̄i, I∗Ci =

γµ

(γ + µ)(uT + µ)

(
1− 1

R0

)
v̄i,

T∗ =
γu

(γ + µ)(uT + µ)

(
1− 1

R0

)
, S∗ =

1
R0

,
(19)

where the vector v̄ belongs to the linear hull of vectors from v: v̄ ∈ Span(v).

Theorem 5 implies that the set of endemic equilibria can form a linear subspace of the system’s
state space. The case when the matrix A is reducible corresponds to the situation when there are some
particular groups of virus strains, say, two groups G1 and G2. Reducibility implies that the mutations
between these groups are either not possible at all, G1 = G2 or possible only in one direction, G1 ← G2,
but G1 9 G2 (or vice versa). Such a setup allows for considering directed patterns of viral evolution.
However, this question is beyond the scope of this paper and will be addressed in our future work.

Structure of the Matrix A: Uniform within Host Mutations

An important observation that follows from the preceding analysis is that one cannot
unambiguously determine all n2 parameters αij from the observations made at the endemic equilibrium.
The reason for this is that the equilibrium values depend on the n components of the vector v
(see Equation (16)) of which only n − 1 values are independent. We thus restrict ourselves to
considering one particular structure of the matrix A that can be formulated in terms of only n
parameters. More complex structures are possible and can be treated using the same results.
In particular, Theorem A1 in Appendix A offers a convenient tool for computing the respective
dominant eigenvector.

Assume that during the chronic infection stage the viral population of the individual, initially
infected with the type i virus contains the fraction πi of the original virus while the remaining strains
of the virus are distributed uniformly. This means that the matrix A has the following form:

A =


π1

1−π2
n−1 . . . 1−πn

n−1
1−π1
n−1 π2

1−πn
n−1

...
...

. . .
...

1−π1
n−1

1−π2
n−1 . . . πn

 . (20)

To make a connection to the standard form of the matrix A Equation (6) we note that with such
parametrization we have αii = πi and αji =

1−πi
n−1 for all j 6= i.

The matrix Equation (20) is positive hence, the Perron–Frobenius theorem applies. There is a
unique dominant eigenvalue that is equal to 1, and the components of the dominant eigenvector have
the following form:

vi =
∏j 6=i(1− πj)

∑n
i=1 ∏j 6=i(1− πj)

.

The respective expressions for the system states at endemic equilibrium are pretty bulky. However,
we can compute the ratios of infected in different groups, which turn out to have a simple form:

rij =
IAi + ICi
IAj + ICj

=
vi
vj

=
1− πj

1− πi
.
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Note that the condition ∑i vi = 1 implies that there are only (n − 1) independent equations.
Thus, one parameter πi can be set to an arbitrary value within the range [0, 1]. Let, for instance, πn be
used as a free parameter. In this case, all remaining probabilities can be expressed in terms of πn

and vi:
πj = 1− (1− πn)

vn

vj
, j = 1, . . . , n− 1.

In the following we will consider a slightly more realistic scenario in which all viruses are ordered
according to their genetic similarity and any virus can mutate only to its “neighbors”. The respective
matrix A has the following form:

A =


π1

1−π2
2 . . . 0

1− π1 π2 0
0 1−π2

2 . . . 0
...

...
. . .

...
0 0 . . . πn

 . (21)

Matrix A in Equation (21) is non-negative, irreducible and acyclic. Hence, the Perron–Frobenius
theorem applies as well. Quite remarkably, the respective expressions do not change that much
compared to the previous case. Setting vi and assuming that πn can be freely chosen we get

π1 = 1− (1− πn)
vn

v1
, πj = 1− 2(1− πn)

vn

vj
, j = 2, . . . , n− 1. (22)

5. Numerical Simulation for Different Scenarios and Illustration of Results

To illustrate our results we will present several scenarios that are aimed at illustrating different
aspects of the considered problem. As a testbed for our numerical analysis we consider a model
with four virus strains. On the one hand, this model is complex enough to illustrate different
interesting features of the studied model, but on the other hand, it can be easily visualized and
analyzed. We believe that such setup might be a reasonable use case of the framework where we have
a limited number of putative strains that are characterized by well-defined phenotypes. A particularly
important fact is that our results are valid for any number of strains.

First consider the baseline model (no prophylaxis, single treatment, and uniform contagiousness).
Later on we will extend this model along several directions. We take the following values of the
parameters: µ = 0.025, γ = 3 (i.e., the acute phase takes about four months); ξ = 5 (during the acute
phase an individual is five times more contagious as in the chronic one); uT = 0.4 (it takes 2.5 years
on average until the treatment begins). The baseline transmissibility rate βC was chosen such that
R0(uT = 0.4, uP = 0) ≈ 1.2: βC = 0.25. The matrix A is assumed to have the form Equation (21).
When choosing the values of the probabilities πi, we imposed the following conditions on the endemic
distribution of the different virus strains:

Case 1. vj/vj+1 = 3, j = 1, 2, 3. Assuming that π4 = 0.25 one can compute the remaining
probabilities using Equation (22): π1 ≈ 0.97, π2 ≈ 0.83, and π3 = 0.5. Finally, the endemic
frequencies are [v1, v2, v3, v4] = [0.675, 0.225, 0.075, 0.025].

Case 2. vj/vj+1 = 7, j = 1, 2, 3. Similarly to the previous case, we fix π4 = 0.25 and compute the
remaining probabilities π1 = 0.9985, π2 = 0.9796, and π3 = 0.8571. The respective endemic
frequencies are [v1, v2, v3, v4] = [0.8575, 0.1225, 0.0175, 0.0025].

Now we proceed with a detailed qualitative analysis of the two described models.

5.1. Controlled Basic Reproduction Number

Equation (12) that gives the controlled basic reproduction number for the extended model does
not have an immediately apparent intuitive interpretation, however, it allows us to measure the
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influence of within-host evolution on the controllability of pathogens by therapy and prophylaxis.
Figure 1 illustrates how Equation (12) can be used to measure the effects of different levels of resistance
to prophylactic interventions on the extent of controls needed to bring a pathogen to sub-critical
levels. In the “No resistance” case, we assume that resistance to prophylaxis cannot be evolved (ψi = 1,
i = 1, . . . , 4), and we see a clear synergistic interaction between the therapy and prophylactic controls;
the level of therapeutic control can be reduced by more than half by even a modest investment in
the prophylactic control. In the “Resistance, high cost” we assume that ψ4 = 0, that is, a very rare
strain is resistant to the prophylactic control. We refer to this scenario as ’high cost‘ because the strain
quickly reverts to a wild-type variant suggesting that the mutations involved have a high evolutionary
cost and, in the absence of the prophylactic control, the mutations defining this strain are slightly
deleterious. In this scenario, the benefit of increasing the prophylactic control saturates when the
selection for the resistant phenotype balances out the deleterious effects of the resistance mutations
and there is no further population-level benefit to prophylaxis. Minor variants that confer resistance,
even when that resistance is associated with a non-trivial evolutionary cost, can have a major effect
on the control properties of the system. In the “Resistance, low cost” scenario we assume that the
evolutionary cost of mutations that confer resistance is lower (i.e., once the mutation(s) occur, they tend
to be lost at a slower rate), which we parameterize by setting ψ1 = 0. In this scenario, even a very
small level of prophylaxis leads to the resistant strain becoming the dominant strain and has only a
small effect on R0. The results in Case 1 and Case 2 were nearly identical suggesting that the control
properties of the system are robust to some level of variation in the underlay within-host evolutionary
dynamics. Note that we consider the uniform transmissibility/uniformly efficient treatment case,
hence there is a little phenotypic variability in the model.

No resistance Resistance, high cost Resistance, low cost

C
ase 1

C
ase 2

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

uP

u T

2.5 5.0 7.5 10.0
R0

Figure 1. The panel shows the values of R0(uT , uP) as a function of two controls for two cases described
above. The red color corresponds to the case R0 ≤ 1. We assume a uniform rate of transmission,
i.e., βi = β = 0.3 for all i = 1, . . . , 4 and fully efficient treatment, i.e., ζi = 0, i = 1, . . . , 4. Remaining
parameters are: ξ = 5; γ = 3; µ = 0.025; and δ = 0. The subfigures forming the panel correspond to
the following values of prophylaxis efficiency coefficients: left, ψ = [1, 1, 1, 1]; central, ψ = [1, 1, 1, 0];
right, ψ = [0, 1, 1, 1].

5.2. Endemic Distribution with Variable Transmissibility

To see how varying transmissibility influences the endemic distribution we fix the
transmissibilities of the first three strains to be equal to βC, while the transmissibility of the fourth
strain is βC4 = aβC, where a changes from 0.7 to 2. This particular choice is dictated by the wish to
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have a well expressed example of the variation of endemic frequencies. Obviously, if we varied the
transmissibility of a different strain, the result would be the same, but less expressed.

The resulting relative endemic frequencies for both cases are shown in Figure 2. The relative
frequencies were computed as fi =

IAi+ICi
∑ IAi+∑ ICi

. Note that at a = 1 the endemic distribution coincides
with the baseline one. It is interesting to observe that variation in transmissibility of one strain leads to
substantial variation in the frequencies of the other strains as facilitated by within-host mutation.

(a) Case 1 (b) Case 2

Figure 2. The relative endemic distribution of infected individuals for different values of the
transmissibility rate of the 4th strain, parametrized with a: βC,4 = aβC. The values at a = 1 (marked by
a red dashed line) correspond to the baseline case, where all transmissibility rates are equal. Subfigures
(a) and (b) correspond to different values of mutation probabilities πi.

5.3. Endemic Distribution with Variable Prophylaxis Effects

To study the effect of prophylaxis on the endemic distribution of different strains we assume
that prophylaxis confers a full protection against the three first strains, while providing no protection
against the last strain. That is to say, the matrix Ψ has the form

Ψ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

Furthermore, we assume that the prophylaxis program takes three months, i.e., δ = 4. We change
the rate at which people are recruited to prophylaxis and study its effect on the relative frequencies of
respective strains. The results are presented in Figure 3.

We see that as uP grows, the fraction of the last, resistant strain grows as well. In general,
the frequencies of strains tends to a more uniform distribution. On the other hand, as uP grows,
the total fraction of infected individuals decreases and approaches zero for uP = 0.88 (Case 1) or
uP = 0.8 (Case 2). It is worth noting that even for a sufficiently large value of uP = 0.75, the fraction of
the total population being on prophylaxis does not exceed 15%. This can be explained by a relatively
fast turnover: one cycle of prophylaxis lasts three months, after which the individual returns to the
group of susceptible.

This implies that while imperfect prophylaxis leads to some increase in the frequencies of the
viruses that evade it, this increase is rather restricted. The main reason is that when prophylaxis covers
a small fraction of the population it does not create sufficient evolutionary pressure, while when it
increases it eventually contributes to the complete eradication of the disease. This result is potentially
very encouraging as new prevention methods for HIV based on administration of broadly neutralizing
antibodies are predicted to have highly differential levels of protection to diverse viral panels [17].
Although further work is needed to explore the potential of selective prophylactic agents to cause
strain-level selection in populations in the context of within-host mutation.
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(a) Case 1 (b) Case 2

Figure 3. The relative endemic distribution of infected individuals for different values of uP. Subfigures
(a) and (b) correspond to different values of mutation probabilities πi.

5.4. Endemic Distribution with Imperfect Treatment

To study the situation with imperfect treatment we follow the same route and assume that
the treatment is absolutely efficient for all strains except the last one. We vary the rate at which
the treatment fails and compute the endemic distribution of strains as shown in Figure 4. We also
assume that there is no prophylaxis. The result turns out to be quite surprising: not only the endemic
frequencies reshuffle, but also the total proportion of infected individuals increases dramatically,
see Figure 5.

(a) Case 1 (b) Case 2

Figure 4. The relative endemic distribution of infected individuals for different values of ζ4. Subfigures
(a) and (b) correspond to different values of mutation probabilities πi.

Figure 5. The total fraction of infected as a function of ζ4.

6. Conclusions

In this paper, we described two models of joint evolutionary and epidemiological dynamics of
a viral pathogen. While the first baseline model did not take into account the phenotypic variability
of the virus, the extended model addressed the within-host evolution among multiple phenotypes
characterized by variable contagiousness, resistance to prophylactic measures, and resistance to
therapeutic measures. We presented an analytic expression for the controlled basic reproduction
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number for both cases and carried out sensitivity analysis of the derived expression to the changes of
the control actions. It turned out that the sensitivity coefficients RT

1 and RP
1 have a straightforward

interpretation that can be used when assessing the relative efficacy of the controls. Further,
we characterized the endemic equilibria for the baseline model and an extension thereof and showed
that a sole assumption of variable transmissibility of different virus strains can lead to wide variations
in the endemic distribution of the respective strains. Finally, we carried out a numerical analysis aimed
at analyzing the effects of phenotypic diversity of virus strains on the population level dynamics and
distribution of different virus strains within the population. Our presented framework can be used as
a basic foundation for studying the complex interventions such as imperfect vaccines, antibody-based
prophylaxis, and new small-molecule therapeutics for a variety of chronic infections such as HIV,
herpes, and HPV. It is possible that this framework may be useful for studying even reality short lived
infections such as COVID-19. Early data suggests that the virus accumulates mutations over the course
of a single infection [18] and that some of those mutations may affect the viruses’ contagiousness [19].
Likewise, this model could be used to study the implications of strain specific vaccine effects or how
different vaccines could change the genetic landscape of SARS-CoV-2.
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Appendix A. Necessary Ingredients from Matrix Algebra

In this appendix, we present some facts about non-negative and stochastic matrices that will be
used in the sequel. The interested reader can find a thorough treatment of non-negative matrices,
in particular the Perron–Frobenius theory in [20]. The theory of stochastic matrices within the context
of Markov chains is detailed in [21].

Appendix A.1. Non-Negative Matrices

A matrix M is said to be non-negative (positive), denoted by M � 0 (M � 0), if it is element-wise
non-negative (positive). The matrix M is said to be reducible if there exists a permutation matrix P such
that the conjugated matrix PMP> has a block upper-triangular form. Otherwise the matrix M is said
to be irreducible. The matrix M is primitive if it is non-negative and there exists k ∈ N such that Mk � 0.
A non-negative irreducible matrix is primitive if at least one diagonal element is non-zero.

For irreducible non-negative matrices, there exists a real eigenvalue, called dominant that is
equal to the spectral radius of the matrix. The corresponding left and right dominant eigenvectors
are positive. This result follows from the celebrated Perron–Frobenius theorem [20]. In a reducible
case, the above results should be substantially weakened to remain true. In particular, there can be
multiple eigenvalues corresponding to the spectral radius r and the respective eigenvectors are merely
non-negative, rather than positive. If a non-negative matrix M is reducible, it can be transformed to
the normal form, which corresponds to a block upper diagonal matrix such that the diagonal blocks
are irreducible.

Appendix A.2. Stochastic Matrices

A non-negative matrix Q is said to be column stochastic (row stochastic) is all its columns (rows) sum
to 1. The notions of (ir)reducibility, primitivity and the Perron–Frobenius theorem can be extended to
stochastic matrices in a straightforward manner. Below we mention several properties that are specific
for stochastic matrices.
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A stochastic matrix is typically used to describe the transition structure of a Markov chain.
The spectral radius of a stochastic matrix is equal to 1. The respective normalized right eigenvector v
is called the stationary distribution of the respective Markov chain, i.e., Qv = v. Here, normalization
means that the components of v must sum to 1. If the stochastic matrix is irreducible, then due to
the Perron–Frobenius theorem the stationary distribution is unique and component-wise positive.
Finally, we present the result on computing the stationary distribution of an irreducible stochastic
matrix. This is a version of the Markov chain tree theorem [22], formulated using the results from
matrix theory (cf. [23]).

Theorem A1. Given an [n× n] irreducible column stochastic matrix Q , the ith element of the right dominant
eigenvector of Q is defined as the ith principal minor of the corresponding Laplacian Λ = Q− En:

wi = [Λ]i,i.

Proof. We have Qw = w, which is equivalent to (Q− En)w = Λw = 0. That is, w is the eigenvector
corresponding to the zero eigenvalue of Λ or, alternatively, w ∈ ker(Λ). By the Perron–Frobenius
theorem, the eigenspace associated with the dominant eigenvalue of Q, and hence, the kernel of Λ
is one-dimensional.

By the definition of the adjugate, we have adj(Λ)Λ = Λ adj(Λ) = det(Λ)En = 0n. This means,
in particular, that the columns of adj(Λ) are linearly dependent and proportional to the stationary
distribution v.

By transposing the first expression we get Λ> adj(Λ)> = 0. The columns of Λ
and hence, the rows of Λ> sum to 0, which implies that the kernel of Λ> is a
one-dimensional space spanned by 1[n×1]. This means that each column of adj(Λ)> has the form
coli

(
adj(Λ)>

)
= (−1)i+i[Λ]i,i · 1[n×1] = [Λ]i,i · 1[n×1]. Respectively, each column of adj(Λ) has the

form coli (adj(Λ)) =
(
[Λ]1,1, . . . , [Λ]n,n

)
. This concludes the proof.

Appendix B. Proofs

Proof of Theorem 1. The Jacobian matrix J(X) of Equation (1) evaluated at the DFE has the form

J(X)
∣∣

X=XDFE
=


(ξβC − (γ + µ))En βC A 0[n×1] 0[n×1]

γ En −(u + µ) En 0[n×1] 0[n×1]

0[1×n] u1[1×n] −µ 0

−ξβC1[1×n] −βC1[1×n] 0 −µ

 (A1)

We observe that the stability of Equation (A1) is determined by the eigenvalues of its [2n× 2n]
leading submatrix. As a side remark, we mention that this implies that in our case the computation of
R0 requires considering both IA and IC as infected states (cf. the discussion at the end of Section 2
in [16]). Following the standard procedure, we split the respective submatrix in two thus obtaining[

ξβC En βC A

0[n×n] 0[n×n]

]
+

[
−(γ + µ)En 0[n×n]

γ En −(u + µ) En

]
= F−V.

The basic reproductive number is defined as the spectral radius of the product FV−1,
i.e., R0 = ρ(FV−1). Using the standard result on the block matrix inversion we get

V−1 =
1

(γ + µ)(uT + µ)

[
(uT + µ)En 0

γ En (γ + µ)En

]
, (A2)
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The product FV−1 is equal to

βC
(γ + µ)(uT + µ)

[
ξ(uT + µ)E + γ A γ A

0n 0n

]

and hence, R0 is found as the spectral radius of the [n × n] matrix
(γ + µ)−1(uT + µ)−1βC [ξ(uT + µ)E + γ A]. We use the well known facts that if λ is an eigenvalue
of the matrix M, then aλ is an eigenvalue of the matrix aM and k + λ is an eigenvalue of the matrix
[k E + M] for any α ∈ R, k ∈ R. This implies that R0 = βCγ

(γ+µ)(uT+µ)

(
ξ(uT+µ)

γ + ρ(A)
)

. Finally, since A
is a column stochastic matrix, it holds that ρ(A) = 1 and hence, we obtain Equation (8).

Proof of Theorem 2. The Jacobian matrix of Equation (4) evaluated at the DFE has the form

J(X)
∣∣
X=XDFE

=

ξΨ̄ BC − (γ + µ)En Ψ̄ BC A 0n 0[n×1] 0[n×1]

γ En −(uT + µ) En Z 0[n×1] 0[n×1]

0n uT En −µ En − Z 0[n×1] 0[n×1]

−ξ1[1×n] BCSDFE −1[1×n] BC ASDFE 0[1×n] −(µ + uP) δ

−ξ1[1×n](En −Ψ)BCSDFE −1[1×n](En −Ψ)BC ASDFE 0[1×n] uP −(δ + µ)


, (A3)

where Ψ̄ = En − PDFEΨ.
The Jacobian Equation (A3) is a block lower-triangular matrix, of which the bottom-right [2× 2]

block is a negated M-matrix and hence Hurwitz. Thus stability of the DFE is determined by the
eigenvalues of the leading [3n× 3n] submatrix. As a side remark, we mention that this implies that
the Ti compartments must be considered as infected. That differs from what we observed in the
baseline case and emphasizes the importance of the right choice of the infected compartments (see the
discussion at the end of Section 2 in [16]).

Following the standard procedure, we split the respective submatrix in two:
ξΨ̄ BC Ψ̄ BC A 0n

0n 0n 0n

0n 0n 0n

+


−(γ + µ)En 0n 0n

γ En −(uT + µ) En Z

0n uT En −µ En − Z

 = F−V

A complete expression for the inverse of V is rather bulky. However, we note that since R0 is
computed as the spectral radius of FV−1, we need to compute only those blocks of the inverse that
enter the leading [n× n] submatrix of the product FV−1. So, we write

V−1 =
1

γ + µ


En 0n 0n

γ
µ ∆(uT) ∗ ∗

∗ ∗ ∗

 ,

where we used asterisks to denote the blocks that are not relevant to our problem. The diagonal matrix
∆(uT) is defined as

∆(uT) = (Z + (µ + uT)En)
−1(Z + µ En).

Finally we compute R0 to be

R0(uT , uP) =
1

(γ + µ)µ
ρ (ξµΨ̄ BC + γΨ̄ BC A∆(uT)) =

β̄C(γ + ξµ)

(γ + µ)µ
ρ

(
B̄CΨ̄

1
γ + ξµ

(ξµ En + γ A∆(uT))

)
,
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which is Equation (12). Note that B̄C and Ψ̄ are diagonal matrices and therefore commute.

Proof of Theorem 3. The proof is similar to the proof of Theorem 3.4 in [16] and hence will only be
sketched (note that there is a typo in Equation (10) in [16]; the correct expression is written next to

Equation (12) in [16]). First, we note that Rβ
0 = Rβ

0 (0, 0) = β̄C(γ+ξµ)
(γ+µ)µ

ρ ( B̄C Ā). Computation of Rβ
1,T and

Rβ
1,P coefficients boils down to computing partial derivatives of Rβ

0 (uT , uP) with respect to either uT or
uP at uT = uP = 0. Using the same approach as in [16], we get

Rβ
1,T =

β̄C(γ + ξµ)

(γ + µ)µ
w>0 Q(0)N′(0)v0,

Rβ
1,P =

β̄C(γ + ξµ)

(γ + µ)µ
w>0 Q′(0)N(0)v0.

Noting that Q(0) = B̄C, N(0) = Ā, Q′(0) = d
duP

Q(uP)

∣∣∣∣
uP=0

= − 1
δ+µ B̄CΨ, and N′(0) =

d
duT

N(uT)

∣∣∣∣
uT=0

= − γ
γ+ξµ A(Z + µ En)−1 we obtain

Rβ
1,T = − β̄Cγ

(γ + µ)µ
w>0 B̄C A(Z + µ En)

−1v0, (A4a)

Rβ
1,P = − β̄C(γ + ξµ)

(δ + µ)(γ + µ)µ
w>0 B̄CΨ Āv0. (A4b)

The expressions Equations (A4a) and (A4b) can be further transformed using the fact that w0 and
v0 are the left and the right eigenvectors of B̄C Ā corresponding to the spectral radius of this matrix
and expressing ρ ( B̄C Ā) through the basic reproduction number Rβ

0 as shown below.

Rβ
1,T = − β̄C

(γ+µ)µ
w>0 B̄C[(γ + ξµ) Ā− ξµ En](Z + µ En)−1v0

= − β̄C(γ+ξµ)
(γ+µ)µ

w>0 ρ( B̄C Ā)(Z + µ En)−1v0 +
β̄Cξ

(γ+µ)
w>0 B̄C(Z + µ En)−1v0

= −Rβ
0 w>0 (Z + µ En)−1v0 +

β̄Cξ
(γ+µ)

w>0 B̄C(Z + µ En)−1v0

= −w>0
[

Rβ
0 En − ξ

(γ+µ)
BC

]
(Z + µ En)−1v0

Rβ
1,P = − β̄C(γ + ξµ)

(δ + µ)(γ + µ)µ
w>0 Ψ B̄C Āv0 = − β̄C(γ + ξµ)

(δ + µ)(γ + µ)µ
w>0 Ψρ ( B̄C Ā) v0 = −Rβ

0
1

(δ + µ)
w>0 Ψv0

Proof of Theorem 4. When computing the endemic equilibrium we let the equilibrium value of S be
equal to some (not yet known) value S∗. The respective equilibrium values of IAi and ICi are found as
the solution of the following system of 2n algebraic equations:

0 = ξβCS∗ IA + βCS∗A IC − (γ + µ) IA

0 = γ IA − (u + µ) IC,
(A5)

From the first equation we get

I∗A =
βCS∗

(γ + µ)− ξβCS∗
A I∗C.



Mathematics 2020, 8, 1500 20 of 21

Expressing I∗C from the second equation of Equation (A5) and substituting into the above equation
we obtain the expression for I∗A:[

((γ + µ)− ξβCS∗)(uT + µ)

βCγS∗
En − A

]
I∗A = Γ I∗A = 0, (A6)

that is I∗A belongs to the kernel of the matrix Γ = ((γ+µ)−ξβCS∗)(uT+µ)
βCγS∗ En − A. The matrix A is

non-singular, thus Γ has a non-trivial kernel only if the factor in front of En is equal to one of the
eigenvalues of A. The solution I∗A would be then equal (up to a positive factor) to the corresponding
eigenvector. However, as follows from the Perron–Frobenius theorem, the only positive eigenvector
corresponds to its dominant eigenvalue, which is equal to 1 for a stochastic matrix. Any other
eigenvector would contain negative components, which contradict the assumption that all system
states are non-negative. This implies that the equilibrium value of S must satisfy the equation
((γ+µ)−ξβCS∗)(uT+µ)

βCγS∗ − 1 = 0, whence we obtain

S∗ =
(γ + µ)(uT + µ)

ξβC(uT + µ) + βCγ
=

1
R0

. (A7)

The equilibrium solution I∗A corresponds to the right dominant eigenvector of the column
stochastic matrix A. Since this eigenvector is defined up to the multiplication by a positive scalar,
we can further specify it using the following argument. Let iAΣ be the sum of all components of IA,
i.e., iAΣ = ∑n

j=1 I∗Ai. Similarly, we write iCΣ = γ
(uT+µ)

iAΣ and subsequently, we get T∗ = γu
(uT+µ)µ

iAΣ.
Since all states sum to 1, we have the following equation

iAΣ +
γ

(uT + µ)
iAΣ +

γu
(uT + µ)µ

iAΣ +
1

R0
= 1,

whence we get

iAΣ =
µ

(γ + µ)

(
1− 1

R0

)
, iCΣ =

γµ

(γ + µ)(uT + µ)

(
1− 1

R0

)
, T∗ =

γu
(γ + µ)(uT + µ)

(
1− 1

R0

)
. (A8)

Let v be the (normalized) dominant eigenvector of A such that ∑n
i=1 vi = 1. Multiplying the

components of v with the respective factors we obtain the expressions for IAi and ICi.
Finally, we observe that R0 < 1 implies that the respective components of the endemic equilibrium

state turn negative, which implies that there is no admissible endemic equilibrium. This concludes
the proof.
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