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Abstract: In this paper, we consider the following p-Laplacian equation in RN
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1. Introduction

In this paper, we consider the following p-Laplacian equation in RN
+ with critical

boundary nonlinearity
− ∆pu = 0, in RN

+ ,

|∇u|p−2 ∂u
∂n

+ |u|p−2u = |u|p−2u + µ|u|q−2u, on RN−1 = ∂RN
+ ,

(1)

where 1 < p < N, max{p, p − 1} < q < p = (N−1)p
N−p , µ > 0 and ∆p is the p-Laplacian operator,

∆pu = div(|∇u|p−2∇u). We are looking for axial solutions of the Equation (1) that are solutions of

the form u(x) = u(|y|, s), where we denote x ∈ RN
+ by x = (y, s) ∈ RN−1 × [0, ∞) and we identify

RN−1 = ∂RN
+ , y = (y, 0) for y ∈ RN−1 if there is no confusion.

Introduce in C∞
0 (RN

+) a norm by

‖ϕ‖ =
(∫

RN
+

|∇ϕ|p dx +
∫
RN−1

|ϕ|p dy
) 1

p
.

Let W be the completion of C∞
0 (RN

+) with respect to this norm and Wr be the subspace of W of axial
functions, that is,

Wr = {u | u ∈W, u(x) = u(|y|, s), x = (y, s) ∈ RN
+} .

The problem (1) has a variational structure given by the functional

I(u) =
1
p

(∫
RN
+

|∇u|p dx +
∫
RN−1

|u|p dy
)
− 1

p

∫
RN−1

|u|pdy− µ

q

∫
RN−1

|u|q dy, u ∈Wr .

Notice that p = (N−1)p
N−p is the critical exponent for the Sobolev imbedding from W1,p(RN

+) to

Lq(RN−1), p ≤ q ≤ p. Moreover, the imbedding from Wr to Lq(RN−1) is continuous for p ≤ q ≤ p
and compact only for p < q < p due to the dilations. Therefore, the Palais–Smale condition is not
satisfied by the functional I and the problem (1) lacks the necessary compactness property. Since the
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pioneering work of Brezis and Nirenberg [1], significant progress has been made in recent decades for
these kinds of problems lacking compactness. In particular, the authors of [2] dealt with the Laplacian
equation with critical growth in the bounded domain{

− ∆u = |u|2∗−2u + λu, in Ω,

u = 0, on ∂Ω,
(2)

where Ω ⊂ RN , N ≥ 3 is a regular bounded domain, and 2∗ = 2N
N−2 . While the authors of [3]

considered the Laplacian equation with subcritical nonlinear term in the whole space RN

{
− ∆u + a(x)u = |u|q−2u, in RN ,

u(x)→ 0, as |x| → ∞,
(3)

where 2 < q < 2∗ and a(x) is the potential function. As to the p-Laplacian equation, there is a lot of
significant work, whether in the field of ordinary differential equations [4–6] or partial differential
equations [7–9], the authors of [7] considered{

− ∆pu + a(x)u = |u|p∗−2u + λu, in Ω,

u = 0, on ∂Ω,
(4)

where p∗ = Np
N−p . All of these authors found the solutions as limits of approximated equations

with subcritical growth in bounded domains. The lack of compactness due to dilations (in the
case (2) and (4)) and shifts (in the case (3)) does not allow for deducing that a sequence of approximate
solutions must have a convergent subsequence, but the fact that they solve the approximated
problems gives, with use of a local Pohožaev identity, some extra estimates which lead to a proof of
desired compactness.

In the Existing literature, some researchers considered the existence of finite multiple
solutions [10,11]. While the subcritical problems in bounded domains have infinitely many solutions.
In order to show the existence of multiple solutions of the original problems, we need to check
that multiple solutions of approximated problems do not converge to the same solution of the
limit problems. This is hard work. In both [2,3], some estimates on the Morse index are employed,
which has been used as one of the possible devices to distinguish the limit of the multiple approximate
solutions by their original variational characterization. For general p-Laplacian equations, we have no
information on the Morse index; therefore, the approach in this last step in [2,3] can not be extended
in a straightforward way to problems involving the p-Laplacian operator. Here, we will use the
truncation method, as we did in [8,9]. First, we consider some truncated problems, the solutions
of which will be used as approximate solutions. By a concentration–compactness analysis, similar
to that in [2,3,7], in particular with use of a local Pohožaev identity, the theorem of convergence of
approximate solutions is proved. We show that, by a careful choice of the approximate nonlinear
terms, the approximated problems and the original problem share more and more solutions, as the
approximation parameter tends to zero. For more references, we refer the readers to [12–18].

Let us describe the truncation method in more details. Let ψ ∈ C∞
0 (R, [0, 1]) be an even function

such that ψ(t) = 1 for |t| ≤ 1, ψ(t) = 0 for |t| ≥ 2 and ψ is decreasing in [1, 2]. Define the auxiliary
functions for λ ∈ (0, 1], s ∈ R

bλ(s) = ψ(λs), mλ(s) =
∫ s

0
bλ(τ) dτ

Fλ(s) =
1
p
|s|q|mλ(s)|p−q, fλ(s) =

d
ds

Fλ(s) .
(5)
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Instead of the original problem (1), we consider the truncated problem{
−∆pu = 0, in RN

+ ,
|∇u|p−2 ∂u

∂n + |u|p−2u = fλ(u) + µ|u|q−2u, on RN−1 .
(6)

In addition, the problem (6) has a variational structure given by the functional

Iλ(u) =
1
p

(∫
RN
+

|∇u|p dx +
∫
RN−1

|u|p dy
)
−
∫
RN−1

Fλ(u) dy− µ

q

∫
RN−1

|u|q dy, u ∈Wr .

Notice that the functional Iλ, λ > 0 is subcritical at the infinity and the imbedding from
Wr to Lq(RN−1), p < q < p is compact. Therefore, the functional Iλ, λ > 0 satisfies the
Palais–Smale condition.

Here are our main results.

Theorem 1. Assume max{p, p − 1} < q < p. Given L > 0, there exists ν = ν(L), independent of λ,
such that if u ∈Wr, DIλ(u) = 0 and Iλ(u) ≤ L, then it holds that

|u(y)| ≤ 1
ν

, for y ∈ RN−1 = ∂RN
+ .

Consequently, if λ < ν, then u is a solution of the problem (1).

Theorem 2. Assume max{p, p− 1} < q < p. Then, the problem (1) has infinitely many axial solutions.

Throughout the paper, we use the following notations: we use ‖ · ‖ and | · |q to denote the
norms of W and Lq(RN−1), respectively, ⇀ and→ to denote the weak and the strong convergence,
respectively. In addition, we use the notations B+

δ (x0) = {x | x ∈ RN
+ , |x− x0| < δ}, Dδ(y0) = {y | y ∈

RN−1, |y− y0| < δ}, B+
δ = B+

δ (0), Dδ = Dδ(0) .
The paper is organized as follows. In Section 2, we do the concentration–compactness analysis of

the approximate solution sequence and prove the convergence Theorem 1. In Section 3, we construct
a sequence of critical values of the truncated functionals by the symmetric mountain pass lemma.
Finally, we prove the existence Theorem 2 by showing that approximated solutions are also solutions
of the original problem for a sufficiently small parameter.

2. Concentration–Compactness Analysis

2.1. The Profile Decomposition

In this section, we analyze the concentration behavior for the solutions of the problem (6) as
λ→ 0 and prove Theorem 1 . First, we list the properties of the auxiliary functions, defined in (5) in
the following lemma.

Lemma 1. It holds that for s ∈ R

(a) 0 ≤ bλ(s) ≤ 1.

(b) smλ(s) ≥ 0, 0 ≤ sbλ(s)
mλ(s)

≤ 1 .

(c) mλ(s) = s for |s| ≤ 1
λ .

(d) min{|s|, 1
λ} ≤ |mλ(s)| ≤ min{|s|, 2

λ} .
(e) | fλ(s)| ≤ |s|q−1|mλ(s)|p−q ≤ |s|p−1 .

( f ) 1
q s fλ(s)− Fλ(s) =

(
1
q −

1
p

)
|s|q+1|mλ(s)|p−q−1bλ(s) ≥ 0.

(g) Fλ(s)− 1
p s fλ(s) =

(
1
p −

q
p2

)
|s|q|mλ(s)|p−q−1

(
1− sbλ(s)

mλ(s)

)
≥ 0 .
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Proof. The proof is straightforward. We verify (e)–(g). By the definition of Fλ and fλ, we have

fλ(s) =
d
ds

Fλ(s) =
q
p
|s|q−2s|mλ(s)|p−q +

p− q
p
|s|q|mλ(s)|p−q−2mλ(s)bλ(s) . (7)

( f ) and (g) follow from (7), and (e) follows from (7) and (a), (d) of this lemma.

Lemma 2. Let λn ≥ 0, un ∈Wr such that DIλn(un) = 0, Iλn(un) ≤ L. Then, {un} is bounded in Wr.

Proof. By Lemma 1 ( f ), we have

L ≥ Iλn(un) = Iλn(un)−
1
q
〈DIλn(un), un〉

=

(
1
p
− 1

q

)(∫
RN
+

|∇un|p dx +
∫
RN−1

|un|p dy
)
+
∫
RN−1

(
1
q

un fλn(un)− Fλn(un)

)
dx

≥
(

1
p
− 1

q

)(∫
RN
+

|∇un|p dx +
∫
RN−1

|un|p dy
)
=

(
1
p
− 1

q

)
‖un‖p .

Hence, {un} is bounded in Wr .

Let D = Dp(RN
+) be the completion of C∞

0 (RN
+) with respect to the norm

‖ϕ‖D =

(∫
RN
+

|∇ϕ|p dx
) 1

p

and Dr be the subspace of D of axial functions,

Dr =
{

u | u ∈ D, u(x) = u(|y|, s), x = (y, s) ∈ RN
+ = RN−1 × [0, ∞)

}
.

Let D be the dilation group

D = {gσ | gσu(x) = σ
N−p

p u(σx), x ∈ RN
+ , σ > 0} . (8)

Notice that the operator gσ of D is an isometry in both D and Lp(RN−1). The imbedding from Dr to
Lp(RN−1) is compact with respect to the group D that is a sequence {un} of Dr, satisfying gσn un ⇀ 0

in Dr for any sequence {gσn} of D, denoted by un
D
⇀ 0 in Dr, must converge to zero in Lp(RN−1) .

Now, let un be a bounded sequence of Wr. By [19,20], we have the following profile decomposition:

un = u + ∑
k∈Λ

gσn,k Uk + rn, (9)

where u ∈Wr, Uk ∈ Dr, rn ∈ Dr, σn,k ∈ (0, ∞) and Λ is an index set, satisfying

(a) un ⇀ u in Wr, g−1
σn,k

un ⇀ Uk in Dr as n→ ∞, k ∈ Λ.

(b) σn,k → +∞, σn,k
σn,l

+
σn,l
σn,k
→ +∞, as n→ ∞, k, l ∈ Λ, k 6= l .

(c) ‖u‖p
D + ∑

k∈Λ
‖Uk‖

p
D ≤ lim inf

n→∞
‖un‖p

D .

(d) rn ⇀ 0 in Dr as n→ ∞, consequently rn → 0 in Lp(RN−1) as n→ ∞ .

We refer to [19,20] for general concepts of compactness and the profile decomposition and relevant
results. For reader’s convenience, we consider the compactness of the imbedding from Dr to Lp(RN−1)

with respect to the dilation group D.

Lemma 3. Assume λn > 0, λn → 0 as n → ∞, un ∈ Wr, DIλn(un) = 0 and Iλn(un) ≤ L . Assume that
the profile decomposition (9) holds. Then,
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(1) v = |u| satisfies the inequality∫
RN
+

|∇v|p−2∇v∇ϕ dx +
∫
RN−1

vp−1 ϕ dy ≤
∫
RN−1

vp−1 ϕ dy + µ
∫
RN−1

vq−1 ϕ dy, (10)

for ϕ ≥ 0, ϕ ∈Wr. Consequently, for some c > 1,∫
RN
+

|∇v|p−2∇v∇ϕ dx ≤ c
∫
RN−1

v p̄−1 ϕ dy, for ϕ ≥ 0, ϕ ∈Wr. (11)

(2) Vk = |Uk| satisfies the inequality∫
RN
+

|∇Vk|p−2∇Vk∇ϕ dx ≤
∫
RN−1

Vp−1
k ϕ dy for ϕ ≥ 0, ϕ ∈ Dr . (12)

Proof. We prove the conclusion for the function Vk. un satisfies the equation in the weak form∫
RN
+

|∇un|p−2∇un∇ϕ dx +
∫
RN−1

|un|p−2un ϕ dy

=
∫
RN−1

fλn(un)ϕ dy + µ
∫
RN−1

|un|q−2un ϕ dy, ϕ ∈Wr.
(13)

Denote ũn = g−1
σn,k

un. For ϕ ∈Wr, take gσn,k ϕ as a test function in (13). By a variable change, we obtain

∫
RN
+

|∇ũn|p−2∇ũn∇ϕ dx + σ
−(p−1)
n,k

∫
RN−1

|ũn|p−2ũn ϕ dy

=
∫
RN−1

f
λ̃n
(ũn)ϕ dy + µσ

N−p
p q−(N−1)

n,k

∫
RN−1

|ũn|q−2ũn ϕ dy, ϕ ∈Wr

(14)

where λ̃n = λnσ
N−p

p
n,k . In the above, we have used the fact that

ν−(p−1) fλ(νs) = fλν(s), λ, ν > 0, s ∈ R

which can be proved by the very definition of the function fλ.
Since

∫
RN−1 |ũn|p dy =

∫
RN−1 |un|p dy is bounded and ũn is axial, for any y ∈ RN−1 \ {0}

lim
s→0

lim sup
n→∞

∫
Dy
|ũn|p dy = 0 .

Choose δ = δ(y), independent of n, such that

∫
D4δ(y)

|ũn|p dy ≤ 1
2

S
N−1
p−1

p

where Sp is the Sobolev constant of the imbedding D ↪→ Lp(RN−1). By Lemma A4, ũn is uniformly
bounded in D2δ(y). Consequently, by Equation (14) and the following elementary inequality (15),
ũn converges in W1,p(Bδ(y)) and in W1,p

loc (R
N
+). The following inequality (15) is useful for problems

involving the p-Laplacian operator [21]. There exists a constant cp such that, for ξ, η ∈ RN ,

(|ξ|p−2ξ − |η|p−2η, ξ − η) ≥ cp|ξ − η|p, if p ≥ 2,

(|ξ|p−2ξ − |η|p−2η, ξ − η) ≥ cp|ξ − η| · (|ξ|p + |η|p)
p−2

p , if 1 < p < 2 .
(15)
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Let ṽn = |ũn|, ṽn converge to Vk = |Uk| in W1,p
loc (R

N
+) and satisfy the inequality∫

RN
+

|∇ṽn|p−2∇ṽn∇ϕ dx + σ
−(p−1)
n,k

∫
RN−1

ṽp−1
n ϕ dy

≤
∫
RN−1

ṽp−1
n ϕ dy + µσ

N−p
p q−(N−1)

n,k

∫
RN−1

ṽq−1
n ϕ dy

(16)

for ϕ ∈Wr, ϕ ≥ 0. Assume ϕ ∈ C∞
0 (RN \ {0}) ∩Dr. Taking the limit n→ ∞ in (16), we obtain∫

RN
+

|∇Vk|p−2∇Vk∇ϕ dx ≤
∫
RN−1

Vp−1
k ϕ dy . (17)

By a density argument, (17) holds for ϕ ∈ D, ϕ ≥ 0 .

Lemma 4. The index set Λ in the profile decomposition (9) is finite.

Proof. By Lemma 3, Vk satisfies the inequality (12). Choose ϕ = Vk in (12). By the Sobolev imbedding
theorem ∫

RN
+

|∇Vk|p dx ≤
∫
RN−1

Vp
k dy ≤

(
S̄p
−1
∫
RN
+

|∇Vk|p dx
) p

p

hence ∫
RN
+

|∇Uk|p dx =
∫
RN
+

|∇Vk|p dx ≥ S
N−1
p−1

p .

By the property (3) of the decomposition (9), Λ is a finite set.

2.2. Safe Regions

Assume the profile decomposition (9) with a finite index set Λ. Denote

σn = min{σn,k | k ∈ Λ}

and define the so-called safe regions [2]

Ai
n = {x | x ∈ RN

+ , iσ
− 1

p
n < |x| < (7− i)σ

− 1
p

n },

Ti
n = {y | y ∈ RN−1, iσ

− 1
p

n < |y| < (7− i)σ
− 1

p
n }, i = 1, 2, 3 .

(18)

For these regions, we have a good estimate.

Proposition 1. There exists a constant c, independent of n, such that

|un(x)| ≤ c for x ∈ A2
n ∪ T2

n .

Corollary 1. There exists a constant c, independent of n, such that∫
A3

n

|∇un|p dx ≤ c .

In order to prove these estimates, we start with the following definition.

Definition 1. Suppose 1 ≤ p2 < p < p1, σ > 1 and α > 0. Consider the following system of inequality
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|u1|p1 ≤ α,

|u2|p2 ≤ ασ
N−1

p −
N−1

p2 .
A (19)

Define the norm | · |p1,p2,σ by

|u|p1,p2,σ = inf{α | there exist u1, u2 such that |u| ≤ u1 + u2 and (19) holds} .

Proposition 2. Assume λn > 0, λn → 0 as n→ ∞, un ∈Wr, DIλn(un) = 0 and Iλn(un) ≤ L. Assume the
profile decomposition (9) holds. Denote σn = min{σn,k | k ∈ Λ}. Then, for any p1, p2 satisfying

(
1− 1

p
)

p < p2 < p < p1,

there exists a constant c = c(p1, p2) such that

|un|p1,p2,σn ≤ c .

Proof. By Lemma 3, v = |u| satisfies the inequality∫
RN
+

|∇v|p−2∇v∇ϕ dx ≤ c
∫
RN−1

vp−1 ϕ dy, ϕ ≥ 0, ϕ ∈Wr .

By Lemma A4, u ∈ L∞(RN−1), hence for p1 > p,

|u|p1 ≤ |u|
1− p

p1
∞ |u|

p
p1
p ≤ c . (20)

By Lemma 3, Vk = |Uk| satisfies the inequality∫
RN
+

|∇v|p−2∇v∇ϕ dx ≤
∫
RN−1

vp−1 ϕ dy, ϕ ≥ 0, ϕ ∈Wr .

By Theorem 2.2 of [22], there exists a constant c such that

|Uk(y)| = Vk(y) ≤ c
(

1 + |y|
p

p−1
)− N−p

p
, y ∈ RN−1 .

Hence, for
(
1− 1

p
)

p < p2 < p, we have

|gσn,k Uk|p2 ≤
(∫

RN−1

(
σ

N−p
p

n,k (1 + |σn,ky|
p

p−1 )
− N−p

p
)p2 dy

) 1
p2

= cσ
N−p

p −
N−1

p2
n,k

(∫
RN−1

(
1 + |y|

p
p−1
)− N−p

p p2 dy
) 1

p2

≤ cσ
N−1

p −
N−1

p2
n,k ≤ cσ

N−1
p −

N−1
p2

n .

(21)

By (20) and (21), we have
|u|p1,p2,σn + ∑

k∈Λ
|gσn,k Uk|p1,p2,σn ≤ c . (22)

Define w, Wk, R ∈ Dr by {
− ∆pw = 0, in RN

+ ,

|∇w|p−2 = wp−1, on RN−1,
(23)
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
− ∆pWk = 0, in RN

+ ,

|∇Wk|p−2 ∂Wk
∂n

= Wp−1
k , on RN−1,

(24)


− ∆pR = 0, in RN

+ ,

|∇R|p−2 ∂R
∂n

= |rn|p−1, on RN−1,
(25)

By the Wolff potential estimate([2], Corollary 4.13), we have

|un| = vn ≤ c
(
w + ∑

k∈Λ
Wk + R

)
. (26)

By Lemma A3, for
(
1− 1

p
)

p < p2 < p < p1, we have

|w|p1,p2,σn ≤ c|vp−p|
1

p−1
N−1
p−1
· |v|p1,p2,σn

≤ c|u|
p

N−p
p · |u|p1,p2,σn ≤ c|u|p1,p2,σn ≤ c

(27)

|Wk|p1,p2,σn ≤ c|gσn,k Uk|
p

N−p
p |gσn,k Uk|p1,p2,σn

≤ c|gσn,k Uk|p1,p2,σn ≤ c
(28)

and

|R|p1,p2,σn ≤ c|rn|
p

N−p
p |rn|p1,p2,σn

= o(1)|rn|p1,p2,σn

≤ o(1)
(
|un|p1,p2,σn + |u|p1,p2,σn + ∑

k∈Λ
|gσn,k Uk|p1,p2,σn

)
= o(1) + o(1)|un|p1,p2,σn .

(29)

We have

|un|p1,p2,σn ≤ c
(
|w|p1,p2,σn + ∑

k∈Λ
|Wk|p1,p2,σn + |rn|p1,p2,σn

)
≤ c + o(1)|un|p1,p2,σn

and
|un|p1,p2,σn ≤ c .

Lemma 5. Assume λn > 0, un ∈ Wr, DIλn(un) ≤ L. Assume the profile decomposition (9) holds. Then,

for γ ∈
(

p− 1, (p−1)pp
(p−1)p+p

)
there exists c = c(γ), independent of n, such that

(
γ−N

∫
B+

r

|un|γ dx + γ−N+1
∫

Dr
|un|γ dy

) 1
γ

≤ c for γ ≥ σ
− 1

p
n .

Proof. By Lemma A6 for γ < 1, we have
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(
γ−N

∫
B+

r

|un|γ dx + γ−N+1
∫

Dr
|un|γ dy

) 1
γ

≤c
(∫

B+
1

|un|γ dx +
∫

D1

|un|γ dy
) 1

γ

+ c
∫ 1

r

(∫
Dt
|un|p−1 dy

) 1
p−1 dt

t1+ N−p
p−1

≤c + c
∫ 1

r

(∫
Dt
|un|p−1 dy

) 1
p−1 dt

t1+ N−p
p−1

.

(30)

By Proposition 2, we have |un|p1,p2,σn ≤ c for any p1, p2 such that
(
1− 1

p
)

p < p2 < p < p1.
Let p2 = p− 1, p1 = Np. Choose v1, v2 such that |un| ≤ v1 + v2, |v1|p1 ≤ c, |v2|p2 ≤

cσ
N−1

p −
N−1

p2
n . Then, ∫ 1

r

(∫
Dt

vp−1
1 dt

) 1
p−1 dt

t1+ N−p
p−1

≤
∫ 1

r

(∫
Dt

vNp
1 dy

) p−1
Np(p−1)

(∫
Dt

dy
) Np−p+1

Np(p−1) dt

t1+ N−p
p−1

≤c
∫ 1

r

dt
tp ≤ c

(31)

and ∫ 1

r

(∫
Dt

vp−1
1 dt

) 1
p−1 dt

t1+ N−p
p−1

≤
∫ 1

r
σ
(p−1)

(
N−1

p −
N−1
p−1

)
− 1

p−1
n

dt

t1+ N−p
p−1

=cσ
− N−p

p(p−1)
n

∫ 1

r

dt

t1+ N−p
p−1

≤ c
(
σ

1
p

n t
)− N−p

p−1 ≤ c

(32)

provided r ≥ σ
− 1

p
n . Hence,

(
γ−N

∫
B+

r

|un|γ dx + γ−N+1
∫

Dr
|un|γ dy

) 1
γ

≤c + c
∫ 1

r

(∫
Dt
|un|p−1 dy

) 1
p−1 dt

t1+ N−p
p−1

≤c + c
∫ 1

r

(∫
Dt
|v1|p−1dy

) 1
p−1 dt

t1+ N−p
p−1

+ c
∫ 1

r

(∫
Dt
|v2|p−1dy

) 1
p−1 dt

t1+ N−p
p−1

≤ c for r ≥ σ
− 1

p
n .

Proof of Proposition 1 and Corollary 1. Let wn(x) = σ
− N−p

p2
n |un|(σ

− 1
p

n x), wn satisfy{
−∆pwn ≤ 0, in RN

+ ,
|∇wn|p−2 ∂wn

∂n ≤ cwp−1
n , on RN−1 .

By the profile decomposition (9), we have
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∫
1≤|y|≤6

|wn|pdy =
∫

T1
n

|un|pdy

≤
∫

T1
n

|u|pdy + c ∑
k∈Λ

∫
T1

n

|gσn,k Uk|pdy + c
∫

T1
n

|rn|pdy

≤cσ
− N−1

p
n + c ∑

k∈Λ

∫
|y|≥σn

− 1
p

∣∣∣∣∣σ N−p
p

n,k Uk(σn,ky)

∣∣∣∣∣
p

dy + o(1)

≤o(1) + c ∑
k∈Λ

∫
|y|≥σ

1− 1
p

n

(
1 + |y|

p
p−1
)− N−p

p ·p
dy = o(1) .

(33)

By Lemma A4 and Lemma 5, for 2 ≤ x ≤ 5, x ∈ RN
+ ∪RN−1, we have

wn(x) ≤ c
(∫

1≤|x|≤6
wγ

n(x)dx +
∫

1≤|x|≤6
wγ

n(y)dy
) 1

γ

= cσ
− N−p

p2
n

(
σ
− N

p
n

∫
A1

n

|un|γdx + σ
− N−1

p
n

∫
T1

n

|un|γdy
) 1

γ

≤ cσ
− N−p

p2
n .

Hence,

|un(x)| = σ

N−p
p2

n wn(σ
1
p

n x) ≤ c for x ∈ A2
n ∪ T2

n .

We complete the proof of Proposition 1. To prove Corollary 1, we choose a function ϕ ∈ C∞
0 (RN) such

that ϕ(x) = 1 for x ∈ A3
n ∪ T3

n and ϕ(x) = 0 for x 6∈ A2
n ∪ T3

n and |∇ϕ| ≤ 2σ
1
p

n . Testing the Equation (13)
by ϕpun, we obtain∫

A2
n

|∇un|p ϕp dx =
∫

A2
n

|∇un|p−2∇(un ϕ) dx− p
∫

A2
n

|∇un|p−2∇un un ϕp−1∇ϕ dx

≤
∫

T2
n

(−|un|p + |un|p + µ|un|q)ϕp dy +
1
2

∫
A2

n

|∇un|p ϕp dx + c
∫

A2
n

|un|p|∇ϕ|p dx .

Hence, ∫
A3

n

|∇un|p dx ≤
∫

A2
n

|∇un|p ϕp dx

≤c
∫

T2
n

|un|pdy + c
∫

A2
n

|un|p|∇ϕ|p dx

≤cσ
− 1

p (N−1)
n + cσ

− N
p +

1
p ·p

n ≤ cσ
1− N

p
n .

2.3. Pohožaev Identity

In the remainder of this section, following the idea of [2,3], we apply the local Pohožaev identity
to prove the convergence Theorem 1.

Lemma 6. (Local Pohožaev identity) Assume that u ∈W satisfies the equation{
−∆pu = 0, in RN

+ ,
|∇u|p−2 ∂u

∂n + |u|p−2u = fλ(u) + µ|u|q−2u, on RN−1 .
(34)

Let ϕ ∈ C∞
0 (RN), then
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− p− 1
p

∫
RN−1

|u|p ϕ dy +
∫
RN−1

(
(N − 1)Fλ(u)−

N − p
p

fλ(u)u
)

dy

+

(
N − 1

q
− N − p

p

)
µ
∫
RN−1

|u|q ϕ dy

=
1
p

∫
RN

+

|∇u|p(x,∇ϕ) dx−
∫
RN

+

|∇u|p−2(∇u, x)(∇u,∇ϕ) dx− N − p
p

∫
RN

+

|∇u|p−2u(∇u, ∇ϕ) dx

+
∫
RN−1

(
1
p
|u|p − Fλ(u)−

µ

q
|u|q

)
(y, ∇y ϕ) dy .

(35)

Proof. Multiplying (34) by (x,∇u)ϕ and integration by parts, we obtain

(N − 1)
∫
RN−1

(
− 1

p
|u|p + Fλ(u) +

µ

q
|u|q

)
ϕ dy

=
N − p

p

∫
RN
+

|∇u|p ϕ dx−
∫
RN
+

|∇u|p−2(∇u, x)(∇u, ∇ϕ) dx +
1
p

∫
RN
+

|∇u|p(x,∇ϕ) dx

+
∫
RN−1

(
1
p
|u|p − Fλ(u)−

µ

q
|u|q

)
(y, ∇y ϕ) dy .

(36)

Multiplying (34) by uϕ and integration by parts, we obtain∫
RN−1

(|u|p − fλ(u)u− µ|u|q)ϕ dy

=−
∫
RN
+

|∇u|p ϕ dx−
∫
RN−1

|∇u|p−2u(∇u, ∇ϕ) dx .
(37)

Eliminating the term
∫
RN
+
|∇u|p ϕ dx, we obtain the local Pohožaev identity.

Proof of the convergence Theorem 1. We apply the local Pohožaev identity to the function un. Let

B+
n = {x| x ∈ RN

+ , |x| < 4σ
− 1

p
n },

Dn = {y| y ∈ RN−1, |y| < 4σ
− 1

p
n } .

Choose ϕ ∈ C∞
0 (RN , [0, 1]) such that ϕ(x) = 1 for |x| ≤ 3σ

− 1
p

n , ϕ(x) = 0 for |x| ≥ 4σ
− 1

p
n and

|∇ϕ| ≤ 2σ
1
p

n . By Lemma 6, the local Pohožaev identity, we have

− p− 1
p

∫
Dn
|un|p ϕ dy +

∫
Dn

(
(N − 1)Fλn(un)−

N − p
p

fλn(un)un

)
ϕ dy

+

(
N − p

q
− N − p

p

)
µ
∫

Dn
|un|q ϕ dx

=
1
p

∫
B+

n

|∇un|p(x,∇ϕ) dx−
∫

B+
n

|∇un|p−2(∇un, x)(∇un, ∇ϕ) dx

− N − p
p

∫
B+

n

|∇un|p−2un(∇un, ∇ϕ) dx

+
∫

Dn

(
1
p
|un|p − Fλ(un)−

µ

q
|un|q

)
(y,∇y ϕ) dy .

(38)

We estimate (38). Notice that the integrals of the right-hand side of (38) are taken over the domains A3
n

and T3
n . By Proposition 1 and Corollary 1, we know
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RHS of (38) ≤ c
∫

A3
n

|∇un|p |x| |∇ϕ| dx + c
∫

A3
n

|∇un|p−1 |∇ϕ| dx + c
∫

T3
n

|y| |∇y ϕ| dy

≤ cσ
1− N

p
n + cσ

− N−1
p

n ≤ cσ
1− N

p
n .

(39)

On the other hand, by Lemma 1 (7), we have

LHS of (38) ≥
(

N − 1
q
− N − p

p

)
µ
∫

Dn
|un|q ϕ dy− p− 1

p

∫
Dn
|un|p ϕ dy

≥ 1
2

(
N − 1

q
− N − p

p

) ∫
Dn
|un|q ϕ dy− c

∫
Dn

dy

≥ c
∫

Dn
|un|q ϕ dy− cσ

− N−1
p

n .

(40)

Without loss of generality, assume σn,1 = σn = min{σn,k | k ∈ Λ}. Choose L large enough such that∫
DL

|U1|q dy = β > 0

where DL = {y | y ∈ RN−1, |y| < L} . Since ũn = σ
− N−p

p
n un(σ−1

n ·) weakly converges to U1 in Dr,
we have ∫

Dn
|un|q ϕ dy ≥

∫
|y|≥Lσ−1

n

|un|q dy

=σ
N−p

p q−(N−1)
n

∫
DL

|ũn|q dy

∼ σ
N−p

p q−(N−1)
n · β

(41)

we arrive at a contradiction

σ
N−p

p q−(N−1)
n ≤ xσ

− N−p
p

n

for σn large enough, since q + 1 > p = (N−1)p
N−p . The index set Λ in the profile decomposition (9) must

be empty, and (9) reduces to

un = u + rn, and rn → 0 in Lp(RN−1) as n→ ∞ . (42)

That is, un → u in Lp(RN−1). By Lemma A4, un is uniformly bounded, and there exists ν = ν(L)
such that

|un(y)| ≤
1
ν

for y ∈ RN−1 .

3. Existence of Multiple Solutions

We define a sequence of critical values of the truncated functional Iλ, λ > 0 by the symmetric
mountain pass lemma due to Ambrosetti and Rabinowitz, and prove that the corresponding critical
points are solutions of the original problem (1) for sufficiently small parameter λ .

Definition 2. Define the critical values of Iλ,

ck(λ) = inf
A∈Γk

sup
u∈A

Iλ(u), k = 1, 2, · · ·

where
Γk = {A| A ⊂Wr, A compact, −A = A, γ(A ∩ σ−1(Sρ)) ≥ k}

G = {σ| σ ∈ C(Wr, Wr), σ odd, σ(u) = u if I1(u) ≤ 0}
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and
Sρ = {u| u ∈Wr, ‖u‖ = ρ},

ρ is chosen as a suitable positive constant such that

I(u) ≥ β > 0 .

In fact, for u ∈Wr, ‖u‖ = ρ, we have

Iλ(u) ≥ I(u) =
1
p

(∫
RN
+

|∇u|p dx +
∫
RN−1

|u|p dy
)
− 1

p

∫
RN−1

|u|p dy− µ

q

∫
RN−1

|u|q dy

≥ 1
p

(∫
RN
+

|∇u|p dx +
∫
RN−1

|u|p dy
)
−
∫
RN−1

(c|u|p + ε|u|q) dy

≥ c0ρp − c1ρp ≥ 1
2

c0ρp := β > 0

provided 1
2 c0ρp ≥ c1ρp.

Lemma 7. The functional Iλ, λ > 0 satisfies the Palais–Smale condition.

Proof. Let un be a Palais–Smale sequence of Iλ, and we have

Iλ(un)−
1
q
〈DIλ(un), un〉

=
( 1

p
− 1

q
) (∫

RN
+

|∇un|p dx +
∫
RN−1

|un|p dy
)
+
∫
RN−1

(
1
q

fλ(un)un − Fλ(un)

)
dy

≥
( 1

p
− 1

q
) (∫

RN
+

|∇un|p dx +
∫
RN−1

|un|p dy
)
=
( 1

p
− 1

q
)
‖un‖p

hence un is bounded in Wr. Since the imbedding from Wr to Lq(RN−1) is compact, we assume un ⇀ u
in Wr, un → u in Lq(RN−1). By Lemma 1, we have∫

RN
+

(|∇un|p−2∇un − |∇um|p−2∇um, ∇un −∇um) dx

+
∫
RN−1

(|un|p−2un − |um|p−2um)(un − um) dy

=
∫
RN−1

( fλ(un)− fλ(um)) (un − um) dy + µ
∫
RN−1

(|un|q−2un − |um|q−2um)(un − um) dy

+ 〈DIλ(un)− DIλ(um), un − um〉

≤c
(( 2

λ

)p−q
+ 1
) ∫

RN−1
(|un|q−1 + |um|q−1)|un − um| dy + o(1)

≤c|un − um|q + o(1)→ 0, as n, m→ ∞ .

By the elementary inequalities (15), un is a Cauchy sequence.

The following proposition is well known ([23,24]).

Proposition 3. (Ambrosetti–Rabinowitz) Assume 0 < λ ≤ 1. Then,

(1) ck(λ) ≥ β > 0, k = 1, 2, · · · are critical values of Iλ.
(2) If ck(λ) = ck+1(λ) = · · · = ck+m−1(λ) = c, then γ(Kc(λ)) ≥ m, where

Kc(λ) = {u| u ∈Wr, Iλ(u) = c, DIλ(u) = 0} .
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Proof of Theorem 2. Given an integer k, let uj(λ) ∈ Wr, j = 1, · · · , k such that Iλ(uj(λ)) = cj(λ),
DIλ(uj(λ)) = 0. By Proposition 3 (2), we assume that uj(λ), j = 1, · · · , k are different from each other.
Since Iλ ≤ I1 for 0 < λ ≤ 1, we have c1(λ) ≤ · · · ≤ ck(λ) ≤ ck(1). By Theorem 1, there exists νk
such that

|uj(λ)(y)| ≤
1
νk

, j = 1, · · · , k, y ∈ RN−1 .

Now, for λ < νk, we have

|uj(λ)(y)| ≤
1
νk

<
1
λ

, j = 1, · · · , k, y ∈ RN−1

hence fλ(uj(λ)) = f (uj(λ)), uj(λ), j = 1, · · · , k are solutions of the original problem (1). Since the
integer k is arbitrary, the problem (1) has infinitely many solutions.

For more details and background material, we refer the readers to the Appendices A–C of
this paper.

4. Results

The main results of this paper are Theorem 1 and Theorem 2.
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Appendix A. Estimates on Solutions of p-Laplacian Equations in RN
+

Lemma A1. Let u ∈ D satisfy the equation∫
RN
+

|∇u|p−2∇u∇ϕ dx =
∫
RN−1

f ϕ dy, ϕ ∈ D (A1)

where f ≥ 0, f ∈ Lq(RN−1) ∩ L
p

p−1 (RN−1), 1 < q < N−1
p−1 . Then, there exists a constant c = c(p, q)

such that

|u|s ≤ c| f |
1

p−1
q (A2)

with 1
s = 1

(p−1)q −
1

N−1 .

Proof. Denote

γ =
q(p− 1)

qp− p(q− 1)

then

γ > 1− 1
p

, (1 + p(γ− 1))
q

q− 1
= γp =

(N − 1)(p− 1)q
N − 1− p(q− 1)

= s . (A3)

First, we assume γ ≥ 1. Take the test function ϕ = u · up(γ−1)
T ∈ D in (A1), where uT = min{u, T} for

T > 0. We have∫
RN
+

|∇u|p−2∇u∇ϕ dx =
∫

u>T
|∇u|pup(γ−1)

T dx +
(
1 + p(γ− 1)

) ∫
u≤T
|∇u|pup(γ−1) dx

≥c
∫
RN
+

|∇(uuγ−1
T )|p dx ≥ c

(∫
RN−1

(uuγ−1
T )p dy

) p
p

(A4)
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and ∫
RN−1

f ϕ dx =
∫
RN−1

f uup(γ−1)
T dy

≤ | f |q
(∫

RN−1

(
uup(γ−1)

T

) q
q−1 dy

) q−1
q

≤ | f |q
(∫

RN−1

(
uuγ−1

T
)p dy

) q−1
q

(A5)

In the above, we have used (A3) and q
q−1 ≤ p if γ ≥ 1. By (A4) and (A5), we have

(∫
RN−1

(
uuγ−1

T
)p dy

) p
p
≤ c| f |q

(∫
RN−1

(
uuγ−1

T
)p dy

) q−1
q

. (A6)

Notice that p
p −

q−1
q = (p− 1)s, (1 + p(γ− 1)) q

q−1 = s. Letting T → ∞ in (A6), we obtain (A2).

Next, we assume 1− 1
p < γ < 1. Let ϕ = (u + θ)1+p(γ−1) − θ1+p(γ−1), θ > 0, then ϕ ∈ D. In fact,

|∇ϕ| = (1 + p(γ− 1))(u + θ)p(γ−1)|∇u| ≤ θp(γ−1)|∇u| .

Taking ϕ as a test function in (A1), we have∫
RN
+

|∇u|p−2∇u∇ϕ dx = c
∫
RN

(u + θ)p(γ−1)|∇u|p dx

=c
∫
RN
|∇((u + θ)γ − θγ)|p dx ≥ c

(∫
RN−1

(
(u + θ)γ − θγ

)p dy
) p

p
(A7)

and ∫
RN−1

f ϕ dy =
∫
RN−1

f
(
(u + θ)1+p(γ−1) − θ1+p(γ−1)) dy

≤ | f |q
(∫

RN−1

(
(u + θ)1+p(γ−1) − θ1+p(γ−1)) q

q−1

) q−1
q

≤ c| f |q
(∫

RN−1

(
(u + θ)γ − θγ

)p dy
) q−1

q
.

(A8)

In the above, we used the following elementary inequality:

(
(1 + s)1+p(γ−1) − 1

) q
q−1 ≤ c

(
(1 + s)γ − 1)p, for s ≥ 0 .

By (A7) and (A8), we obtain

(∫
RN−1

(
(u + θ)γ − θγ

)p dy
) p

p
≤ c| f |q

(∫
RN−1

(
(u + θ)γ − θγ

)p dy
) q−1

q
. (A9)

Letting T → ∞ in (A9), we obtain (A2).

Lemma A2. Given f ∈ L4(RN−1) ∩ L
p

p−1 (RN−1), 1 < q < N−1
p−1 . Then, there exists a unique function

u ∈ D satisfying the equation∫
RN
+

|∇u|p−2∇u∇ϕ dx =
∫
RN−1

f ϕ dx, ϕ ∈ D .

Moreover, u ∈ Ls(RN−1), |u|s ≤ c| f |
1

p−1
q , where 1

s = 1
(p−1)q −

1
N−1 .
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Proof. Consider the functional J defined on D

J(u) =
1
p

(∫
RN
+

|∇u|p dx +
∫
RN−1

|u|p dy
)
−
∫
RN−1

f u dy, u ∈ D . (A10)

J is lower semi-continuous and bounded from below. Therefore, J assumes its infimum at a function
u ∈ D, which solves the equation. By the elementary inequalities (15), the solution is unique.

Lemma A3. Let u ∈ D and satisfy the equation∫
RN
+

|∇u|p−2∇u∇ϕ dx =
∫
RN−1

a|v|p−2vϕ dy, u ∈ D (A11)

where a ∈ L
N−1
p−1 (RN−1), v ∈ Lq(RN−1) ∩ Lp(RN−1), q > p

(
1 − 1

p
)
. Then, there exists a constant

c = c(p, q) > 0 such that

|u|q ≤ c|a|
1

p−1
N−1
p−1
|v|q . (A12)

Consequently, for p
(
1− 1

p
)
< p2 < p1, σ > 0, we have

|u|p1,p2,σ ≤ c|a|
1

p−1
N−1
p−1
|v|p1,p2,σ .

Proof. Let 1
σ = p−1

N−1 +
p−1

q . Then, 1 < σ < N−1
p−1 and 1

q = 1
(p−1)σ −

1
N−1 . By Lemma A1 and the Hölder

inequality, we have

|u|q ≤ c
∣∣a|v|p−2v

∣∣ 1
γ−1
σ
≤ c|a|

1
p−1
p−1
N−1
|v|q .

Lemma A4. Let u ≥ 0, u ∈ D and satisfy the inequality∫
RN
+

|∇u|p−2∇u∇ϕ dx ≤
∫
RN−1

|u|p−1 ϕ dy, ϕ ≥ 0, ϕ ∈ D . (A13)

Assume ∫
DR

up dy ≤ (Sp − δ)
N−p
p−1 . (A14)

Then, for any γ > 0, there exists a constant c = c(p, γ, δ) such that

|u|L∞(D 1
2 R

) + |u|L∞(B+
1
2 R

) ≤ c
(

R−
N−1

γ |u|Lγ(DR)
+ R−

N
γ |u|Lγ(B+

R )

)
. (A15)

Proof. We only need to consider the case R = 1. The general case can be obtained by a rescaling

u(x) 7→ R
N−p

p u(Rx). Then, the proof is a standard Moser’s iteration and divided into three steps:
Step 1. There exists ε > 0, p̃ = (1 + ε)p such that

(∫
DR

u p̃dy
) 1

p̃
≤ c

(1− R)
p
p̃

(∫
B+

1

up∗ dx
) 1

p∗
, 0 < R < 1. (A16)

Let ε > 0, η ∈ C∞
0 (RN , [0, 1]) such that η(x) = 1, |x| ≤ R; η(x) = 0, |x| ≥ 1 and |∇η| ≤ 2

1−R .
Take ϕ = u upε

T ηp as test function in (a15), where T > 0, uT = min{u, T}. We have
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∫
RN
+

|∇u|p−2∇u∇ϕ dx

= (1 + pε)
∫

u≤T
|∇u|pupεηp dx +

∫
u>T
|∇u|pTpεηp dx + p

∫
RN
+

|∇u|p−2∇uu(p−1)ε
T ηp−1uuT∇η dx

≥ 1
(1 + ε)p

∫
RN
+

|∇(uuε
Tη)|p dx− cε

∫
RN
+

(uuε
T)

p|∇η|p dx

≥
Sp

(1 + ε)p

(∫
RN−1

(uuε
Tη)p dy

) p
p
− cε

(1− R)p

∫
B+

1

(uuε
T)

p dx

(A17)

and ∫
RN−1

up−1 ϕ dy =
∫
RN−1

up−p(uuε
Tη)p dx

≤
(∫

D1

up dy
) p−p

p
(∫

RN−1
(uuε

Tη)p dy
) p

p

≤
(
Sp − δ

) (∫
RN−1

(uuε
Tη)p dy

) p
p

.

(A18)

Choose ε > 0 such that
Sp

(1 + ε)p ≥ Sp −
1
2

δ, (1 + ε)p < p∗. (A19)

By (A17) and (A18), we have

(∫
DR

(uuε
T)

p dy
) p

p
≤
(∫

RN−1
(uuε

Tη)p dy
) p

p
≤ cε,δ

(1− R)p

∫
B+

1

(uuε
T)

p dx . (A20)

Letting T → ∞, we obtain

(∫
DR

u(1+ε)p dy
) p

p
≤ cε,δ

(1− R)p

∫
B+

1

u(1+ε)p dx ≤ cε,δ

(1− R)p

(∫
B+

1

up∗ dx
) p∗

(1+ε)p

and (A16) follows.
Step 2. Assume 0 < r < R ≤ R0 < 1. Then, there exists cR0 > 0 such that

|u|L∞(Dr) + |u|L∞(B+
r ) ≤

cR0

(R− r)

(
|u|Lp(DR)

+ |u|Lp∗ (B+
R )

)
. (A21)

Let ϕ = uup(s−1)
T ηp, s > 1, η ∈ C∞

0 (RN , [0, 1]) such that η(x) = 1, |x| ≤ r; η(x) = 0, |x| ≥ R and
|∇η| ≤ 2

R−r . Taking ϕ as a test function in (a15), we have

∫
RN
+

|∇u|p−2∇u∇ϕ dx =
1 + p(s− 1)

sp

∫
v≤T
|∇uus−1

T |pηp dx +
∫

v>T
|∇uus−1

T |pηp dx

+ p
∫
RN
+

|∇u|p−2∇uu(p−1)(s−1)
T ηp−1uus−1

T ∇η dx

≥ 1
2sp

∫
RN
+

|∇(uus−1
T η)|p dx− c

∫
RN
+

(uus−1
T )p|∇η|p dx

(A22)

and
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∫
RN−1

up−1 ϕ dy =
∫
RN−1

up−p(uus−1
T η)p dy

≤
(∫

DR0

u p̃ dy

) p−p
p̃

·
(∫

RN−1
(uus−1

T η)
pp̃

p̃−p+p dy
) p̃−p+p

p̃

≤ cR0

(∫
RN−1

(uus−1
T η)pd dy

) p
pd

(A23)

where d = pp̃
p( p̃−p+p) < 1. It follows from (A22), (A23), and the Sobolev imbedding theorem

(∫
Dr
(uus−1

T η)p dy
) 1

sp
+

(∫
B+

1

(uus−1
T )p∗ dx

) 1
sp∗

≤
(∫

RN−1
(uus−1

T η)p dy
) 1

sp
+

(∫
RN
+

(uus−1
T )p∗ dx

) 1
sp∗

≤
(

c
∫
RN
+

|∇(uus−1
T η)|p dx

) 1
sp

≤ (cs)
1
s

(∫
RN−1

(uus−1
T η)pd dy

) 1
spd

+

(∫
RN
+

(uus−1
T )p|∇η|p dx

) 1
sp

≤ (cs)
1
s

(( ∫
DR

(uus−1
T )pd dy

) 1
spd

+
1

(R− r)
1
s

( ∫
B+

R

(uus−1
T )p dx

) 1
sp

)

≤
(

cs
R− r

) 1
s
(( ∫

DR

(uus−1
T )pd dy

) 1
spd

+
( ∫

B+
r

(uus−1
T )p∗d dx

) 1
p∗d

)
.

(A24)

In the above, we have used p < p∗d. Assume∫
DR

uspd dy < +∞,
∫

B+
R

usp∗d dx < +∞ .

Letting T → ∞ in (A24), we obtain

(∫
Dr

usp dy
) 1

sp
+

(∫
B+

R

usp∗ dx
) 1

sp∗
≤
(

cs
R− r

) 1
s
(( ∫

DR

uspddy
) 1

spd
+
( ∫

B+
R

usp∗d dx
) 1

sp∗d

)
. (A25)

Let χ = 1
d , xj = χj, rj = r + 1

2j−1 (R− r), j = 1, 2, · · · . By Moser’s iteration, for some t > 0, we obtain

|u|L∞(Dr) + |u|L∞(B+
r ) ≤

c
(R− r)t

(
|u|Lp(DR)

+ |u|Lp∗ (B+
R )

)
. (A26)

Step 3. By (A26), there exists t′, c such that

|u|L∞(Dr) + |u|L∞(B+
r ) ≤

1
2

(
|u|L∞(DR)

+ |u|L∞(B+
R )

)
+

c
(R− r)t′

(
|u|Lγ(DR)

+ |u|Lγ(B+
R )

)
.

By iteration, we obtain

|u|L∞(Dr) + |u|L∞(B+
r ) ≤

c′

(R− r)t′

(
|u|Lγ(DR)

+ |u|Lγ(B+
R )

)
.

In particular
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|u|L∞(D 1
2
) + |u|L∞(B+

1
2
) ≤ c

(
|u|Lγ(D 3

4
) + |u|Lγ(B+

3
4
)

)
≤ c
(
|u|Lγ(D1)

+ |u|Lγ(B+
1 )

)
.

We also have inner estimate

Lemma A5. Let u ≥ 0, u ∈ D and satisfy∫
RN
+

|∇u|p−2∇u∇ϕ dx ≤ 0, ϕ ≥ 0, ϕ ∈ D .

Then, for any γ > 0, there exists c = c(p, γ) such that

|u|L∞(B 1
2 R

) ≤ cR−
N
γ |u|Lγ(BR)

.

Appendix B. Estimate via the Wolff Potential

Lemma A6. Let f ≥ 0, u ∈ D satisfy the equation
− ∆pu = 0, in RN

+ ,

|∇u|p−2 ∂u
∂n

= f , on RN−1 .
(A27)

Then, for γ ∈
(

p− 1, (p−1)pp
(p−1)p+p

)
, there exists a constant c = c(p, γ) such that

(
γ−N

∫
B+

1

|u|γ dx + γ−N+1
∫

Dr
|u|γ dx

) 1
γ

≤ c
(∫

B+
1

|u|γ dx +
∫

D1

|u|γ dy
) 1

γ

+ c
∫ 1

r

(∫
Dt

f dy
) 1

p−1 dt

t1+ N−p
p−1

, 0 < r < 1 .

(A28)

Proof. Let 0 < R ≤ 1, rj = 21−jR, j = 1, 2, · · · and a0. Define

aj+1 = aj +
1
δ

(
r−N

j+1

∫
B+

j+1∩{u>aj}
+r−N+1

j+1

∫
Dj+1∩{u>aj}

(u− aj)
γ dy

)
, (A29)

where B+
j = {x| x ∈ RN

+ , |x| < rj}, Dj = {y| y ∈ RN−1, |y| < rj}, δ is a small positive constant.
By Lemma A2 of [22](and refer [25]) for δ small enough, there exists a constant c = c(p, γ) such that

ak ≤ 2a1 + c
k

∑
j=1

 1

rN−p
j

∫
Drj

f dy

 1
p−1

. (A30)

We have

a1 =
1
δ

(∫
B+

R

|u|γ dx + R−N+1
∫

DR

|u|γ dx
)

(A31)

and
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k

∑
j=1

 1

rN−p
j

∫
Drj

f dy

 1
p−1

≤ c
k

∑
j=1

∫ rj−1

rj

(∫
Dt

f dy
) 1

p−1 dt

t1+ N−p
p−1

= c
∫ R

rk

(∫
Dt

f dy
) 1

p−1 dt

t1+ N−p
p−1

(A32)

and by the proof of Proposition 3 [22], we have

(
r−N

k

∫
B+

rk

|u|γ dx + r−N+1
k

∫
Drk

|u|γ dy

) 1
γ

≤ cak . (A33)

Now, it follows that(
r−N

k

∫
B+

rk

|u|γ dx + r−N+1
k

∫
Drk

|u|γ dy

) 1
γ

≤ c
(

R−N
∫

B+
R

|u|γ dx + R−N+1
∫

DR

|u|γ dy
) 1

γ

+ c
∫ R

rk

(∫
Dt

f dy
) 1

p−1 dt

t1+ N−p
p−1

.

(A34)

Assume 2−k < r ≤ 2−k+1. Let R = 2k−1r, 1
2 < R ≤ 1. By (A30)–(A34), we obtain

(
r−N

∫
B+

r

|u|γ dx + r−N+1
∫

Dr
|u|γ dy

) 1
γ

≤ c
(

R−N
∫

B+
R

|u|γ dx + R−N+1
∫

DR

|u|γ dy
) 1

γ

+ c
∫ R

r

(∫
Dt

f dy
) 1

p−1 dt

t1+ N−p
p−1

≤ c
(∫

B+
1

|u|γ dx +
∫

D1

|u|γ dy
) 1

γ

+ c
∫ 1

r

(∫
Dt

f dy
) 1

p−1 dt

t1+ N−p
p−1

.

Appendix C. The Sobolev Imbedding Theorem

Lemma A7. W1,p(RN
+) ⊂W ⊂W1,p(RN−1 × (0, 1)).

Proof. (1) By the Sobolev imbedding theorem, the imbedding from W1,p(RN
+) to Lq(RN−1), p ≤ q ≤ p

is continuous, hence W1,p(RN
+) ⊂W. On the other hand, there exist functions that belong to W but not

to W1,p(RN
+). Here, we give an example. Let ϕ ∈ C∞

0 (B1, [0, 1]). Define

ϕn(x) = n−
N−p

p ϕ(n−1(x− 2n+1e)), x ∈ RN
+ , n = 1, 2, · · · ,

un =
n

∑
k=1

1
n

ϕn

where e = (0, · · · , 0, 1) ∈ RN , ϕn(n = 1, 2, · · · ) are supports, and we have∫
RN
+

|∇ϕn|p dx =
∫
RN
|∇ϕ|p dx,

∫
RN
+

ϕ
p
n dx = np

∫
RN

ϕp dx,
∫
RN−1

ϕ
p
n dy = 0 .

Hence,

‖un − um‖p
W =

m

∑
k=n+1

1
up

∫
RN
|∇ϕ|p dx → 0
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|un|pp =
n

∑
k=1

1
np · n

p
∫
RN

ϕp dx → ∞ .

Let u = lim
n→∞

un, u ∈W but u 6∈W1,p(RN
+).

(2) Letting u ∈W, we have

|u|p(y, s) = |u|p(y, 0) +
∫ s

0

∂

∂s
|u|p(y, τ) dτ

= |u|p(y, 0) + p
∫ s

0
|u|p−2u · ∂u

∂s
dτ

≤ |u|p(y, 0) + c
∫ 1

0

∣∣∣∂u
∂s

∣∣∣p dτ + ε
∫ 1

0
|u|p dτ .

Integrating over x ∈ RN−1 × (0, 1), we obtain∫
RN−1×(0,1)

|u|p dx ≤
∫
RN−1×(0,1)

|u|p(y, 0) dy + c
∫
RN−1×(0,1)

∣∣∣∂u
∂s

∣∣∣p dx + ε
∫
RN−1×(0,1)

|u|p dx,

hence ∫
RN−1×(0,1)

|u|p dx ≤ c
(∫

RN−1
|u|p dy +

∫
RN
+

|∇u|p dx
)
= c‖u‖p

W

and
‖u‖W1,p(RN−1×(0,1)) ≤ c‖u‖W .

Lemma A8. The imbedding from Wr to Lq(RN−1), p < q < p is compact.

Proof. Denote Q = (−1, 1)N−1 ⊂ RN−1. For y ∈ RN−1, |y| ≥ R, we find orthogonal transformation
τi ∈ O(N − 1) ⊂ O(N), i = 1, · · · , N(R) such that τi = Id and τi(Q+), i = 1, · · · , N(R) are mutually
disjoint. Obviously, N(R)→ +∞ as R→ +∞.

Let u ∈Wr, z ∈ RN−1, |z| ≥ R. We have

∫
Q+z
|u|q dy =

1
N(R)

N(R)

∑
i=1

∫
τi(Q+y)

|u|q dy ≤ 1
N(R)

|u|q dy (A35)

and

∫
Q+z
|u|q dy ≤ c

∫
(Q+z)×(0,1)

(|∇u|p + |u|p) dx
(∫

Q+z
|u|q dy

)1− p
q

≤ c
(∫

(Q+z)×(0,1)
|∇u|p dx +

∫
Q+z
|u|p dy

)(
1

N(R)

∫
RN−1

|u|q dy
)1− p

q
.

(A36)

Taking sum over z ∈ RN−1, |z| ≥ R, we obtain

∫
RN−1\DR

|u|q dy ≤ c
(∫

RN
+

|∇u|p dx +
∫
RN−1

|u|p dy
)
·
(

1
N(R)

∫
RN−1

|u|q dy
)1− p

q

≤ c‖u‖q
W N(R)−

(
1− p

q

)
= c‖u‖q

W · oR(1) .

(A37)

Now, assume un ∈Wr, un ⇀ 0 in Wr. Then,∫
RN−1

|un|q dy =
∫

DR

|un|q dy +
∫
RN−1\DR

|un|q dy ≤
∫

DR

|un|q dy + coR(1)→ 0 as n→ ∞ .



Mathematics 2020, 8, 1520 22 of 24

Proposition A1. The imbedding from Dr to Lp(RN−1) is compact with respect to the dilation group D (defined
by (8)).

Proof. (Adapted from [19]) Choose χ ∈ C∞
0 (R, [0, 1]) such that χ(t) = |t|, 1 ≤ |t| ≤ 2

N−p
p ; chi(t) = 0,

|t| ≤ 2−
N−p

p or |t| ≥ 22· N−p
p . Q = (−1, 1)N−1 and N(R) as defined in Lemma A8. Assume un

D
⇀ 0

in Dr.
Step 1.

∫
RN−1 χp(un) dy→ 0 as n→ ∞.

For z ∈ RN−1, |z| ≥ R, we have

∫
Q+z

χp(un) dy ≤ c
∫
(Q+z)×(0, 1)

(|∇χ(un)|p + χp(un)) dx
(∫

Q+z
χp(un) dy

)1− p
p

≤ c
(∫

(Q+z)×(0, 1)
|un|p dx +

∫
Q+z

χp(un) dy
)(

1
N(R)

∫
RN−1

χp(un) dy
)1− p

p

≤ c
(∫

(Q+z)×(0, 1)
|∇un|p dx +

∫
Q+z
|un|p dy

)(
1

N(R)

∫
RN−1

|un|p dy
)1− p

p
.

(A38)

Taking sum over z ∈ RN−1 and |z| ≥ R,

∫
RN−1\DR

χp(un) dy ≤ c
(∫

RN
+

|∇un|p dx +
∫
RN−1

|un|p dy
)(

1
N(R)

∫
RN−1

|un|p dy
)1− p

p

≤ cN(R)
−
(

1− p
p

)
= oR(1)

(A39)

and ∫
RN−1

χp(un) dy =
∫

DR

χp(un) dy +
∫
RN−1\DR

χp(un) dy

≤ c
∫

DR

|un|p dy + oR(1)→ 0 as n→ ∞ .
(A40)

Step 2. For j ∈ Z, define hj ∈ D by hju(x) = zj· N−p
p u(2jx). Then, for any sequence

jn ∈ Z, hjn un
D
⇀ 0 in Dr. By Step 1, we have∫

RN−1
χp(hjn un) dy→ 0, as n→ ∞ . (A41)

Step 3. We estimate
∫
RN−1 |un|p dy. Since∫

2j· N−p
p ≤|un |≤2(j+1)· N−p

p
|un|p dy

≤
∫
RN−1

(
2j· N−p

p χ(2−j· N−p
p un(x))

)p
dy

=
∫
RN−1

(
χ(2−j· N−p

p un(2−jx))
)p

dy

≤ c
∫
RN
+

∣∣∣∇(2j· N−p
p χ(2−j· N−p

p un(x))
) ∣∣∣p dx ·

(∫
RN−1

(
χ(2−j· N−p

p un(2−jx)) dy
)p
)1− p

p

≤ c
∫

2(j−1)· N−p
p ≤|un(x)|≤2(j+2)· N−p

p
|∇un|p dx · sup

j∈ZN−1

(∫
RN−1

(
χ(hj(un))

)p dy
)1− p

p
,

(A42)
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choosing jn ∈ Z such that

sup
j∈ZN−1

∫
RN−1

(
χ(hj(un))

)p dy ≤ 2
∫
RN−1

(
χ(hj(un))

)p dy (A43)

Then, ∫
2j N−p

p ≤|un |≤2(j+1)· N−p
p
|un|p dy

≤c
∫

2(j−1)· N−p
p ≤|un |≤2(j+2)· N−p

p
|∇un|p dx ·

(∫
RN−1

(
χ(hj(un))

)p dy
)1− p

p
.

(A44)

Taking sum over j ∈ ZN−1 and taking into account that the sets 2(j−1)· N−p
p ≤ |un| ≤ 2(j+2)· N−p

p cover R
with uniformly finite multiplicity, by Step 2, we obtain

∫
RN−1

|un|p dy ≤ c
∫
RN
+

|∇un|p dx ·
(∫

RN−1

(
χ(hj(un))

)p dy
)1− p

p

≤ c
(∫

RN−1

(
χ(hjn(un))

)p dy
)1− p

p
→ 0 as n→ ∞ .
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