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Abstract: Let Γ be a commutative monoid, R =
⊕

α∈Γ Rα a Γ-graded ring and S a multiplicative
subset of R0. We define R to be a graded S-Noetherian ring if every homogeneous ideal of R is
S-finite. In this paper, we characterize when the ring R is a graded S-Noetherian ring. As a special
case, we also determine when the semigroup ring is a graded S-Noetherian ring. Finally, we give an
example of a graded S-Noetherian ring which is not an S-Noetherian ring.
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1. Introduction

1.1. Graded Rings and Semigroup Rings

Let R be a commutative ring with identity and let Γ be a commutative monoid written additively.
Then R is called a Γ-graded ring if there exists a nonempty family {Rα | α ∈ Γ} of additive abelian
groups such that R =

⊕
α∈Γ Rα and Rα · Rβ ⊆ Rα+β for all α, β ∈ Γ.

Let R =
⊕

α∈Γ Rα be a Γ-graded ring. It is obvious that for all α ∈ Γ, Rα is an R0-module. (In this
paper, all modules are assumed to be unitary.) In particular, R0 can be regarded as a subring of
R. Also, it is easy to see that

⋃
α∈Γ Rα is the set of homogeneous elements of R. An ideal I of R is

said to be homogeneous if I =
⊕

α∈Γ(I ∩ Rα) (or equivalently, I has a set of homogeneous generators).
It is routine to show that if I and J are homogeneous ideals of R, then (I : J) := {x ∈ R | xJ ⊆ I}
is also a homogeneous ideal of R. Let {Iβ | β ∈ Λ} be a nonempty set of homogeneous ideals of R.
Then ∑β∈Λ Iβ is an ideal of R which has a set of homogeneous generators; so ∑β∈Λ Iβ is a homogeneous
ideal of R. In particular, if {Iβ | β ∈ Λ} is a chain of homogeneous ideals of R, then

⋃
β∈Λ Iβ is also a

homogeneous ideal of R.
For more on graded rings, the readers can refer to [1].
One of the most important examples of Γ-graded rings is the semigroup ring. Let R be a

commutative ring with identity, Γ a commutative monoid written additively and R[Γ] the set of
functions f from Γ to R that are finitely nonzero with the usual addition and multiplication defined as

( f g)(γ) = ∑α+β=γ f (α)g(β).

Then R[Γ] becomes a commutative ring with identity and we call R[Γ] the semigroup ring of Γ
over R.

Let R[Γ] be the semigroup ring of Γ over R. Then each f ∈ R[Γ] can be written as f = a1Xα1 +

· · ·+ anXαn for some a1, . . . , an ∈ R and α1, . . . , αn ∈ Γ. Also, R[Γ] =
⊕

α∈Γ RXα is a Γ-graded ring in
the natural way with (R[Γ])α = RXα.

The readers can refer to [2] for semigroup rings and semigroups.
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1.2. S-Noetherian Rings

The concept of Noetherian rings is one of the most important tools in the arsenal of algebraists.
Because of its significance, there have been many attempts to generalize the notion of Noetherian
rings. One of several generalizations is an S-Noetherian ring. Let R be a commutative ring with
identity, S a (not necessarily saturated) multiplicative subset of R and M a unitary R-module. In [3],
the authors introduced the concept of “almost finitely generated” to study Querre’s characterization
of divisorial ideals in integrally closed polynomial rings. Later, in [4], Anderson and Dumitrescu
abstracted this notion to any commutative ring and defined a general concept of Noetherian rings.
Recall from (Definition 1 [4]) that an ideal I of R is S-finite if there exist an element s ∈ S and a finitely
generated ideal J of R such that sI ⊆ J ⊆ I; and R is an S-Noetherian ring if each ideal of R is S-finite.
Also, M is said to be S-finite if there exist an element s ∈ S and a finitely generated R-submodule F of
M such that sM ⊆ F. If S consists of units of R, then the notion of S-Noetherian rings (resp., S-finite
ideals, S-finite modules) is precisely the same as that of Noetherian rings (resp., finitely generated
ideals, finitely generated modules).

For more on S-Noetherian rings, the readers can refer to [4–12].
Let R be a commutative ring with identity and let S be a (not necessarily saturated) multiplicative

subset of R. Recall from [4] (p. 4411) that S is an anti-Archimedean subset of R if
⋂∞

n=1 snR ∩ S 6= ∅
for all s ∈ S. This concept originally came from that of anti-Archimedean rings [13] (p. 3223). As an
example, every multiplicative subset consisting of units is anti-Archimedean. Also, if V is a valuation
domain with no height-one prime ideals, then V \ {0} is an anti-Archimedean subset of V (Proposition
2.1 [13]).

Recall that for a commutative monoid Γ, a Γ-graded ring R =
⊕

α∈Γ Rα is a graded Noetherian ring if
every homogeneous ideal of R is finitely generated. In [14,15], the authors studied graded Noetherian
rings. More precisely, Goto and Yamagishi showed that if Γ is a finitely generated abelian group and
R =

⊕
α∈Γ Rα is a Γ-graded ring, then R is a graded Noetherian ring if and only if R is a Noetherian

ring, if and only if R0 is a Noetherian ring and R is a finitely generated R0-algebra (Theorem 1.1 [14]).
Also, Rush proved that if R is a commutative ring with identity and Γ is a torsion-free cancellative
monoid, then R[Γ] is a graded Noetherian ring if and only if R is a Noetherian ring and Γ is finitely
generated (Theorem 2.4 [15]). In [11], the authors dealt with semigroup rings as S-Noetherian rings.
For a commutative ring R with identity, an anti-Archimedean subset S of R and a commutative
monoid Γ, it was shown that if R is an S-Noetherian ring and Γ is finitely generated, then R[Γ] is an
S-Noetherian ring (Proposition 3.1 [11]); and if R[Γ] is an S-Noetherian ring and Γ is cancellative with
G(Γ) = {0}, R is an S-Noetherian ring and Γ is finitely generated, where G(Γ) is the largest subgroup
of Γ (Lemma 3.2 and Proposition 3.3 [11]).

Motivated by the results in the previous paragraph, in this paper, we introduce the concept of
graded S-Noetherian rings and determine when the both a graded ring and the semigroup ring are
graded S-Noetherian rings. In Section 2, we introduce the concepts of graded S-Noetherian rings
and S-finite algebras and show that if Γ is a finitely generated abelian group, R =

⊕
α∈Γ Rα is a

Γ-graded ring and S is an anti-Archimedean subset of R0, then R is an S-Noetherian ring if and only
if R is a graded S-Noetherian ring, if and only if R0 is an S-Noetherian ring and R is an S-finite
R0-algebra. In Section 3, we investigate to study when the semigroup ring is a graded S-Noetherian
ring. More precisely, we prove that if R is a commutative ring with identity, S is a multiplicative subset
of R and Γ is a torsion-free cancellative monoid, then R[Γ] is a graded S-Noetherian ring if and only
if R is an S-Noetherian ring and every ideal of Γ is finitely generated. We also give an example of a
graded S-Noetherian ring which is not an S-Noetherian ring.

2. Graded Rings as Graded S-Noetherian Rings

Let R be a commutative ring with identity and let T be a unitary R-module. Then we say that R is
a direct summand of T as an R-module if there exists an R-module A such that T = R⊕ A.
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Lemma 1. Let R ⊆ T be an extension of commutative rings with identity, S a multiplicative subset of R and I
an ideal of R. Suppose that R is a direct summand of T as an R-module. Then I is an S-finite ideal of R if and
only if IT is an S-finite ideal of T.

Proof. (⇒) Suppose that I is an S-finite ideal of R. Then there exist an element s ∈ S and a finitely
generated ideal J of R such that sI ⊆ J ⊆ I. Hence sIT ⊆ JT ⊆ IT. Note that JT is a finitely generated
ideal of T. Thus IT is an S-finite ideal of T.

(⇐) Suppose that IT is an S-finite ideal of T. Then there exist an element s ∈ S and a finitely
generated subideal J of I such that sIT ⊆ JT. Since R is a direct summand of T as an R-module, we can
define an R-module epimorphism φ : T → R such that φ(r) = r for all r ∈ R. Let a ∈ I. Then there
exist j1, . . . , jn ∈ J and t1, . . . , tn ∈ T such that sa = ∑n

k=1 jktk. Therefore we obtain

sa = φ(sa) = φ(∑n
k=1 jktk) = ∑n

k=1 jkφ(tk) ∈ J.

Hence sI ⊆ J ⊆ I. Thus I is an S-finite ideal of R.

Let Γ be a commutative monoid and let R =
⊕

α∈Γ Rα be a Γ-graded ring. Then for each α ∈ Γ,
Rα · R denotes the ideal of R generated by the set Rα.

Lemma 2. Suppose that Γ is a cancellative monoid. Let R =
⊕

α∈Γ Rα be a Γ-graded ring and let S be a
multiplicative subset of R0. For an element α ∈ Γ, if Rα · R is an S-finite ideal of R, then Rα is an S-finite
R0-module.

Proof. Suppose that Rα · R is an S-finite ideal of R. Then we can find s ∈ S and a1, . . . , an ∈ Rα such
that sRα · R ⊆ (a1, . . . , an). Let a ∈ Rα. Then there exist r1, . . . , rn ∈ R such that sa = a1r1 + · · ·+ anrn.
Since Γ is cancellative, we may assume that ri ∈ R0 for all i ∈ {1, . . . , n}. Hence sRα ⊆ a1R0 + · · ·+
anR0 ⊆ Rα. Thus Rα is an S-finite R0-module.

We denote by Z the (additive) group of integers.

Lemma 3. Let R =
⊕

α∈Z Rα be a Z-graded ring and let S be a multiplicative subset of R0. If every ideal of R
generated by elements of R0 is S-finite, then R0 is an S-Noetherian ring.

Proof. Let I be an ideal of R0. Then IR is an ideal of R generated by elements of R0. By the
assumption, IR is an S-finite ideal of R. Hence by Lemma 1, I is an S-finite ideal of R0. Thus
R0 is an S-Noetherian ring.

Let R be a commutative ring with identity, A an R-algebra and S a (not necessarily saturated)
multiplicative subset of R. We say that A is an S-finite R-algebra if there exist s ∈ S and a1, . . . , an ∈ A
such that sA ⊆ R[a1, . . . , an].

For a Z-graded ring R =
⊕

α∈Z Rα, let R+ =
⊕

α>0 Rα and R− =
⊕

α<0 Rα. Then R+ · R denotes
the ideal of R generated by the set R+ and R− · R stands for the ideal of R generated by the set R−.
It is easy to see that R+ · R (resp., R− · R) is the ideal of R generated by all homogeneous elements of
R+ (resp., R−). For a, b ∈ Z with b ≤ a, we define R0[Rb, . . . , Ra] to be the R0-algebra generated by the
set

⋃
b≤i≤a Ri.

Lemma 4. Let R =
⊕

α∈Z Rα be a Z-graded ring and let S be an anti-Archimedean subset of R0. If R+ · R,
R− · R and Rα · R for all α ∈ Z are S-finite ideals of R, then R is an S-finite R0-algebra.

Proof. Suppose that R+ · R and R− · R are S-finite ideals of R. Then there exist s, t ∈ S, f1, . . . , fn ∈ R+

and g1, . . . , gm ∈ R− such that

s(R+ · R) ⊆ ( f1, . . . , fn) and t(R− · R) ⊆ (g1, . . . , gm).
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By an easy calculation, we may assume that f1, . . . , fn, g1, . . . , gm are homogeneous. Let a =

Max{deg( fi) | 1 ≤ i ≤ n} and b = Min{deg(gi) | 1 ≤ i ≤ m}.

Claim: There exists an element u ∈ S such that uR+ ⊆ R0[Rb, . . . , Ra].

Let x ∈ Ra+1. Then stx ∈ ( f1, . . . , fn); so there exist c1, . . . , cn ∈ R such that stx = f1c1 + · · ·+ fncn.
Since stx is a homogeneous element of R with deg(stx) = a + 1, we may assume that for each
i ∈ {1, . . . , n}, either ci = 0 or 1 ≤ deg(ci) ≤ a. Therefore stx ∈ R0[R1, . . . , Ra] ⊆ R0[Rb, . . . , Ra].
Hence stRa+1 ⊆ R0[Rb, . . . , Ra].

Fix an integer k ≥ 2 and suppose that (st)iRa+i ⊆ R0[Rb, . . . , Ra] for all i = 1, . . . , k − 1.
Then we have

(st)k−1Ra+i ⊆ R0[Rb, . . . , Ra]

for all i = 1, . . . , k − 1. Let y ∈ Ra+k. Then sty ∈ ( f1, . . . , fn); so there exist d1, . . . , dn ∈ R such
that sty = f1d1 + · · ·+ fndn. This implies that (st)ky = (st)k−1( f1d1 + · · ·+ fndn). Since (st)ky is a
homogeneous element of R with deg((st)ky) = a+ k, we may assume that for each i ∈ {1, . . . , n}, either
di = 0 or k ≤ deg(di) ≤ a + k− 1. Note that by the induction hypothesis, (st)k−1di ∈ R0[Rb, . . . , Ra]

for all i ∈ {1, . . . , n}; so we have

(st)ky = f1(st)k−1d1 + · · ·+ fn(st)k−1dn

∈ R0[Rb, . . . , Ra].

Hence (st)kRa+k ⊆ R0[Rb, . . . , Ra].
By the induction, (st)jRa+j ⊆ R0[Rb, . . . , Ra] for all j ≥ 1. Since S is an anti-Archimedean subset

of R0, there exists an element u ∈ ⋂∞
j=1(st)jR0 ∩ S; so we have

uRa+j ⊆ R0[Rb, . . . , Ra]

for all j ≥ 1. Thus uR+ ⊆ R0[Rb, . . . , Ra].

Also, a similar argument as in Claim shows that uR− ⊆ R0[Rb, . . . , Ra], where u is as in the proof
of Claim. Hence uR ⊆ R0[Rb, . . . , Ra] ⊆ R.

Let α ∈ Z with b ≤ α ≤ a. Then by the assumption, Rα · R is an S-finite ideal of R; so there exist
sα ∈ S and wα1, . . . , wαpα ∈ Rα such that

sα(Rα · R) ⊆ (wα1, . . . , wαpα)R ⊆ Rα · R.

Let F = {wαj | b ≤ α ≤ a and 1 ≤ j ≤ pα} and let s = ∏b≤α≤a sα. Then for each α ∈ {b, . . . , a},
s(Rα · R) ⊆ (wα1, . . . , wαpα)R ⊆ Rα · R. Since Z is a group, we have

sRα ⊆ (wα1, . . . , wαpα)R0 ⊆ R0[F] ⊆ Rα

for each α ∈ {b, . . . , a}. Hence we have

suR ⊆ sR0[Rb, . . . , Ra] ⊆ R0[F] ⊆ R.

Note that R0[F] is a finitely generated R0-algebra. Thus R is an S-finite R0-algebra.

Lemma 5. Let A ⊆ B ⊆ C be extensions of commutative rings with identity and let S be a multiplicative
subset of A. If B is an S-finite A-algebra and C is an S-finite B-algebra, then C is an S-finite A-algebra.

Proof. Suppose that B is an S-finite A-algebra and C is an S-finite B-algebra. Then there exist s, t ∈ S,
b1, . . . , bn ∈ B and c1, . . . , cm ∈ C such that sB ⊆ A[b1, . . . , bn] and tC ⊆ B[c1, . . . , cm]. Hence we have

stC ⊆ sB[c1, . . . , cm] ⊆ A[b1, . . . , bn, c1, . . . , cm].

Thus C is an S-finite A-algebra.
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In (Corollary 2.1 [16]) or (Theorem 3.1 [6]), the authors showed the Eakin-Nagata theorem for
S-Noetherian rings which states that for an extension R ⊆ T of commutative rings with identity and a
multiplicative subset S of R, if R is an S-Noetherian ring and T is an S-finite R-module, then T is an
S-Noetherian ring. If S is anti-Archimedean, then we have the following result.

Lemma 6. Let R ⊆ T be an extension of commutative rings with identity and let S be an anti-Archimedean
subset of R. If R is an S-Noetherian ring and T is an S-finite R-algebra, then T is an S-Noetherian ring.

Proof. Suppose that T is an S-finite R-algebra. Then there exist s1 ∈ S and t1, . . . , tn ∈ T such that
s1T ⊆ R[t1, . . . , tn]. Let {X1, . . . , Xn} be a set of indeterminates over R and let φ : R[X1, . . . , Xn] →
R[t1, . . . , tn] be the evaluation homomorphism such that φ|R is the identity map on R and φ sends
Xi to ti for all i ∈ {1, . . . , n}. Then R[t1, . . . , tn] is isomorphic to R[X1, . . . , Xn]/Ker(φ). Since R is
an S-Noetherian ring and S is an anti-Archimedean subset of R, R[X1, . . . , Xn] is an S-Noetherian
ring (Proposition 9 [4]) or (Corollary 3.3 [5]). Hence R[X1, . . . , Xn]/Ker(φ) is an S-Noetherian
R[X1, . . . , Xn]-module (Lemma 2.14(1) [5]).

Let S/Ker(φ) = {s + Ker(φ) | s ∈ S}. Then S/Ker(φ) is a multiplicative subset of
R[X1, . . . , Xn]/Ker(φ). Since R[X1, . . . , Xn]/Ker(φ) is an S-Noetherian R[X1, . . . , Xn]-module,
R[X1, . . . , Xn]/Ker(φ) is an (S/Ker(φ))-Noetherian ring. Note that R[X1, . . . , Xn]/Ker(φ) is
isomorphic to R[t1, . . . , tn] and S/Ker(φ) is isomorphic to S. Hence R[t1, . . . , tn] is an S-Noetherian ring.

Let I be an ideal of T. Then s1 I ⊆ I ∩ R[t1, . . . , tn]. Since R[t1, . . . , tn] is an S-Noetherian ring,
there exist s2 ∈ S and a1, . . . , am ∈ I ∩ R[t1, . . . , tn] such that

s2(I ∩ R[t1, . . . , tn]) ⊆ (a1, . . . , am)R[t1, . . . , tn].

Therefore we obtain

s1s2 I ⊆ s2(I ∩ R[t1, . . . , tn]) ⊆ (a1, . . . , am)T ⊆ I.

Hence I is an S-finite ideal of T. Thus T is an S-Noetherian ring.

Let Γ be a commutative monoid, R =
⊕

α∈Γ Rα a Γ-graded ring and S a multiplicative subset of
R0. Then we say that R is a graded S-Noetherian ring if every homogeneous ideal of R is S-finite.

We are now ready to give the main result in this section.

Theorem 1. Suppose that Γ is a finitely generated abelian group. Let R =
⊕

α∈Γ Rα be a Γ-graded ring and let
S be an anti-Archimedean subset of R0. Then the following statements are equivalent.

(1) R is an S-Noetherian ring.
(2) R is a graded S-Noetherian ring.
(3) R0 is an S-Noetherian ring and R is an S-finite R0-algebra.

Proof. (1) ⇒ (2) This implication follows from definitions of S-Noetherian rings and graded
S-Noetherian rings.

(2)⇒ (3) Suppose that R is a graded S-Noetherian ring.

Case 1. Γ = Zn for some n ∈ N0. We use the induction on n. If n = 0, then there is nothing to
prove. If n = 1, then the result comes directly from Lemmas 3 and 4.

Fix an integer n ≥ 2 and suppose that the result is true for Γ = Zn−1. For each β ∈ Z, let Aβ =

{(a1, . . . , an) ∈ Zn | ∑n
i=1 ai = β} and let Tβ =

⊕
α∈Aβ

Rα. Let T =
⊕

β∈Z Tβ. Then it is routine to
see that T is a Z-graded ring. Note that R = T as sets; so T+ · T, T− · T and Tβ · T for all β ∈ Z are
homogeneous ideals of R. Since R is a graded S-Noetherian ring, T+ · T, T− · T and Tβ · T for all β ∈ Z
are S-finite ideals of T. Note that S is an anti-Archimedean subset of T0; so by Lemma 4, T is an S-finite
T0-algebra.
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Let φ : Zn−1 → Zn be the group homomorphism given by φ(r1, . . . , rn−1) =

(r1, . . . , rn−1,−∑n−1
i=1 ri) for all (r1, . . . , rn−1) ∈ Zn−1. For each γ ∈ Zn−1, let Cγ = Rφ(γ) and consider

C :=
⊕

γ∈Zn−1 Cγ. Then it is easy to check that C is both a Zn−1-graded ring and a subring of R.
Note that C = T0 as sets and every homogeneous element of C is homogeneous in R. Let I be a
homogeneous ideal of C. Then IR is a homogeneous ideal of R. Since R is a graded S-Noetherian
ring, IR is an S-finite ideal of R; so by Lemma 1, I is an S-finite ideal of C. Therefore C is a graded
S-Noetherian ring. By the induction hypothesis, C0 is an S-Noetherian ring and C is an S-finite
C0-algebra. Since T is an S-finite T0-algebra and T0 is an S-finite C0-algebra, T is an S-finite C0-algebra
by Lemma 5. Note that R = T and C0 = Rφ(0) = R0. Hence R0 is an S-Noetherian ring and R is an
S-finite R0-algebra.

Thus by the induction, the result holds for all n ∈ N0.

Case 2. We consider the general case. Let G denote the torsion part of Γ. Then there exists an
integer n ≥ 0 such that Γ = Zn ⊕ G. For each g ∈ G, let Ag =

⊕
α∈Zn Rα+g, and let A =

⊕
g∈G Ag.

Then it is easy to see that A is a G-graded ring. Note that A = R as sets. Let g ∈ G be fixed. Then Ag · A
is a homogeneous ideal of R. Since R is a graded S-Noetherian ring, Ag · A is an S-finite ideal of R.
Hence by Lemma 2, Ag is an S-finite A0-module. Since G is a finite set, A is an S-finite A0-module,
and hence R is an S-finite A0-module.

Let I be a homogeneous ideal of A0. Then IR is a homogeneous ideal of R. Since R is a graded
S-Noetherian ring, IR is an S-finite ideal of R; so by Lemma 1, I is an S-finite ideal of A0. Hence
A0 is a graded S-Noetherian ring as a Zn-graded ring. Note that (A0)0 = R0; so by Case 1, R0 is an
S-Noetherian ring and A0 is an S-finite R0-algebra. Since R is an S-finite A0-module and A0 is an
S-finite R0-algebra, Lemma 5 forces R to be an S-finite R0-algebra.

(3)⇒ (1) This implication follows directly from Lemma 6.

Corollary 1. Let Γ0 be a submonoid of a finitely generated abelian group, R =
⊕

α∈Γ0
Rα a Γ0-graded ring and

S an anti-Archimedean subset of R0. Then the following assertions are equivalent.

(1) R is an S-Noetherian ring.
(2) R is a graded S-Noetherian ring.
(3) R0 is an S-Noetherian ring and R is an S-finite R0-algebra.

Proof. Let Γ0 be a submonoid of a finitely generated abelian group Γ and let

Dα =

{
Rα if α ∈ Γ0

{0} otherwise.

Let D =
⊕

α∈Γ Dα. Then D = R; so R can be regarded as a Γ-graded ring. Thus the equivalences
follow directly from Theorem 1.

Let Γ be a commutative monoid and let R =
⊕

α∈Γ Rα be a Γ-graded ring with identity. Then we
say that R is a graded Noetherian ring if every homogeneous ideal of R is finitely generated. Let S be a
multiplicative subset of R0. If S is the set of units of R0, then S is an anti-Archimedean subset of R0

and the concept of graded S-Noetherian rings (resp., S-Noetherian rings, S-finite algebras) is precisely
the same as that of graded Noetherian rings (resp., Noetherian rings, finitely generated algebras).
Hence by Corollary 1, we obtain

Corollary 2. (cf. (Theorem 1.1. [14])) Let Γ0 be a submonoid of a finitely generated abelian group and let
R =

⊕
α∈Γ0

Rα be a Γ0-graded ring. Then the following conditions are equivalent.

(1) R is a Noetherian ring.
(2) R is a graded Noetherian ring.
(3) R0 is a Noetherian ring and R is a finitely generated R0-algebra.
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We end this section with some examples which show that some conditions in Lemma 6 and
Theorem 1 are not superfluous.

Example 1.

(1) Let F be a field and let Y and Z be indeterminates over F. Let T = {Y} ∪ {YZ2n | n ∈ N0}, D = F[T],
S = D \ {0} and X an indeterminate over D. Then it is easy to see that D is an S-Noetherian ring.
However, D is not agreeable [17] (p. 73); so D[X] is not an S-Noetherian ring (Remark 2.1 [3]). (Recall
from [3] (p. 4862) that an integral domain D with quotient field K is agreeable if for each fractional ideal I
of D[X] with I ⊆ K[X], there exists a nonzero element d ∈ D such that sI ⊆ D[X].) Note that D[X] is an
S-finite D-algebra and S is not an anti-Archimedean subset of D because

⋂∞
n=1 YnD ∩ S = ∅. Hence the

anti-Archimedean condition in Lemma 6 is essential.

For each α ∈ Z, let

Rα =

{
DXα if α ∈ N0

{0} otherwise.

Then R0 = D and D[X] =
⊕

α∈Z Rα is a Z-graded ring. Hence the anti-Archimedean condition in (3)⇒
(1) in Theorem 1 is also essential.

(2) Let p be a prime integer and let Γ = Z[ 1
p ]/Z be a nonfinitely generated additive abelian group.

In (Proposition 3.1 [14]), the authors found an example of Γ-graded integral domains R =
⊕

α∈Γ Rα

such that R and R0 are fields but R is not a finitely generated R0-algebra. Thus the finitely generated
condition on Γ in (1)⇒ (3) and (2)⇒ (3) in Theorem 1 is essential. This is the case when S consists of
units of R0+Z.

3. Semigroup Rings as Graded S-Noetherian Rings

In this section, we study the graded S-Noetherian property via the semigroup ring which is a
special example of graded rings. To do this, we require the next lemma.

Lemma 7. Let R be a commutative ring with identity, S a multiplicative subset of R and Γ a commutative
monoid. Then the following assertions are equivalent.

(1) R[Γ] is an S-finite R-algebra.
(2) R[Γ] is a finitely generated R-algebra.
(3) Γ is finitely generated.

Proof. (1)⇒ (3) Suppose that R[Γ] is an S-finite R-algebra. Then there exist s ∈ S and f1, . . . , fn ∈ R[Γ]
such that sR[Γ] ⊆ R[ f1, . . . , fn] ⊆ R[Γ]. Note that f1, . . . , fn ∈ R[Xα1 , . . . , Xαm ] for some α1, . . . , αm ∈ Γ;
so we obtain

sR[Γ] ⊆ R[Xα1 , . . . , Xαm ] ⊆ R[Γ].

Let Γ0 be the submonoid of Γ generated by the set {α1, . . . , αm} and let α ∈ Γ. Then sXα ∈
R[Xα1 , . . . , Xαm ]. Hence there exist nonnegative integers k1, . . . , km such that α = ∑m

i=1 kiαi, which
shows that α ∈ Γ0. Thus Γ = Γ0, which indicates that Γ is finitely generated.

(3)⇒ (2) Suppose that Γ is generated by the set {α1, . . . , αm} and let α ∈ Γ. Then α = ∑m
i=1 kiαi

for some nonnegative integers k1, . . . , km; so Xα = (Xα1)k1 · · · (Xαm)km ∈ R[Xα1 , . . . , Xαm ]. Hence
R[Γ] = R[Xα1 , . . . , Xαm ]. Thus R[Γ] is a finitely generated R-algebra.

(2)⇒ (1) This implication is obvious.

Theorem 2. Let R be a commutative ring with identity, S an anti-Archimedean subset of R and Γ a submonoid
of a finitely generated abelian group. Then the following statements are equivalent.

(1) R[Γ] is an S-Noetherian ring.
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(2) R[Γ] is a graded S-Noetherian ring.
(3) R is an S-Noetherian ring and Γ is finitely generated.

Proof. Suppose that Γ is a submonoid of a finitely generated abelian group G. Then R[Γ] =
⊕

α∈G Rα

is a G-graded ring, where

Rα =

{
{aXα | a ∈ R} if α ∈ Γ

{0} otherwise.

In particular, R0 = R. Note that by Theorem 1, R[Γ] is an S-Noetherian ring if and only if R[Γ] is a
graded S-Noetherian ring, if and only if R is an S-Noetherian ring and R[Γ] is an S-finite R-algebra;
and by Lemma 7, R[Γ] is an S-finite R-algebra if and only if Γ is finitely generated. Thus (1), (2) and (3)
are equivalent.

In Theorem 2, if S consists of units in R, then we recover

Corollary 3. (cf. (Corollary 1.2 [14])) Let R be a commutative ring with identity and let Γ be a submonoid of a
finitely generated abelian group. Then the following conditions are equivalent.

(1) R[Γ] is a Noetherian ring.
(2) R[Γ] is a graded Noetherian ring.
(3) R is a Noetherian ring and Γ is finitely generated.

Let R be a commutative ring with identity and let S be a multiplicative subset of R. In (Corollary
5 [4]) or (Corollary 2.3 [6]), it was shown that R is an S-Noetherian ring if and only if every prime ideal
of R (disjoint from S) is S-finite. This result is known as the Cohen type theorem for S-Noetherian rings.

We next give the Cohen type theorem for graded S-Noetherian rings.

Proposition 1. Suppose that Γ is a torsion-free cancellative monoid. Let R =
⊕

α∈Γ Rα be a Γ-graded ring and
let S be a multiplicative subset of R0. Then the following assertions are equivalent.

(1) R is a graded S-Noetherian ring.
(2) Every homogeneous prime ideal of R is S-finite.

Proof. (1)⇒ (2) This implication is obvious.
(2) ⇒ (1) Suppose to the contrary that R is not a graded S-Noetherian ring and let F be the

set of homogeneous ideals of R which is not S-finite. Then by the assumption, F is nonempty.
Let {Iβ | β ∈ Λ} be a chain of elements in F and let I =

⋃
β∈Λ Iβ. Then I is a homogeneous ideal of R.

Suppose that I is not S-finite. Then there exist s ∈ S and a1, . . . , an ∈ R such that sI ⊆ (a1, . . . , an) ⊆ I;
so for some β ∈ Λ, sIβ ⊆ (a1, . . . , an) ⊆ Iβ. This shows that Iβ is an S-finite ideal of R, which is a
contradiction. Consequently, I is not an S-finite ideal of R. Also, it is obvious that I is an upper bound
of the chain {Iβ | β ∈ Λ}. By Zorn’s lemma, there exists a maximal element in F , say P. Suppose that P
is not a prime ideal of R. Then there exist homogeneous elements a, b ∈ R \ P such that ab ∈ P (p. 124,
Lemma 13 [1]). Since P + (a) is a homogeneous ideal of R properly containing P, P + (a) is an S-finite
ideal of R by the maximality of P. Hence there exist s ∈ S, p1, . . . , pn ∈ P and r1, . . . , rn ∈ R such that

s(P + (a)) ⊆ (p1 + ar1, . . . , pn + arn) ⊆ P + (a).

Since (P : a) is a homogeneous ideal of R containing P and b, (P : a) is an S-finite ideal of R by
the maximality of P; so there exist t ∈ S and q1, . . . , qm ∈ R such that

t(P : a) ⊆ (q1, . . . , qm) ⊆ (P : a).
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Let x ∈ P. Then sx = ∑n
i=1 ui(pi + ari) for some u1, . . . , un ∈ R. Since a(∑n

i=1 uiri) = sx −
∑n

i=1 ui pi ∈ P, we have ∑n
i=1 uiri ∈ (P : a). Therefore t(∑n

i=1 uiri) ∈ (q1, . . . , qm). Hence we obtain

stx =
n

∑
i=1

tui pi +
n

∑
i=1

tuiria

∈ (tp1, . . . , tpn, q1a, . . . , qma).

Since qi ∈ (P : a) for all i ∈ {1, . . . , m}, qia ∈ P for all i ∈ {1, . . . , m}; so we have

stP ⊆ (tp1, . . . , tpn, q1a, . . . , qma) ⊆ P.

This means that P is an S-finite ideal of R, which is a contradiction to the choice of P. Thus R is a
graded S-Noetherian ring.

Let R[Γ] be the semigroup ring of Γ over R. For an element f = ∑n
i=1 aiXαi ∈ R[Γ], c( f ) denotes

the ideal of R generated by the set {a1, . . . , an}.
We next give the main result in this section.

Theorem 3. (cf. Propositions 3.1 and 3.3 [11]) Let R be a commutative ring with identity, S a multiplicative
subset of R and Γ a torsion-free cancellative monoid. Then the following statements are equivalent.

(1) R[Γ] is a graded S-Noetherian ring.
(2) R is an S-Noetherian ring and every ideal of Γ is finitely generated.

Proof. (1)⇒ (2) Let I be an ideal of R. Then IR[Γ] is a homogeneous ideal of R[Γ]. Since R[Γ] is a
graded S-Noetherian ring, there exist s ∈ S and f1, . . . , fn ∈ R[Γ] such that

sIR[Γ] ⊆ ( f1, . . . , fn) ⊆ IR[Γ].

Therefore sI ⊆ c( f1) + · · · + c( fn) ⊆ I. Hence I is an S-finite ideal of R. Thus R is an
S-Noetherian ring.

Let J be an ideal of Γ and let A be the ideal of R[Γ] generated by the set {Xα | α ∈ J}. Then A
is a homogeneous ideal of R[Γ]. Since R[Γ] is a graded S-Noetherian ring, there exist t ∈ S and
g1, . . . , gm ∈ R[Γ] such that

tA ⊆ (g1, . . . , gm) ⊆ A.

Note that g1, . . . , gm ∈ (Xα1 , . . . , Xαn) for some α1, . . . , αn ∈ J; so we obtain

tA ⊆ (Xα1 , . . . , Xαn) ⊆ A.

Let F be the ideal of Γ generated by the set {α1, . . . , αn} and let α ∈ J. Then tXα ∈ (Xα1 , . . . , Xαn);
so there exists an element k ∈ {1, . . . , n} such that α ∈ αk + Γ. Therefore α ∈ F. Hence J = F, which
implies that J is a finitely generated ideal of Γ. Thus every ideal of Γ is finitely generated.

(2) ⇒ (1) Let P be a homogeneous prime ideal of R[Γ] and let f be a nonzero homogeneous
element of P. Then f = aXα for some a ∈ R \ {0} and α ∈ Γ. Since P is a prime ideal of R[Γ],
we obtain that a ∈ P ∩ R or Xα ∈ P. Therefore every homogeneous generator of P can be chosen in
(P∩ R)∪ {Xα |Xα ∈ P}. Since R is an S-Noetherian ring, there exist s ∈ S and a1, . . . , an ∈ R such that

s(P ∩ R) ⊆ (a1, . . . , an) ⊆ P ∩ R.

Let A = {α ∈ Γ |Xα ∈ P} and let J be the ideal of Γ generated by the set A. Then by the
assumption, there exist α1, . . . , αm ∈ A such that

J =
⋃m

i=1(αi + Γ).

Hence we obtain
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sP ⊆ (a1, . . . , an, Xα1 , . . . , Xαm) ⊆ P,

which shows that P is an S-finite ideal of R[Γ]. Thus by Proposition 1, R[Γ] is a graded
S-Noetherian ring.

When S = {1} in Theorem 3, we recover

Corollary 4. (Theorem 2.4 [15]) Let R be a commutative ring with identity and Γ a torsion-free cancellative
monoid. Then the following conditions are equivalent.

(1) R[Γ] is a graded Noetherian ring.
(2) R is a Noetherian ring and every ideal of Γ is finitely generated.

We are closing this paper with an example of graded S-Noetherian rings which are not
S-Noetherian rings.

Example 2. Let D and S be as in Example 1(1).

(1) Note that every ideal of N0 is of the form {n, n + 1, n + 2, . . . } for some n ∈ N0; so every ideal of
N0 is finitely generated. Thus by Theorem 3, D[X] is a graded S-Noetherian ring.

(2) Note that by Example 1(1), D[X] is not an S-Noetherian ring. Also, note that D[X] is regarded
as a Z-graded ring as in Example 1(1). Hence the anti-Archimedean condition in (2)⇒ (1) in
Theorem 1 is essential.

4. Conclusions

In this paper, we introduce the concept of graded S-Noetherian rings and determine when both
the graded ring and the semigroup ring are graded S-Noetherian rings. More precisely, we show that
if Γ is a finitely generated abelian group and S is an anti-Archimedean subset of R0, then a Γ-graded
ring R =

⊕
α∈Γ Rα is a graded S-Noetherian ring if and only if R is an S-Noetherian ring, if and only

if R0 is an S-Noetherian ring and R is an S-finite R0-algebra. We also prove that if Γ is a torsion-free
cancellative monoid, then the semigroup ring R[Γ] is a graded S-Noetherian ring if and only if R is
an S-Noetherian ring and every ideal of Γ is finitely generated. By constructing an example from our
results, we find out that the concept of graded S-Noetherian rings is different from that of S-Noetherian
rings. Furthermore, we discover the existence of polynomial type rings of graded S-Noetherian rings
without any condition on S. This is a big difference from S-Noetherian rings because the polynomial
extension of S-Noetherian rings is possible under some condition on S (Proposition 9 [4]).

In ensuing work, we are going to study another properties of graded S-Noetherian rings including
the generalized power series ring extension, the Nagata’s idealization and the amalgamated algebra.
As one of the referees suggested, we will also try to find more applications of our results to several
areas of mathematics including algebraic geometry.
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