Intuitionistic Fuzzy Normed Subrings and Intuitionistic Fuzzy Normed Ideals
Abstract
:1. Introduction
2. Preliminaries
2.1. Intuitionistic Fuzzy Sets
- i.
- ,
- ii.
- ,
- iii.
- ,
- iv.
- .
- i.
- ,
- ii.
- ,
- iii.
- ,
- iv.
- .
2.2. Fuzzy Normed Rings
- 1.
- ,
- 2.
- ,
- 3.
- , (and thus if identity exists), and
- 4.
- .
- 1.
- ,
- 2.
- if ; (* is monotone),
- 3.
- for , and
- 4.
- If and then for all .
- 1.
- ,
- 2.
- if ; (⋄ is monotone),
- 3.
- for , and
- 4.
- If and then for all .
3. Intuitionistic Fuzzy Normed Rings and Intuitionistic Fuzzy Normed Ideals
- i.
- ,
- ii.
- ,
- iii.
- ,
- iv.
- .
- i.
- , ,
- ii.
- , .
- i.
- ,
- ii.
- .
- i.
- ,
- ii.
- (),
- iii.
- ,
- iv.
- ().
- i.
- ,
- ii.
- ,
- iii.
- ,
- iv.
- .
- 1.
- ,
- 2.
- .
- implies ,
- implies .
- i.
- where and
- ii.
- where and
- iii.
- where and
- iv.
- where and
- v.
- where and
- (i)
- (ii)
- (iii)
- (iv)
- 1.
- and , and
- 2.
- and .
- (i)
- (ii)
- (iii)
- (iv)
4. Homomorphism and Isomorphism
- 1.
- If , then ,
- 2.
- If , then
- .We also have, for every . This implies that .
- The proof is similar, as in 1.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, A. Fuzzy groups. J. Math. Anal. Appl. 1971, 35, 512–517. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.J. Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets Syst. 1982, 8, 133–139. [Google Scholar] [CrossRef]
- Swamy, U.; Swamy, K. Fuzzy prime ideals of rings. J. Math. Anal. Appl. 1988, 134, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, T.; Sen, M. On fuzzy ideals of a ring I. Fuzzy Sets Syst. 1987, 21, 99–104. [Google Scholar] [CrossRef]
- Yue, Z. Prime L-fuzzy ideals and primary L-fuzzy ideals. Fuzzy Sets Syst. 1988, 27, 345–350. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. In Intuitionistic Fuzzy Sets; Springer: Berlin, Germany, 1999; pp. 1–137. [Google Scholar]
- Dixit, V.; Kumar, R.; Ajmal, N. On fuzzy rings. Fuzzy Sets Syst. 1992, 49, 205–213. [Google Scholar] [CrossRef]
- Hur, K.; Jang, S.Y.; Kang, H.W. Intuitionistic fuzzy ideals of a ring. Pure Appl. Math. 2005, 12, 193–209. [Google Scholar]
- Marashdeh, M. Intuitionistic Fuzzy Algebra and Fuzzy Hyperalgebra. Ph.D. Thesis, Universiti Kebangsaan Malaysia, Bangi, Malaysia, 2010. [Google Scholar]
- Marashdeh, M.F.; Salleh, A.R. Intuitionistic fuzzy rings. Int. J. Algebra 2011, 5, 37–47. [Google Scholar]
- Abdulmula, K.S.; Salleh, A.R. Intuitionistic Fuzzy Hyperhomomorphism and Intuitionistic Fuzzy Normal Subhypergroups. Int. J. Adv. Sci. Eng. Inf. Technol. 2012, 2, 484–489. [Google Scholar] [CrossRef]
- Alsarahead, M.O.; Ahmad, A.G. Complex intuitionistic fuzzy ideals. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 1940, p. 020118. [Google Scholar]
- Yaqoob, N.; Gulistan, M.; Kadry, S.; Wahab, H.A. Complex intuitionistic fuzzy graphs with application in cellular network provider companies. Mathematics 2019, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Najmark, M.A. Normed Rings; Noordhoff: Groningen, The Netherlands, 1964. [Google Scholar]
- Arens, R. A generalization of normed rings. Pacific J. Math. 1952, 2, 455–471. [Google Scholar] [CrossRef]
- Gelfand, I.; Raikov, D.; Shilov, G. Commutative Normed Rings; American Mathematical Society: Providence, RI, USA, 2002. [Google Scholar]
- Jarden, M. Normed rings. In Algebraic Patching; Springer: Berlin, Germany, 2011; pp. 10–30. [Google Scholar]
- Gupta, M.M.; Qi, J. Theory of T-norms and fuzzy inference methods. Fuzzy Sets Syst. 1991, 40, 431–450. [Google Scholar] [CrossRef]
- Emniyet, A.; Şahin, M. Fuzzy normed rings. Symmetry 2018, 10, 515. [Google Scholar] [CrossRef] [Green Version]
- Phu, N.D.; Ahmadian, A.; Hung, N.N.; Salahshour, S.; Senu, N. Narrow Metric Semi-linear Space of Intuitionistic Fuzzy Numbers: Application to AIDS Model. Int. J. Fuzzy Syst. 2019, 21, 1738–1754. [Google Scholar] [CrossRef]
- Khan, M.J.; Kumam, P.; Liu, P.; Kumam, W.; Ashraf, S. A novel approach to generalized intuitionistic fuzzy soft sets and its application in decision support system. Mathematics 2019, 7, 742. [Google Scholar] [CrossRef] [Green Version]
- Fathi, M.; Salleh, A.R. Intuitionistic fuzzy groups. Asian J. Algebra 2009, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, B. Intuitionistic fuzzy subrings and ideals. J. Fuzzy Math. 2003, 11, 139–155. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abed Alhaleem, N.; Ahmad, A.G. Intuitionistic Fuzzy Normed Subrings and Intuitionistic Fuzzy Normed Ideals. Mathematics 2020, 8, 1594. https://doi.org/10.3390/math8091594
Abed Alhaleem N, Ahmad AG. Intuitionistic Fuzzy Normed Subrings and Intuitionistic Fuzzy Normed Ideals. Mathematics. 2020; 8(9):1594. https://doi.org/10.3390/math8091594
Chicago/Turabian StyleAbed Alhaleem, Nour, and Abd Ghafur Ahmad. 2020. "Intuitionistic Fuzzy Normed Subrings and Intuitionistic Fuzzy Normed Ideals" Mathematics 8, no. 9: 1594. https://doi.org/10.3390/math8091594
APA StyleAbed Alhaleem, N., & Ahmad, A. G. (2020). Intuitionistic Fuzzy Normed Subrings and Intuitionistic Fuzzy Normed Ideals. Mathematics, 8(9), 1594. https://doi.org/10.3390/math8091594