Interpolative Reich–Rus–Ćirić and Hardy–Rogers Contraction on Quasi-Partial b-Metric Space and Related Fixed Point Results
Abstract
:1. Introduction
2. Preliminaries and Definitions
- (QPb1)
- implies ,
- (QPb2)
- ,
- (QPb3)
- ,
- (QPb4)
- .
- (a)
- If then .
- (b)
- If , then and .
- (i)
- A sequence converges to if and only if
- (ii)
- A sequence is called a Cauchy sequence if and only if
- (iii)
- The quasi partial b-metric space ) is said to be complete if every Cauchy sequence converges with respect to to a point such that
- (iv)
- A mapping is said to be continuous at if, for every , there exist
3. Main Result
1 | 2 | 3 | 4 | |
1 | 1 | 3 | 5 | 7 |
2 | 3 | 2 | 4 | 6 |
3 | 5 | 4 | 3 | 5 |
4 | 7 | 6 | 5 | 4 |
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérationsdans les ensembles abstraits et leur application aux équationsintégrales. Fund Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction principle in quasi-metric spaces. Int. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Shukla, S. Partial b-metric spaces and fixed point theorems. Mediterr. J. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
- Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Karapinar, E. Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Appl. 2018, 2, 85–87. [Google Scholar] [CrossRef] [Green Version]
- Reich, S. Fixed point of contractive functions. Bollettino dell’Unione Matematica Italiana 1972, 4, 26–42. [Google Scholar]
- Ćirić, L.B. On contraction type mappings. Math. Balk. 1971, 1, 52–57. [Google Scholar]
- Ćirić, L.B. Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Beograd) 1971, 12, 19–26. [Google Scholar]
- Reich, S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
- Reich, S. Kannan’s fixed point theorem. Boll. dell’Unione Mat. Ital. 1971, 4, 1–11. [Google Scholar]
- Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Clui-Napoca, Romania, 2001. [Google Scholar]
- Rus, I.A. Principles and Applications of the Fixed Point Theory; Editura Dacia: Clui-Napoca, Romania, 1979. (In Romanian) [Google Scholar]
- Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
- Karapinar, E.; Agarwal, R.P.; Aydi, H. Interpolative Reich-Rus-Ćirić type contractions on partial-metric spaces. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Alqahtani, O.; Aydi, H. On interpolative Hardy-Rogers type contractions. Symmetry 2018, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Karapinar, E.; Hierro, A.F.R. ω-Interpolative Reich-Rus-Ćirić type contractions. Mathematics 2019, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Debnath, P.; de La Sen, M. Set-valued interpolative Hardy-Rogers and set-valued Reich-Rus-Ćirić-type contractions in b-metric spaces. Mathematics 2019, 7, 849. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Agarwal, R.P. Interpolative Reich-Rus-Ćirić type contractions via simulation functions. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, B.; Fulga, A.; Karapinar, E. Fixed Point Results on △-Symmetric Quasi-Metric Space via Simulation Function with an Application to Ulam Stability. Mathematics 2018, 6, 208. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Chen, C.-M.; Karapınar, E. Interpolative Reich-Rus-Ćirić Type Contractions via the Branciari Distance. Mathematics 2019, 7, 84. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Karapınar, E. A Meir Keeler common type fixed point theorem on partial metric spaces. Fixed Point Theory Appl. 2012, 2012, 26. [Google Scholar] [CrossRef] [Green Version]
- Ćirić, L.J.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial-metric spaces and an application. Appl. Math. Comput. 2011, 218, 2398–2406. [Google Scholar] [CrossRef]
- Karapınar, E.; Chi, K.P.; Thanh, T.D. A generalization of Ciric quasi-contractions. Abstr. Appl. Anal. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Mlaiki, N.; Abodayeh, K.; Aydi, H.; Abdeljawad, T.; Abuloha, M. Rectangular metric-like type spaces and related fixed points. J. Math. 2018, 2018. [Google Scholar] [CrossRef]
- Krein, S.G.; Petunin, J.I.; Semenov, E.M. Interpolation of Linear Operators; American Mathematical Society: Providence, RI, USA, 1978. [Google Scholar]
- Gupta, A.; Gautam, P. Topological structure of quasi-partial b-metric spaces. Int. J. Pure Math. Sci. 2016, 17, 8–18. [Google Scholar] [CrossRef]
- Gupta, A.; Gautam, P. Quasi partial b-metric spaces and some related fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- Gautam, P.; Mishra, V.N.; Negi, K. Common fixed point theorems for cyclic Reich-Rus-Ćirić contraction mappings in quasi-partial b-metric space. Ann. Fuzzy Math. Inf. 2020. accepted. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, V.N.; Sánchez Ruiz, L.M.; Gautam, P.; Verma, S. Interpolative Reich–Rus–Ćirić and Hardy–Rogers Contraction on Quasi-Partial b-Metric Space and Related Fixed Point Results. Mathematics 2020, 8, 1598. https://doi.org/10.3390/math8091598
Mishra VN, Sánchez Ruiz LM, Gautam P, Verma S. Interpolative Reich–Rus–Ćirić and Hardy–Rogers Contraction on Quasi-Partial b-Metric Space and Related Fixed Point Results. Mathematics. 2020; 8(9):1598. https://doi.org/10.3390/math8091598
Chicago/Turabian StyleMishra, Vishnu Narayan, Luis Manuel Sánchez Ruiz, Pragati Gautam, and Swapnil Verma. 2020. "Interpolative Reich–Rus–Ćirić and Hardy–Rogers Contraction on Quasi-Partial b-Metric Space and Related Fixed Point Results" Mathematics 8, no. 9: 1598. https://doi.org/10.3390/math8091598
APA StyleMishra, V. N., Sánchez Ruiz, L. M., Gautam, P., & Verma, S. (2020). Interpolative Reich–Rus–Ćirić and Hardy–Rogers Contraction on Quasi-Partial b-Metric Space and Related Fixed Point Results. Mathematics, 8(9), 1598. https://doi.org/10.3390/math8091598