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Abstract: The aim of this paper was to obtain common fixed point results by using an interpolative
contraction condition given by Karapinar in the setting of complete metric space. Here in this paper,
we have redefined the Reich–Rus–Ćirić type contraction and Hardy–Rogers type contraction in
the framework of quasi-partial b-metric space and proved the corresponding common fixed point
theorem by adopting the notion of interpolation. The results are further validated with the application
based on them.
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1. Introduction

In the year 1922, Banach [1] introduced one of the most prominent results called Banach
contraction principle and its existence in metric fixed point theory i.e., Let J be a self map on a
non-empty set X and d is a complete metric. If there exists a constant κ ∈ [0, 1) such that

d(Jµ, Jη) ≤ κd(µ, η) for all µ, η ∈ X,

then it possesses a unique fixed point in X. Due to the importance and application potential of
the Banach contraction principle, this notion has been extended by several authors [2–4]. In 1994,
Matthews [5] introduced the notion of partial-metric space as a part of the study of denotational
semantics of dataflow networks. In 1968, the following contraction was proved by Kannan [6] i.e.,

d(Jµ, Jη) ≤ ρ[d(µ, Jµ) + d(η, Jη)] for all µ, η ∈ X,

where ρ ∈
[
0, 1

2

)
. In 2018, Karapinar [7] adopted the interpolative approach to define the generalized

Kannan-type contraction on a complete metric space. We recall that a self-map J : X → X is said to be
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an interpolative Kannan type contraction for a metric space (X, d), if there are constants ρ ∈ [0, 1) and
α ∈ (0, 1) such that

d(Jµ, Jη) ≤ ρ[d(µ, Jµ)]α · [d(η, Jη)]1−α for all µ, η ∈ X \ Fix(J)

where Fix(J) = {z ∈ X : Jz = z}.
In 1972, Reich [8] generalized the concepts of Kannan and Banach, e.g., a self map J : X → X is

called a Reich-contraction mapping if there are α, β, γ ∈ [0, 1) and α + β + γ < 1 such that

d(Jµ, Jη) ≤ αd(µ, Jµ) + βd(η, Jη) + γd(µ, η) for all µ, η ∈ X.

Reich–Rus–Ćirić [9–15] independently proved the next theorem and its variants i.e., a self map
J : X → X is said to be a Reich–Rus–Ćirić contraction map on a complete metric space (X, d) if there
are ρ ∈

[
0, 1

3

)
such that

d(Jµ, Jη) ≤ ρ[d(µ, η) + d(µ, Jµ) + d(η, Jη)],

for all µ, η ∈ X, then J possesses a unique fixed point. Very recently, Karapinar et al. [16,17] introduced
the concept of interpolative Reich–Rus–Ćirić and Hardy–Rogers type contraction and proved the
following fixed point results.

Theorem 1 ([16]). In the notion of partial metric space (X, d), if a mapping J : X → X is an interpolative
Reich–Rus–Ćirić type contraction, i.e., there are constants ρ ∈ [0, 1) and α, β ∈ (0, 1) such that d(Jµ, Jη) ≤
ρ[d(µ, η)]β[d(µ, Jµ)]α · [d(η, Jη)]1−α−β for all µ, η ∈ X \ Fix(J), then J owns a fixed point.

Theorem 2 ([17]). Let (X, d) be a metric space. If the self-mapping J : X → X is an interpolative Hardy–Rogers
type contraction i.e., there exist ρ ∈ [0, 1) and α, β, γ ∈ (0, 1) with α + β + γ < 1, such that

d(Jµ, Jη) ≤ ρ[d(µ, η)]β[d(µ, Jµ)]α · d(η, Jη)]γ

·
[

1
2
(d(µ, Jη) + d(η, Jµ))

]1−α−β−γ

for all µ, η ∈ X \ Fix(J),

then J possesses a fixed point of X.

In continuation, interesting work was done by many authors [18–27] which enriched this field.
The purpose of this paper was to revisit the approach of interpolative Reich–Rus–Ćirić and

Hardy–Rogers type contractions to attain a common fixed point for quasi-partial b-metric spaces.
Some examples are given to illustrate the new approach.

2. Preliminaries and Definitions

Definition 1 ([28]). A quasi-partial b-metric on a non-empty set X is a function qpb : X × X → R+ such
that for some real number s ≥ 1 and all µ, η, ϑ ∈ X:

(QPb1) qpb(µ, µ) = qpb(µ, η) = qpb(η, η) implies µ = η,
(QPb2) qpb(µ, µ) ≤ qpb(µ, η),
(QPb3) qpb(µ, µ) ≤ qpb(η, µ),
(QPb4) qpb(µ, η) ≤ s[qpb(µ, ϑ) + qpb(ϑ, η)]− qpb(ϑ, ϑ).

(X, qpb) is called a quasi-partial b-metric space where X is a non-empty set and qpb defines a quasi-partial
b-metric on X. The number s is called the coefficient of (X, qpb).

Let qpb be a quasi-partial b-metric on the set X. Then

dqpb(µ, η) = qpb(µ, η) + qpb(η, µ)− qpb(µ, µ)− qpb(η, η) is a b-metric on X.
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Let us see some new examples of quasi-partial b-metric space.

Example 1. Let X =
[
0,

π

4k

]
. Define the metric qpb(µ, η) = sink|µ − η| + µ for any (µ, η) ∈ X × X

and k ≥ 2.
It can be shown here that (X, qpb) is a quasi-partial b-metric space. Actually, if qpb(µ, µ) = qpb(µ, η) =

qpb(η, η), that is, µ = sink|µ− η|+ µ = η, then it is obvious that (QPb1) holds for any (µ, η) ∈ X× X.
In addition, sink|µ− η| ≥ 0 and sink|µ− η| ≥ |µ− η| when |µ− η| ∈

[
0,

π

4k

]
, then qpb(µ, µ) = µ ≤

sink|µ− η|+ µ = qpb(µ, η)

qpb(µ, µ) = µ

= |µ− η + η|
≤ |µ− η|+ |η|
≤ sink|η − µ|+ η

= qpb(η, µ) are true, hence (QPb2) and (QPb3) hold for any (µ, η) ∈ X× X.

Moreover, for any µ, η, δ ∈ X, |µ− η| ≤ π

4k
≤ π

2k
and [|µ− η|+ |η − δ|] ≤ π

2k
when k(|µ− δ|+ |δ−

µ|) ∈
[
0,

π

2k

]
, or k(|µ− δ|+ |δ− µ|) ≤ π

2
, and since sin µ is increasing on

[
0,

π

2

]
, we get

qpb(µ, η) + qpb(δ, δ) = sink|µ− η|+ µ + δ

≤ sink(|µ− δ|+ |δ− η|) + µ + δ

≤ k(|µ− δ|+ |δ− η|) + µ + δ

≤ ksink|µ− δ|+ ksink|δ− η|+ µ + δ

= k(sink|µ− δ|+ sink|δ− η|+ µ + δ)

≤ s(qpb(µ, δ) + qpb(δ, η)) for all µ, η, δ ∈ X

and s ≥ k, (QPb4) holds, hence (X, qpb) is a quasi-partial b-metric space with s ≥ k.

Lemma 1 ([29]). Let (X, qpb) be a quasi-partial b-metric space. Then the following hold:

(a) If qpb(µ, η) = 0 then µ = η.
(b) If µ 6= η, then qpb(µ, η) > 0 and qpb(η, µ) > 0.

Definition 2 ([29]). Let (X, qpb) be a quasi-partial b-metric. Then

(i) A sequence {µn} ⊂ X converges to µ ∈ X if and only if

qpb(µ, µ) = lim
n→∞

qpb(µ, µn) = lim
n→∞

qpb(µn, µ).

(ii) A sequence {µn} ⊂ X is called a Cauchy sequence if and only if

lim
n,m→∞

qpb(µn, µm) and lim
m,n→∞

qpb(µm, µn) exist (and are finite).

(iii) The quasi partial b-metric space (X, qpb) is said to be complete if every Cauchy sequence {µn} ⊂ X
converges with respect to τqpb to a point µ ∈ X such that

qpb(µ, µ) = lim
n,m→∞

qpb(µn, µm) = lim
m,n→∞

qpb(µm, µn).
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(iv) A mapping f : X → X is said to be continuous at µ0 ∈ X if, for every ε > 0, there exist

δ > 0 such that f (B(µ0, δ)) ⊂ B( f (µ0), ε).

Lemma 2 ([29]). Let (X, qpb) be a quasi-partial b-metric space and (X, dqpb) be the corresponding b-metric
space. Then (X, dqpb) is complete if (X, qpb) is complete.

Definition 3 ([30]). Let (X, qpb) be a quasi-partial b-metric space and J : X → X be a given mapping.
Then J is said to be sequentially continuous at z ∈ X if for each sequence {µn} in X converging to z,
we have Jµn → Jz, that is, lim

n→∞
qpb(Jµn, Jz) = qpb(Jz, Jz). Similarly, let S : X → X be a given mapping.

S is said to be sequentially continuous at z ∈ X if for each sequence {µn} in X converging to z, we have
lim

n→∞
qpb(Sz, Sµn) = qpb(Sz, Sz). Then J is said to be sequentially continuous on X if J is sequentially

continuous at each z ∈ X.

3. Main Result

Let us discuss the main result.

Theorem 3. Let (X, qpb) be a complete quasi-partial b-metric space. Let J, S : X → X be self mappings.
Assume that there are some ρ ∈ [0, 1), α, β ∈ (0, 1), α + β < 1, and s ≥ 1 such that the condition

qpb(Jµ, Sη) ≤ ρ[qpb(µ, η)]β[qpb(µ, Jµ)]α
[

1
s

qpb(η, Sη)

]1−α−β

(1)

is satisfied for all µ, η ∈ X such that Jµ 6= µ whenever Sη 6= η. Then S and J posses a common fixed point.

Proof. Let µ0 ∈ X. Define the sequence {µn} by µ2n+1 = Jµ2n, µ2n+2 = Sµ2n+1 for all n = 0, 1, 2, . . ..
If there exist n ∈ 0, 1, 2, . . . such that µn = µn+1 = µn+2 then µn is a common fixed point of S and
J. Suppose that there are no three consecutive identical terms in the sequence µn and that µ0 6= µ1.
Now using (1), we deduce that

qpb(µ2n+1, µ2n+2) = qpb(Jµ2n, Sµ2n+1)

≤ ρ[qpb(µ2n, µ2n+1)]
β · [qpb(µ2n, Jµ2n)]

α ·
[

1
s

qpb(µ2n+1, Sµ2n+1)]

]1−α−β

≤ ρ[qpb(µ2n, µ2n+1)]
β · [qpb(µ2n, µ2n+1)]

α ·
[

1
s

qpb(µ2n+1, µ2n+2)

]1−α−β

≤ ρ[qpb(µ2n, µ2n+1)]
β · [qpb(µ2n, µ2n+1)]

α · [qpb(µ2n+1, µ2n+2)]
1−α−β

[qpb(µ2n+1, µ2n+2)]
α+β ≤ ρ[qpb(µ2n, µ2n+1)]

α+β

or
[qpb(µ2n+1, µ2n+2) ≤ ρ[qpb(µ2n, µ2n+1)]

Hence,
qpb(µ2n+1, µ2n+2) ≤ ρqpb(µ2n, µ2n+1) ≤ ρ2qpb(µ2n−1, µ2n).

Thus,

qpb(µ2n+1, µ2n+2) ≤ ρ2n+1qpb(µ0, µ1) (2)
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Similarly,

qpb(µ2n+1, µ2n) = qpb(Jµ2n, Sµ2n−1)

≤ ρ[qpb(µ2n, µ2n−1)]
β · [qpb(µ2n, Jµ2n)]

α ·
[

1
s

qpb(µ2n−1, Sµ2n−1)

]1−α−β

≤ ρ[qpb(µ2n, µ2n−1)]
β · [qpb(µ2n, µ2n+1)]

α ·
[

1
s

qpb(µ2n−1, µ2n)

]1−α−β

[qpb(µ2n+1, µ2n)]
1−α ≤ ρ[qpb(µ2n−1, µ2n)]

1−α

[qpb(µ2n+1, µ2n)] ≤ ρ[qpb(µ2n−1, µ2n)]

Hence,
qpb(µ2n+1, µ2n) ≤ ρqpb(µ2n−1, µ2n) ≤ ρ2qpb(µ2n−1, µ2n−2).

Thus,

qpb(µ2n+1, µ2n) ≤ ρ2nqpb(µ0, µ1). (3)

From (2) and (3), we can deduce that

qpb(µn, µn+1) ≤ ρnqpb(µ0, µ1). (4)

To prove sequence {µn}is Cauchy, let n, k ∈ N

qpb(µn, µn+k) ≤ sqpb(µn, µn+1) + s2qpb(µn+1, µn+2) + . . . + skqpb(µn+k−1, µn+k)

≤ [sρn + s2ρn+1 + . . . + skρn+k−1]qpb(µ0, µ1)

≤ sk
n+k−1

∑
i=n

ρiqpb(µ0, µ1)

≤ sk
∞

∑
i=n

ρiqpb(µ0, µ1) (5)

From (5),

qpb(µn+m, µn+m+k) ≤ sk
∞

∑
i=m

ρiqpb(µn, µn+1)

lim
m→∞,n→∞

qpb(µn+m, µn+m+k) ≤ sk lim
m→∞

∞

∑
i=m

lim
n→∞

ρiqpb(µn, µn+1)

= 0

Therefore,

lim
n→∞

qpb(µn, µn+k) = lim
m→∞,n→∞

qpb(µn+m, µn+m+k) = 0. (6)

We conclude that {µn} is a Cauchy sequence. Since (X, qpb) is complete, there exists z ∈ X such
that lim

n→∞
µn = z. Next, we shall prove that z is a common fixed point of S and T.

qpb(Jz, µ2n+2) = qpb(Jz, Sµ2n+1)

≤ ρ[qpb(z, µ2n+1)]
β · [qpb(z, Jz)]α ·

[
1
s

qpb(µ2n+1, Sµ2n+1)

]1−α−β

≤ ρ[qpb(z, µ2n+1)]
β · [qpb(z, Jz)]α · [qpb(µ2n+1, Sµ2n+1)]

1−α−β
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Letting n→ ∞, we get, Jz = z.
Similarly,

qpb(µ2n+1, Sz) = qpb(Jµ2n, Sz)

≤ ρ[qpb(µ2n, Sz)]β · [qpb(µ2n, Jµ2n)]
α ·
[

1
s

qpb(z, Sz)
]1−α−β

≤ ρ[qpb(µ2n, Sz)]β · [qpb(µ2n, µ2n+1)]
α · [qpb(z, Sz)]1−α−β

Letting n→ ∞, we get Sz = z. Hence S and J attain a common fixed point.

The following fixed point result in the setting of complete quasi-partial b-metric space can be
obtained from our main result Theorem 3.

Corollary 1. Let (X, qpb) be a complete quasi-partial b-metric space and J, S : X → X be self mappings such
that qpb(Jµ, Sη) ≤ [qpb(µ, Jµ)]α[qpb(η, Sη)]1−α for all µ, η ∈ X, ρ ∈ [0, 1), α ∈ (0, 1), Jµ 6= µ whenever
Sη 6= η. Then S and J own a common fixed point.

Proof. Taking β = 0 in Theorem 1.

We now justify our result by illustrating it with an example below.

Example 2. Let X = {1, 2, 3, 4}. Define complete quasi-partial b-metric as qpb(µ, η) = max{µ, η}+ |µ− η|
that is:

qpb(µ, η) 1 2 3 4
1 1 3 5 7
2 3 2 4 6
3 5 4 3 5
4 7 6 5 4

We define self mappings J and S on X as J :

(
1 2 3 4
1 2 1 2

)
, S :

(
1 2 3 4
1 2 2 1

)
as shown in Figure 1.

Choose α = 1
2 , β = 1

3 , and ρ = 7
10 .

Figure 1. 1 is the common fixed point of S and J.

Case 1: Let (µ, η) = (3, 4). Without loss of generality, we have

qpb(Jµ, Sη) ≤ ρ[qpb(µ, η)]β[qpb(µ, Jµ)]α
[

1
s

qpb(η, Sη)

]1−α−β

qpb(J3, S4) = 1 ≤ ρ[qpb(3, 4)]1/3[qpb(3, J3)]1/2
[

1
s

qpb(4, S4)
]1/6
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Case 2: Let (µ, η) = (1, 4)

qp( J1, S4) = 1 ≤ ρ[qpb(1, 4)]1/3[qpb(1, J1)]1/2
[

1
s

qpb(4, S4)
]1/6

Thus, 1 is the common fixed point of S and J in the setting of interpolative Reich–Rus–Ćirić type contraction.
Many more common fixed points can be obtained in similar manner. Hence, a fixed point exists but is not unique.

In our next theorem, we extend our obtained result for Hardy–Rogers contraction by using
interpolative approach.

Theorem 4. Let (X, qpb) be a complete quasi-partial b-metric space. Let J, S : X → X be self mappings.
Assume that there are some ρ ∈ [0, 1), α, β, γ ∈ (0, 1) with α + β + γ < 1 and s ≥ 1 such that the condition

qpb(Jµ, Sη) ≤ ρ[qpb(µ, η)]β[qpb(µ, Jµ)]α · [qpb(η, Sη)]γ

·
[

1
2s

(qpb(µ, Sη) + qpb(η, Jµ))

]1−α−β−γ

(7)

is satisfied for all µ, η ∈ X such that Jµ 6= µ whenever Sη 6= η. Then S and J posses a common fixed point.

Proof. For any arbitrary initial point µ0 ∈ (X, qpb), we construct an iterative sequence {µn}n≥1 by
µ2n+1 = Jµ2n, µ2n+2 = S µ2n+1. If there exist n0 ∈ N such that µn0 = µn0+1 = µn0+2 then µn0 is
a common fixed point of S and J. Suppose that there are no three consecutive identical terms in the
sequence. Substituting µ by µ2n+1 and η by µ2n+2 in (7), we have

qpb(µ2n+1, µ2n+2) = qpb(Jµ2n, Sµ2n+1)

≤ ρ[qpb(µ2n, µ2n+1)]
β[qpb(µ2n, Jµ2n)]

α · [qpb(µ2n+1, Sµ2n+1)]
γ

·
[

1
2s

(qpb(µ2n, Sµ2n+1) + qpb(µ2n+1, Jµ2n))

]1−α−β−γ

≤ ρ[qpb(µ2n, µ2n+1)]
β[qpb(µ2n, µ2n+1)]

α · [qpb(µ2n+1, µ2n+2)]
γ

·
[

1
2s

(qpb(µ2n, µ2n+2) + qpb(µ2n+1, µ2n+1))

]1−α−β−γ

(8)

By (QPb1) and (8),

≤ ρ[qpb(µ2n, µ2n+1)]
β[qpb(µ2n, µ2n+1)]

α · [qpb(µ2n+1, µ2n+2)]
γ

·
[

1
2s
· s((qpb(µ2n+2, µ2n+1) + qpb(µ2n+1, µ2n)))

]1−α−β−γ

≤ ρ[qpb(µ2n, µ2n+1)]
β[qpb(µ2n, µ2n+1)]

α · [qpb(µ2n+1, µ2n+2)]
γ

·
[

1
2
(qpb(µ2n+2, µ2n+1) + qpb(µ2n+1, µ2n))

]1−α−β−γ

(9)

Suppose that

qpb(µ2n, µ2n+1) < qpb(µ2n+1, µ2n+2)

1
2
(qpb(µ2n+2, µ2n+1) + qpb(µ2n+1, µ2n)) ≤ qpb(µ2n+1, µ2n+2).



Mathematics 2020, 8, 1598 8 of 11

By (8),

qpb(µ2n+1, µ2n+2) ≤ ρ[qpb(µ2n, µ2n+1)]
β[qpb(µ2n, µ2n+1)]

α · [qpb(µ2n+1, µ2n+2)]
γ

· [qpb(x2n+1, x2n+2)]
1−α−β−γ

[qpb(µ2n+1, µ2n+2)]
α+β ≤ ρ[qpb(µ2n, µ2n+1)]

α+β

or

[qpb(µ2n+1, µ2n+2)] ≤ ρ[qpb(µ2n, µ2n+1)]

Therefore, we obtain [qpb(µ2n+1, µ2n+2)] ≤ [qpb(µ2n, µ2n+1)], which is a contradiction. Thus,
we have

1
2
(qpb(µ2n+2, µ2n+1) + qpb(µ2n+1, µ2n)) ≤ qpb(µ2n+1, µ2n)

qpb(µ2n+1, µ2n+2) ≤ ρ[qpb(µ2n, µ2n+1)]
β[qpb(µ2n, µ2n+1)]

α · [qpb(µ2n+1, µ2n+2)]
γ

· [qpb(µ2n+1, µ2n)]
1−α−β−γ

[qpb(µ2n+1, µ2n+2)]
1−γ ≤ ρ[qpb(µ2n, µ2n+1)]

1−γ

We deduce that

[qpb(µ2n+1, µ2n+2) ≤ ρ[qpb(µ2n, µ2n+1)]

qpb(µ2n+1, µ2n+2) ≤ ρqpb(µ2n+1, µ2n+2) ≤ ρ2[qpb(µ2n+1, µ2n+2)

≤ ρ3[qpb(µ2n+1, µ2n+2)ρ
2n+1qpb(µ0, µ1)

qpb(µ2n+1, µ2n+2) ≤ ρ2n+1qpb(µ0, µ1). (10)

Similarly

qpb(µ2n+1, µ2n) = qpb(Jµ2n, Sµ2n−1)

≤ ρ[qpb(µ2n, µ2n−1)]
β[qpb(µ2n, Jx2n)]

α · [qpb(µ2n−1, Sµ2n−1)]
γ

·
[

1
2s

(qpb(µ2n, Sµ2n−1) + qpb(µ2n−1, Jµ2n))

]1−α−β−γ

≤ ρ[qpb(µ2n, µ2n−1)]
β[qpb(µ2n, µ2n+1)]

α · [qpb(µ2n−1, µ2n)]
γ

·
[

1
2s

(qpb(µ2n, µ2n) + qpb(µ2n−1, µ2n+1))

]1−α−β−γ

≤ ρ[qpb(µ2n, µ2n−1)]
β[qpb(µ2n, µ2n+1)]

α · [qpb(µ2n−1, µ2n)]
γ

·
[

1
2s
· s((qpb(µ2n, µ2n+1) + qpb(µ2n−1, µ2n)))

]1−α−β−γ

≤ ρ[qpb(µ2n, µ2n−1)]
β[qpb(µ2n, µ2n+1)]

α · [qpb(µ2n−1, µ2n)]
γ

·
[

1
2
(qpb(µ2n, µ2n+1) + qpb(µ2n−1, µ2n))

]1−α−β−γ

(11)

1
2
(qpb(µ2n+2, µ2n+1) + qpb(µ2n+1, µ2n)) ≤ qpb(µ2n−1, µ2n)

qpb(µ2n+1, µ2n) ≤ ρ[qpb(µ2n, µ2n−1)]
β[qpb(µ2n, µ2n+1)]

α

· [qpb(µ2n−1, µ2n)]
γ · [qpb(µ2n−1, µ2n)]

1−α−β−γ

[qpb(µ2n+1, µ2n)]
1−γ ≤ ρ[qpb(µ2n−1, µ2n)]

1−γ



Mathematics 2020, 8, 1598 9 of 11

We deduce that

[qpb(µ2n+1, µ2n) ≤ ρ[qpb(µ2n−1, µ2n)]

qpb(µ2n+1, µ2n) ≤ ρqpb(µ2n−1, µ2n) ≤ ρ2[qpb(µ2n−2, µ2n−1) ≤ · · · ≤ ρ2nqpb(µ0, µ1)

qpb(µ2n+1, µ2n) ≤ ρ2nqpb(µ0, µ1) (12)

By (6), sequence {µn} is Cauchy. By completeness property, there exists z ∈ X such that

lim
n→∞

µn = z.

Again, we shall show that S and T attain z as a common fixed point of X.

qpb(Jz, µ2n+2) = qpb(Jz, Sµ2n+1)

≤ ρ[qpb(z, µ2n+1)]
β[qpb(z, Jz)]α · [qpb(µ2n+1, Sµ2n+1)]

γ

·
[

1
2s

(qpb(z, Sµ2n+1) + qpb(µ2n+1, Jz))
]1−α−β−γ

≤ ρ[qpb(z, µ2n+1)]
β[qpb(z, Tz)]α · [qpb(µ2n+1, µ2n+2)]

γ

·
[

1
2s

(qpb(z, µ2n+2) + qpb(µ2n+1, Jz))
]1−α−β−γ

Letting n→ ∞, we get, Jz = z.
Similarly

qpb(µ2n+1, Sz) = qpb(Jµ2n, Sz)

≤ ρ[qpb(µ2n, z)]β[qpb(x2n, Jµ2n)]
α · [qpb(z, Sz)]γ

·
[

1
2s

(qpb(µ2n, Sz) + qpb(z, Jµ2n))

]1−α−β−γ

Letting n → ∞, we get Sz = z. Hence self mappings S and J posses common fixed points in
complete metric space.

The above result (Theorem 3) motivates us to generalize the interpolative Reich–Rus–Ćirić
contraction for a family of maps. More precisely:

Problem 1. Let (X, qpb) be a complete quasi-partial b-metric space. Consider a family of self maps Sn : X → X,
n ≥ 1, and s ≥ 1 such that

qpb(Siµ, Sjη) ≤ ρi,j [qpb(µ, η)]β j · [qpb(µ, Jµ)]αi ·
[

1
s

qpb(η, Sη)

]1−αi−β j

What are the conditions on ρi,j, αi, β j for Sn to have a common fixed point?

4. Conclusions

The significant contribution of the paper proves the existence of common fixed points for
interpolative Reich–Rus–Ćirić and Hardy–Rogers contraction mappings on quasi-partial b-metric
space. Many real world problems and experimental signals lack a sensation of smoothness in their
traces. Therefore, to model these signals, interpolants are required that are non-differentiable in a dense
set of points in the domain. Fractal interpolation, which is based on the theory of iterated function
system, is used to solve such problems. The uniqueness property of fixed points for these mappings
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and their application in the study of nonlinear integral equations will be an interesting concept for
subsequent work.
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Distance. Mathematics 2019, 7, 84. [CrossRef]
23. Aydi, H.; Karapınar, E. A Meir Keeler common type fixed point theorem on partial metric spaces. Fixed Point

Theory Appl. 2012, 2012, 26. [CrossRef]
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