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1. Introduction and Preliminaries

First, we recall some notions introduced recently in several papers.
In 2012, Samet et al. [1] introduced the concept of a-admissible mappings as follows.

Definition 1. Let 7 : X — X and o : X2 — [0, +00). Then, T is called a-admissible if for all &, € X with
w(&0) > Vimpliesa (TETC) > 1.

Furthermore, one says that 7 is a triangular xa-admissible mapping if it is a-admissible and if
a(¢,n)>1anda(y,) > 1impliesa (¢,0) > 1,¢,0,n € X.
For triangular a-admissible mapping, the following result is known ([2], Lemma 7):

Lemma 1. Let T be a triangular a-admissible mapping. Assume that there exists o € X such that
a (&0, T¢o) > 1. Define sequence {&,} by &, = T"Co. Then,

& (&m, Cn) > 1forallm,n € NU{0} withm < n.

In [3], the author presented the notion of weak a-admissible mappings as follows:
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Definition 2. Let X be a nonempty set and let a : X — [0, +00) be a given mapping. Amapping T : X — X
is said to be a weak n-admissible one if the following condition holds:

foré e X witha (¢, T¢) > 1 implies « (Té’, TZC) > 1. (1)

Remark 1. It is customary to write A (X, a) and WA (X, «) as the collection of all (triangular) a-admissible
mappings on X and the collection of all (triangular) weak n-admissible mappings on X (see[3]) . One can verify
that A (X,a) C WA (X, a).

Now, we recall some basic concepts, notations, and known results from partial metric and
metric-like spaces. In 1994 Matthews ([4]) introduced notion of partial metric space as follows.

Definition 3. Let X’ be a nonempty set. A mapping dpy, : X — [0, +00) is said to be a partial metric on X if
forall ¢,C,n € X the following four conditions hold:

(1) ¢ =_Cifandonlyifdpy (¢,¢) = dpm (€,C) = dpm (3, 0) ;
2) dpm (¢,¢) < dpm €. 0);

(3)  dpm (¢, 0) =dpm (G, €)

(4 dpm (&,m) < dpm (8, 0) +dpm (C,m) —dpm (3, 0) -

In this case, the pair (X, d,,) is called a partial metric space. Obviously, every metric space is
a partial metric space. The inverse is not true. Indeed, let X' = [0, +0) and dp, (¢,{) = max {¢,{}.
Under these conditions (X,d,n) is a partial metric space but is not a metric space because
dpm (1,1) = 1 > 0. For more details, see ([5-11]).

For the following notion see [12].

Definition 4. Let X be a nonempty set. A mapping d,,; : X? — [0, +00) is said to be a metric-like on X if for
all ¢, € X the following three conditions hold:

(1) dy (6, ) = 0implies & = {;
(2) dml (é’, g) = dml (C/ (:) ;
(3) dml (61 ’7) S dml (6/ é) + dml (G, 77)'

The pair (X,d,,;) is called a metric-like space or dislocated metric space by some authors.
A metric-like mapping d,,,; on X satisfies all the conditions of a metric except that d,,; (¢, ) may
be positive for some ¢ € X. The following is a list of some metric-like spaces:

1. (R,d,;),whered,,; (¢,¢) =max{||,|C|} forall¢,C € R.

One can see that (R, d,,;) is a metric-like space, but it is not a metric space, due to the fact that
dy (|—=2],|—-2]) =2 > 0. On the other hand, (R, d,,;) is a partial metric space.

2. ([0,400),dy;), whered,,; (,0) =&+ {forall ¢, € [0, +c0).

It is clear that ([0, +0),d,,;) is a metric-like space where d,,; (¢,¢) > 0 for each { > 0.
Sinced,,; (2,2) =2+2=4>3=2+1=4d,,(2,1), it follows that d,;; (¢,&) < d,; (& ) does not
hold. Hence, ([0, +c0),d,,) is not a partial metric space.

3. (X, dml)/ where X = {0, 1,2} and dml (0, 0) = dml(lr 1) =0, dml(2,2) = %, dml(O,Z) = dml(z, 0) =2,
A1 (1,2) = d1 (2,1) = 3,1 (0,1) = dyi (1,0) = 3.
It is clear that (X, d,,;) is a metric-like (that is a dislocated metric) space with d,,; (2,2) > 0.

This means that (X, d,,;) is not a standard metric space. However, (X, d,;) is also not a partial metric
space because d,,;; (2,2) % dyr (2,0).
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4. (X,dy), where X = C([0,1],R) is the set of real continuous functions on [0,1] and
At (f,8) = supsejo) (If (D] +[g (1)]) forall f,g € C([0,1],R).

This is an example of metric-like space that is not a partial metric space. Indeed, for f (t) = 2¢,
we obtain dy,; (f, f) = sup,c(oq) (2t +2t) = 4 > 0. Putting g (t) = O for all £ € [0,1], we obtain that
Ayl (fff) =4 % Al (f,g) =dpu (f,O) =2

Note that some of the metric-like spaces given in the list are not partial metric spaces. It is clear
that a partial metric space is a metric-like space and the inverse is not true. Now, we give the definitions
of convergence and Cauchyiness of the sequences in metric-like space (see [12]).

Definition 5. Let {{,} be a sequence in a metric-like space (X, d,;).

(i) The sequence { } is said to be convergent to ¢ € X if limy, s yoodyyy (Gn, &) = dpy (E,C);

(ii) The sequence {(y } is said to be d,,;;—Cauchy in (X, d,,;) if Umy, m— 40 i (Cn, G ) exists and is finite;

(iii) A metric-like space (X ,d,;) is d,,;—complete if for every d,,;;— Cauchy sequence {, } in X there exists
an § € X such that limy, y— 4o Ay (G, Cm) = dpy (€,8) = My 400 dpyyy (Cns €)-

More details on partial metric and metric-like spaces can be found in ([5-7,11,13-18]),
and information on other classes of generalized metric spaces and contractive mappings can be
found in: ([1,3-37]).

Remark 2. In metric-like space (as in the partial metric space), the limit of a sequence need not be unique and
a convergent sequence need not be a d,;;—Cauchy sequence (see examples in Remark 1.4 (1) and (2) in [10]).
Howewver, if the sequence {Cn} is dy— Cauchy such that limy, y—4c0 iy (Cn, Em) = 0 in dyy— complete
metric-like space (X,d,,;), then the limit of such sequence is unique. Indeed, in such a case if {, — & as
n — +oo, we get that d,,; (&,&) = 0 (by (iii) of Definition 5). Now, if &y — &, &y — { and & # {, we obtain

Al (C/ g) <dpy (gl g'fl) +d (Cn/ g) = (ﬁ, g) +dp (Cr g) =0+0=0. )

By (1) from Definition 4, it follows that ¢ = (, which is a contradiction.

Now, we give the definition of the continuity for self-mapping 7 defined on a metric-like space
(X,d,,) as follows (see for example [10,11,34]) :

Definition 6. Let (X,d,,;) be a metric-like space and T : X — X be a self-mapping. We say that T is
1 — continuous in point & € X if imy—s1co dpyy (TCn, TE) = dpy (T, TE), for each sequence {&n} C X
such that im0 dpyy (8n, &) = dyy (€, 8). In other words, the mapping T : X — X is d,,;;— continuous if
the following holds true:

En ™ & implies TE, ™ T, 3)

Definition 7. Let (X,d,,) be a metric-like space. A sequence {} in it is called 0 — d,,;;— Cauchy sequence
if imy, 400 Ay (En, &) = 0. The space (X, d,y,;) is said to be 0 — d,,,;— complete if every 0 — d,,;;— Cauchy
sequence in X converges to a point { € X such that d,,; (¢, &) = 0.

It is obvious that every 0 — d,;— Cauchy sequence is a d,;— Cauchy sequence in
(X,dy;) and every d,,;— complete metric-like space is a 0 — d,;;— complete metric-like space.
In addition, every 0— complete partial metric space (&X', d,,;) is a 0 — d,,;;— complete metric-like space.
In the sequel, some results on metric-like spaces are given. Proofs to most of the results are self-evident.
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Proposition 1. Let (X, d,,;;) be a metric-like space. Then, we have the following:

(i) If the sequence {y, } converges to & € X asn — +coand if dy, (&, ) = 0, then, for all { € X, it follows
that d,, (‘:m ¢) = d (g’ ¢);

(ii) Ifdml (gl g) =0, then d, (gl 6) =dm (gr g) =0;

(iii) If {Cn} is a sequence such that limy, s oo dyyy (Gn, Cni1) =
limy— oo dit (Sns Cn) = M q00 dyt (Gnt1, Cnt1) = 0;

(o) IfE £, then dyy (€,0) > O;
(@ dyr (6,8) < 2 Y dyy (& &) holds for all &,& € X, where 1 < i < n;
i=1

0, then

(vi) Let {y} beasequence such that imy_y oo Ay (&n, Enat) = 0. IfFimy iy too Ay (En, Em) 7 O, then there
exists ¢ > 0 and sequences {m (k) } and {n (k) } such that n (k) > m (k) > k, and the following sequences
tend to e when k — 400 :

{dml (Cn(k)/ Cm(k)) } , {dml (‘;’n(k)+1/ ‘:m(k? } , {dml (gn(k)lém(k)fl) } / @

{dml (é‘n(k)+1ré‘m(k)_1) } , {dmt é‘n(k)+1/§m(k)+1) } ~

Notice that, if the condition (vi) is satisfied then the sequences d,; (Cn(k) g Cm(k)) and

Ay (gn(k) g7 Cm(k) +1) also converge to e when k — 400, where g € N. For more details on (i)—(vi),
the reader can see in ([26,27,36]). The concept of F-contraction was introduced by Wardowski in [16]
(for more details, see also: [5,9,14-18,24,28,31-33]).

Definition 8. Let F : (0, +00) — (—0c0, +00) be a mapping satisfying the following:

(F1) Fisa strictly increasing, that is, for a, p € (0,4+00), & < B implies F (x) < F (B),
(F2) For each sequence {an} C (0, +00), limy— o0 0y = 0 if and only if limy, 10 F (ay) = —00,
(F3) There exists k € (0,1) such that lim,_,o+ a*F (a) = 0.

Definition 9. Let (X, d) be a metric space. A mapping T : X — X is said to be an F-contraction if there
exist F : (0, +00) — (—o00,+00) satisfying (F1), (F2) and (F3) and T > 0 such that

d(TETL) > 0impliest+ F (d(TETQ)) < F(d(EQ)), (5)
forall¢,C € X.

In 2014, Piri and Kumam [32] investigated some fixed point results concerning F contraction in
complete metric spaces by replacing the condition (F3) with the condition:

(F3')F is continuous on (0, +0) .

Recently, in 2018, Qawaqueh et al. ([9]) defined and proved the following:

Definition 10. Let (X,d,,;) be a metric-like space and a : X2 — [0, +00). A mapping T : X — X is said to
be an («, B, F)-Geraghty contraction mapping if there exist p € G and T > 0 such that, for all ,{ € X with
d(T¢,TC)>0andwa(,0) > 1,

(G, (t+F(du (TS, TE))) < p(M(G, Q) F(MI(ED), (6)

where

M ((:-(/ g) = naxX {dml (gl g) ’ dml (61 TC:-() ’ dml (gr Tg) ’ dml(é,Té)Zd]nl(Térg) 7

L4 ETE)A4 670 ) @)
l+dml (QC) ’
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F :(0,400) = (—o0, +00) is strictly increasing function satisfying (F1), (F2) and (F3) and G is a family of
all functions B : [0, +o00) — [0,1) which satisfy the condition: B (t,) — 1 implies t, — 0 as — ~+oo.

It is worth noticing that authors in [9] denote with E (X, «, B, F) the collection of all almost
generalized (, B, F)-contractive mappings. However, it is not clear what “almost generalized
(«, B, F)-contractive mappings” mean.

Theorem 1. Let (X,d,,;) be a metric-like space and o : X% — [0, +00). A mapping T : X — X be an
(«, B, F)-Geraghty contraction mapping. Assume that the following conditions are satisfied:

() T e€E(X,aB F)NWA(X,a).
(ii) There exists &y € X such that d,,; (Eo, T Go) > 1.
(iii) T is d,,— continuous.

Then, T has a unique fixed point y € X with d,,; (,17) = 0.

2. Main Result

In this section, we improve the whole concept by introducing a new definition and new
approaches. Firstly, we introduce the following:

Definition 11. Let (X,d,,;) be a metric-like space and o : X% — [0, +00). A mapping T : X — X is said to
be a triangular (x, F)-contraction one if there exists T > 0 such that, for all ¢,{ € X with d,,; (T¢,T¢) >0
and o (&, ) > 1 holds true,

a (8, 0) (t+ F(du (TS, TE))) < F(M(EE)), ®)
where
M (6/ ) = max {dml ((:/ é) s (, T‘;’) e (C, TZ) p d"’](é'TO—;d"’](g’TC) ,
[y (6,78) |t (£,7C) } ©)
l+dml(§/€) ’

F :(0,400) — (—00, +00) is strictly increasing function.

Example 3 from [9], for instance, illustrates the validity of this definition but without the function
B :[0,4+00) — [0,1). Definition 11 is an improvement of the definition given in [9] in several directions.
Now, we prove the main result of our paper:

Theorem 2. Let (X,d,,) be a0 — d,,;— complete metric-like space and a : X% — [0, +00). Assume that a
mapping T : X — X is a triangular (&, F)-contraction one. Suppose further that the following conditions
are satisfied:

() T eWA(X,a);
(ii) There exists &y € X such that a (&o, T &) > 1;
(iii) T is d,— continuous.

Then, T has a unique fixed point (’,? € X withd,, ((:A', E) =0.
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Proof. First of all, we show the following two claims:

. If is a fixed point of 7 then d,,; ((f, (’,‘A') =0.
II. The uniqueness of a possible fixed point.

Firstly, we prove I. Indeed, if Zis a fixed point of 7 and if d,,, (é\, & ) > 0, then, putting § = ¢ = 3
in (8), we get

A A

T+ F (dml (TE,TE)) <a (5@) (r+f (dm, (TE,TE))) <F (M (55)) ) (10)
where

(5 = masfa (62) s (75) (579, 2T 2 BT

1+ du (& TE) ] (E,7) }
1+ dml (‘3\/ E)

—maX{dmz (gg),dm, (aé),dml (3,3),dm, (65) [1+dmz (Eéﬂ dyy (EE) } 4, (5@

1+ dml (‘3 E)
Then, from (10), it follows

v+ F (4 (£8)) < 7 (4w (£2)).

which is a contradiction. Hence, the assumption that d,,; (E, E) > 0 is wrong. We proved claim L

Now, we shall prove II. Suppose that 7 has two distinct fixed point Zand {in X. By (I), we get
d (5, 5) = dy (Z, Z) = 0. Since d,; (E, Z) =dy (T{f, TZ) > 0and « (E, Z) > 1, according to (8),

we get:

A A

v+ F (dw (TETC)) < (80) (v+F (d (TETT))) < F(M(ED)), (11)

where

M () = max {dml (6.2) s (28) s (50), B T (68) [t (B9)) 0 (00) }

2 1+ dml (é\r Z)

= max {dml (6,5) ,0,0,d,, ((f,Z) , 1 1_:?]0 O} =dy (66) .

T+ F (d (82)) < F (4w (£0)) (12)

is a contradiction. Hence, the uniqueness of fixed point is proved.

In the sequel, we prove the existence of the fixed point of 7.

Let {p € X be such that « (§p, 7¢o) > 1. Furthermore, we define the sequence {¢,} in X with
Cnr1 = T foralln € NU{0}. If § = &1 for some k € NU {0}, then by the previous, j is a unique
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fixed point of 7 and the proof of the theorem is finished. Now, let us suppose that ¢, # 11 for all
n € NU{0}. Since T € WA (X,a) and a (&, T&o) > 1, we have

@ (81,62) = (TG0, TTEC) >1,a(G2,83) =a(T¢,TTE) >1

Using this process again, we get a (&, §p1) > 1.
Because 7 : X — X is a triangular (&, F)-contraction mapping with
a(TCu—1,TTEn—1) = (Cn Cut+1) > 1, we have according to Lemma 1:

0 <7+ F (dp (CnsCnt1))

& (8 Cng1) (T+ F (dyt (TGn-1,TCn))) < F (M (Gn-1,6n)), (13)

where

M (C?I—l/ g‘ﬂ)
= max {dmz Ents ) ot (Ents TEno1) st oy TE) , i Ente TEn) it (TEu,8n)

2
[1 + dml (gn 1/ Tgn 1 ml énz Tgn }
1+ dml (Cn 1, (Zn

(gn 1r§n+1) +dml (Cnfén)

= max{ ml (Gn—1,8n) A1 (Sn, Gny1), Gl ot (Sns Cn-&-l)}

< max {dml (én—lréﬂ) /dml (g‘rlrg‘rH-l) , dml (énfll CH) + dml (ng/ Cn+12) — dml (gn/ CVI) + dml (Cl’l/ CH) }

= maXxX {dml (Cnflr Cn) s A (é‘m §n+1) ’ dml (Cnil,én) ;d"ll (C"’CVH’l) }
< max{dy (Gu1,8n) it (§n,Gns1)} -

If max {d,; (E1-1,8n) ,mi (En, Cns1)} = dpy (En, Enan), then a contradiction follows from
0 <7+ F(dyi (SnsCns1)) < F (dmt (Gns Gnt1)) - (14)

Thus, we conclude that max{d,; (§,-1,En),dmi (Gn, Xn41)} = d(n-1,Gn) for all n € N.
Therefore, since & ({y, &yt1) > 1, we have

T+ F (dml (gn/ §n+1)) <F (dml (énfll gn)) ’

where from one can conclude that d;; (&, §ni1) < dy (n—1,En) for all n € N. This further means
that there exists limy,_, o d,1 (&n, Ens1) = dyy > 0. 1f d,; > 0, we obtain a contradiction since by (F1),
it follows:

T-l-]:( ml+0><]:( ml+0>

where F (qul + 0) = limy 400 F (dyy1 (G, Cut1)). We use the fact that strictly increasing function
F :(0,400) — (—o0,+00) has a left and right limit in every point from (0, +c0). Hence, we obtain
that limy,— 4o dy; (&n, Gnr1) = 0. Now, we prove that the sequence {Cn}neNu{o} is a d,;;— Cauchy
sequence by supposing the contrary. When we put & = &), = G (x) in (8), we get

i (Cm(k)rén(k)> (T+]: (dml (Cm(k)+1r§n(k)+1>)) <F (/\/l (Cm(k)rén(k))) , (15)
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where

max {dml (Cm(k)fén(k)) sl (ﬁm(k)/ém(k)ﬂ) s Ami (Cn(k)rﬁn(k)ﬂ) ,

Al (Cm(k)fén(km) + dmi (é‘n(k)fﬁm(k)ﬂ)
5 ,

M (Cm(k),én(k))

[1 + dmi (6m(k)/€m(k)+1)} A (Cn(k)/éfn(k)ﬂ) } . {8,0,0, ete [1+0] ~0} _
L+dy (Cm(k)rén(k)) 2" 1l4e

Since « (gm(k), Cn(k)) > 1 from the previous inequality, we get

T+ F (dml (é’m(k)ﬂr(fn(k)ﬂ)) <F (M (Cm(k)/én(k))) / (16)
that is,
T+ F(e4+0) < F(e+0). (17)

We obtain the contradiction, which means that the sequence {, }, (oyisal— d,;— Cauchy.

This means that there exists a unique (by Remark 2) point & € X such that

At (8,€) = Hm_du (E0,€) =, im_ dout (G, ) = 0. (18)
Since the mapping 7 is d,,;— continuous, we get that lim, 4 o d;; (’T{;’n, 'T(f) =du (7'5, 7'5) ,
ie., limy—s oo dpy (§n+1, T(',?) =du (T(f, 7'6) According to Remark 2, it follows that 7¢ = &, that is,

& is a fixed point of 7. [

Remark 3. The following results are immediate corollaries of Theorem 2. Indeed, replacing M (&, ) in (8)
with one of the following sets:

max {dy (&,0),dt (&, TE) dwt (5, T)},

max {dml ((;‘, g) , Ao (C/ TC) g (gl TC) ) Aol (61 TZ) ;‘dml (é, 7—(:) } ,
and max {dml (&0, i (€, T¢) _;dml (% Té), dwi (8, T7) 42'dml (¢, T¢) } )

we get that Theorem 2 also holds true.

Immediate consequences of Theorem 2 are the following new contractive conditions that
compliment the ones given in [23,35].

Corollary 1. Let (X,d,y;) be a 0 — d,;;— complete 0 — d,,;— metric-like space and w; : X? — [0, +00).
Assume that a mapping T : X — X is a triangular («;, F)- contraction where F : (0, +00) — (—00, +00) is
the strictly increasing mapping. Suppose further that the following conditions are satisfied:

(i) T eWA(X,«;);
(ii) There exists &y € X such that a; (&9, TCo) > 1,i =1,6;
(iii) T is d,;— continuous.
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In addition, suppose that there exist T; > 0,1 = 1,6 and, for all &,{ € X with d,,; (T&,TZ) > 0and
a; (&,0) > 1,i = 1,6, the following inequalities hold true:

a1 (gl g) (Tl + dml (T@, Té)) <M (gl C)

2 (6,0) (o +exp (dyy (TS, T7C))) < exp(M (7))
1 1
%(6,¢) (T3 C G T To) STMED
1 1
0 (&,0) (r4 e e (76 TC)) < —Sreg TMED
1 > < 1
[ oxp @ (T5,70)) = T—exp (M(E,0))

a5 (8, C) <T5 +

1 1
6(€) (% o (72 7 e A (TETE) S MED) e (WD)
where M (&, {) is one of the following sets:

M 2) = max dy (6,2) o (6, 7) sy (¢, 7), Do ETEL T At G TE), Lot (6 T80 Bt (6. TE)

M8, 2) = max {ds (6,0), o (6,7 sy (¢, 7)o BT 2 B TEY

M ((;;’é) — max {dml (6/ é-) , dml (Cr Tg) ‘;dml (gr Tg)/ dml (‘:r Tg) ;dﬂll (gr T‘:) }

M (gl g) = max {dml (gl g) /dml (ﬁ, Tg) /dml (gr Tg)}
M (ér/ C) = max {dml (‘:/ é)} =dpy (6/ g) :

Then, in each of these cases, T has a unique fixed point in X

Proof. If we put «;({,0) = (g’,‘ 0), i = 1,6 and F() = 1 F() = exp(),
FO=-LF@)=-1+4+,70) =+ exp( S F (1) = m in Theorem 2, respectively, then
every of the functions ¢ — F (1) is strictly increasing on (0, +0) , and the result follows according to

Theorem 2. O

Remark 4. Putting a; (¢,{) = 1forall {,{ € X,i = 1,6 in the previous corollary, we get the following six
new contractive conditions:

T+ dml (T‘:r Tg) <M (CI g)

T +exp (dy (T¢,TT)) < exp (M(E,0))
1 1

B TLT0 S MGD
1 1
Ty — mmml (TS TO) < =4 9 + M (E, Q)
1 1
s+ 1—exp (dy (TE,TYQ)) = 1—exp(M(E,0))

1 1

%t oxp (—d (T8, 7)) — exp (dt (T8, 70)) ~ exp (M (G,0)) —exp (M (&,0))
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where M (¢, Q) is one of the following sets:

M8, 2) = max (s (€,0) it (6, T) sy (¢, 70), £ ETEL Dt [ TE) (4ot (6Tt € TE) |

M, 0) = max { s €,0) ot (6, TE) i (6, 70), e ETE) Tt G TEL

M (&,0) = max {dml (&), fni (¢, T¢) erdmz (6, T8) dwi (8, TT) ';dml (¢, T%) }

M (C:/ g) = max {dml (‘:r é) s dml (Cr TC:) ’ dml (gl Té)}
M (‘:/ g) = max {dml (é’r g)} =dp (é’r g) .

In every one of these cases, 7 has a unique fixed point in X'. The result can simply be obtained
by putting «; (&,¢) = 1,i = Leand F(1) = ,F (1) = exp(1), F(1) = =L F() = -1+,
_ 1 — 1 :

‘F(l) = W,f(l) = W in Theorem 2.

In [22], Ciri¢ introduced one of the most generalized contractive conditions (so-called quasicontraction)

in the context of metric spaces as follows:

Definition 12. The self-mapping T : X — X on metric space (X, d) is called quasicontraction (in the sense
of Cirié) if there exists A € [0,1) such that, for all &, { € X holds true

d(T¢,T¢) < Amax{d(¢,¢),d(¢,T¢),d((,TC),d (8 TE),d(,TE)}- (19)
In [22], Ciri¢ proved the following result:

Theorem 3. Each quasicontraction T on a complete metric space (X,d) has a unique fixed point (say) 1.
Moreover, for all & € X, the sequence {T"E} 2, TOF = & converges to the fixed point 17 as n — +oo.

Finally, we formulate the following notion and an open question:

Definition 13. Let (X,d,,;) be a metric-like space and a : X2 — [0, +00). A mapping T : X — X is said to
be a triangular (a, F)-contraction mapping of Cirié type, if there exists T > 0 such that, for all &,{ € X with
Ay (TE,TC) > 0and a (&, {) > 1 holds true:

(8, 0)(t+ F(dw (TE,TE)) < FN(E1D), (20)

where

N (é/ g) = max {dml (‘:/ C) s (‘:/ TC) s (é/ Tg) s (6/ Tg) s i (gl T‘:)} ’
F (0, 4+00) — (—o00, +00) is strictly increasing function satisfying only (F1).

An open question: Prove or disprove the following claim: each triangular («, F)-contraction mapping
T : X — X of Cirié type defined on 0 — d,,;;— complete metric-like space (X,d) has a unique fixed point.
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