

Article

On \mathcal{F} -Contractions for Weak α -Admissible Mappings in Metric-Like Spaces

Jelena Vujaković^{1,*}, Slobodanka Mitrović², Zoran D. Mitrović³ and Stojan Radenović⁴

- Faculty of Sciences and Mathematics , University of Priština, Lole Ribara 29, 38 200 Kosovska Mitrovica, Serbia
- ² Faculty of Forestry, Kneza Višeslava 1, University of Belgrade, 11 030 Beograd, Serbia; slobodanka.mitrovic@sfb.bg.ac.rs
- ³ Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78 000 Banja Luka, Bosnia and Herzegovina; zoran.mitrovic@etf.unibl.org
- ⁴ Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11 120 Beograd, Serbia; radens@beotel.net
- * Correspondence: jelena.vujakovic@pr.ac.rs

Received: 25 August 2020; Accepted: 18 September 2020; Published: 21 September 2020

Abstract: In the paper, we consider some fixed point results of \mathcal{F} -contractions for triangular α -admissible and triangular weak α -admissible mappings in metric-like spaces. The results on \mathcal{F} -contraction type mappings in the context of metric-like spaces are generalized, improved, unified, and enriched. We prove the main result but using only the property (\mathcal{F} 1) of the strictly increasing mapping $\mathcal{F} : (0, +\infty) \to (-\infty, +\infty)$. Our approach gives a proper generalization of several results given in current literature.

Keywords: Banach principle; metric-like space; fixed point theorem; Wardowski type contraction; triangular *α*-admissible mapping; triangular weak *α*-admissible mapping

MSC: 47H10; 54H25

1. Introduction and Preliminaries

First, we recall some notions introduced recently in several papers. In 2012, Samet et al. [1] introduced the concept of α -admissible mappings as follows.

Definition 1. Let $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ and $\alpha : \mathcal{X}^2 \to [0, +\infty)$. Then, \mathcal{T} is called α -admissible if for all $\xi, \zeta \in \mathcal{X}$ with $\alpha(\xi, \zeta) \geq 1$ implies $\alpha(\mathcal{T}\xi, \mathcal{T}\zeta) \geq 1$.

Furthermore, one says that T is a triangular α -admissible mapping if it is α -admissible and if

 $\alpha(\xi,\eta) \ge 1$ and $\alpha(\eta,\zeta) \ge 1$ implies $\alpha(\xi,\zeta) \ge 1, \xi, \zeta, \eta \in \mathcal{X}$.

For triangular α -admissible mapping, the following result is known ([2], Lemma 7):

Lemma 1. Let \mathcal{T} be a triangular α -admissible mapping. Assume that there exists $\xi_0 \in \mathcal{X}$ such that $\alpha(\xi_0, \mathcal{T}\xi_0) \ge 1$. Define sequence $\{\xi_n\}$ by $\xi_n = \mathcal{T}^n \xi_0$. Then,

$$\alpha(\xi_m, \xi_n) \ge 1$$
 for all $m, n \in \mathbb{N} \cup \{0\}$ with $m < n$.

In [3], the author presented the notion of weak α -admissible mappings as follows:

Definition 2. Let \mathcal{X} be a nonempty set and let $\alpha : \mathcal{X}^2 \to [0, +\infty)$ be a given mapping. A mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ is said to be a weak α -admissible one if the following condition holds:

for
$$\xi \in \mathcal{X}$$
 with $\alpha(\xi, \mathcal{T}\xi) \ge 1$ implies $\alpha(\mathcal{T}\xi, \mathcal{T}^2\xi) \ge 1$. (1)

Remark 1. It is customary to write $A(\mathcal{X}, \alpha)$ and $WA(\mathcal{X}, \alpha)$ as the collection of all (triangular) α -admissible mappings on \mathcal{X} and the collection of all (triangular) weak α -admissible mappings on \mathcal{X} (see[3]). One can verify that $A(\mathcal{X}, \alpha) \subseteq WA(\mathcal{X}, \alpha)$.

Now, we recall some basic concepts, notations, and known results from partial metric and metric-like spaces. In 1994 Matthews ([4]) introduced notion of partial metric space as follows.

Definition 3. Let \mathcal{X} be a nonempty set. A mapping $d_{pm} : \mathcal{X}^2 \to [0, +\infty)$ is said to be a partial metric on \mathcal{X} if for all $\xi, \zeta, \eta \in \mathcal{X}$ the following four conditions hold:

(1) $\xi = \zeta$ if and only if $d_{pm}(\xi, \xi) = d_{pm}(\xi, \zeta) = d_{pm}(\zeta, \zeta)$;

(2) $d_{pm}(\xi,\xi) \leq d_{pm}(\xi,\zeta);$

- (3) $d_{pm}(\xi,\zeta) = d_{pm}(\zeta,\xi);$
- (4) $d_{pm}\left(\xi,\eta\right) \leq d_{pm}\left(\xi,\zeta\right) + d_{pm}\left(\zeta,\eta\right) d_{pm}\left(\zeta,\zeta\right).$

In this case, the pair (\mathcal{X}, d_{pm}) is called a partial metric space. Obviously, every metric space is a partial metric space. The inverse is not true. Indeed, let $\mathcal{X} = [0, +\infty)$ and $d_{pm}(\xi, \zeta) = \max{\{\xi, \zeta\}}$. Under these conditions (\mathcal{X}, d_{pm}) is a partial metric space but is not a metric space because $d_{pm}(1, 1) = 1 > 0$. For more details, see ([5–11]).

For the following notion see [12].

Definition 4. Let \mathcal{X} be a nonempty set. A mapping $d_{ml} : \mathcal{X}^2 \to [0, +\infty)$ is said to be a metric-like on \mathcal{X} if for all $\xi, \zeta, \eta \in \mathcal{X}$ the following three conditions hold:

- (1) $d_{ml}(\xi, \zeta) = 0$ implies $\xi = \zeta$;
- (2) $d_{ml}(\xi,\zeta) = d_{ml}(\zeta,\xi);$
- (3) $d_{ml}(\xi,\eta) \leq d_{ml}(\xi,\zeta) + d_{ml}(\zeta,\eta).$

The pair (\mathcal{X}, d_{ml}) is called a metric-like space or dislocated metric space by some authors. A metric-like mapping d_{ml} on \mathcal{X} satisfies all the conditions of a metric except that $d_{ml}(\xi, \xi)$ may be positive for some $\xi \in \mathcal{X}$. The following is a list of some metric-like spaces:

1. (\mathbb{R}, d_{ml}) , where $d_{ml}(\xi, \zeta) = \max\{|\xi|, |\zeta|\}$ for all $\xi, \zeta \in \mathbb{R}$.

One can see that (\mathbb{R}, d_{ml}) is a metric-like space, but it is not a metric space, due to the fact that $d_{ml}(|-2|, |-2|) = 2 > 0$. On the other hand, (\mathbb{R}, d_{ml}) is a partial metric space.

2. $([0, +\infty), d_{ml})$, where $d_{ml}(\xi, \zeta) = \xi + \zeta$ for all $\xi, \zeta \in [0, +\infty)$.

It is clear that $([0, +\infty), d_{ml})$ is a metric-like space where $d_{ml}(\xi, \xi) > 0$ for each $\xi > 0$. Since $d_{ml}(2,2) = 2 + 2 = 4 > 3 = 2 + 1 = d_{ml}(2,1)$, it follows that $d_{ml}(\xi, \xi) \leq d_{ml}(\xi, \zeta)$ does not hold. Hence, $([0, +\infty), d_{ml})$ is not a partial metric space.

3. (\mathcal{X}, d_{ml}) , where $\mathcal{X} = \{0, 1, 2\}$ and $d_{ml}(0, 0) = d_{ml}(1, 1) = 0$, $d_{ml}(2, 2) = \frac{5}{2}$, $d_{ml}(0, 2) = d_{ml}(2, 0) = 2$, $d_{ml}(1, 2) = d_{ml}(2, 1) = 3$, $d_{ml}(0, 1) = d_{ml}(1, 0) = \frac{3}{2}$.

It is clear that (\mathcal{X}, d_{ml}) is a metric-like (that is a dislocated metric) space with $d_{ml}(2, 2) > 0$. This means that (\mathcal{X}, d_{ml}) is not a standard metric space. However, (\mathcal{X}, d_{ml}) is also not a partial metric space because $d_{ml}(2, 2) \nleq d_{ml}(2, 0)$. 4. (\mathcal{X}, d_{ml}) , where $\mathcal{X} = C([0, 1], \mathbb{R})$ is the set of real continuous functions on [0, 1] and $d_{ml}(f, g) = \sup_{t \in [0, 1]} (|f(t)| + |g(t)|)$ for all $f, g \in C([0, 1], \mathbb{R})$.

This is an example of metric-like space that is not a partial metric space. Indeed, for f(t) = 2t, we obtain $d_{ml}(f, f) = \sup_{t \in [0,1]} (2t + 2t) = 4 > 0$. Putting $g(t) \equiv 0$ for all $t \in [0,1]$, we obtain that $d_{ml}(f, f) = 4 \leq d_{ml}(f, g) = d_{ml}(f, 0) = 2$.

Note that some of the metric-like spaces given in the list are not partial metric spaces. It is clear that a partial metric space is a metric-like space and the inverse is not true. Now, we give the definitions of convergence and Cauchyiness of the sequences in metric-like space (see [12]).

Definition 5. Let $\{\xi_n\}$ be a sequence in a metric-like space (\mathcal{X}, d_{ml}) .

- (*i*) The sequence $\{\xi_n\}$ is said to be convergent to $\xi \in \mathcal{X}$ if $\lim_{n \to +\infty} d_{ml}(\xi_n, \xi) = d_{ml}(\xi, \xi)$;
- (ii) The sequence $\{\xi_n\}$ is said to be d_{ml} -Cauchy in (\mathcal{X}, d_{ml}) if $\lim_{n,m\to+\infty} d_{ml}(\xi_n, \xi_m)$ exists and is finite;
- (iii) A metric-like space (\mathcal{X}, d_{ml}) is d_{ml} -complete if for every d_{ml} Cauchy sequence $\{\xi_n\}$ in \mathcal{X} there exists an $\xi \in \mathcal{X}$ such that $\lim_{n,m\to+\infty} d_{ml}(\xi_n, \xi_m) = d_{ml}(\xi, \xi) = \lim_{n\to+\infty} d_{ml}(\xi_n, \xi)$.

More details on partial metric and metric-like spaces can be found in ([5–7,11,13–18]), and information on other classes of generalized metric spaces and contractive mappings can be found in: ([1,3–37]).

Remark 2. In metric-like space (as in the partial metric space), the limit of a sequence need not be unique and a convergent sequence need not be a d_{ml} -Cauchy sequence (see examples in Remark 1.4 (1) and (2) in [10]). However, if the sequence $\{\xi_n\}$ is d_{ml} -Cauchy such that $\lim_{n,m\to+\infty} d_{ml}(\xi_n,\xi_m) = 0$ in d_{ml} -complete metric-like space (\mathcal{X}, d_{ml}) , then the limit of such sequence is unique. Indeed, in such a case if $\xi_n \to \xi$ as $n \to +\infty$, we get that $d_{ml}(\xi,\xi) = 0$ (by (iii) of Definition 5). Now, if $\xi_n \to \xi, \xi_n \to \zeta$ and $\xi \neq \zeta$, we obtain

$$d_{ml}(\xi,\zeta) \le d_{ml}(\xi,\xi_n) + d_{ml}(\xi_n,\zeta) \to d_{ml}(\xi,\xi) + d_{ml}(\zeta,\zeta) = 0 + 0 = 0.$$
⁽²⁾

By (1) from Definition 4, it follows that $\xi = \zeta$, which is a contradiction.

Now, we give the definition of the continuity for self-mapping \mathcal{T} defined on a metric-like space (\mathcal{X}, d_{ml}) as follows (see for example [10,11,34]) :

Definition 6. Let (\mathcal{X}, d_{ml}) be a metric-like space and $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ be a self-mapping. We say that \mathcal{T} is d_{ml} – continuous in point $\xi \in \mathcal{X}$ if $\lim_{n \to +\infty} d_{ml} (\mathcal{T}\xi_n, \mathcal{T}\xi) = d_{ml} (\mathcal{T}\xi, \mathcal{T}\xi)$, for each sequence $\{\xi_n\} \subseteq \mathcal{X}$ such that $\lim_{n \to +\infty} d_{ml} (\xi_n, \xi) = d_{ml} (\xi, \xi)$. In other words, the mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ is d_{ml} – continuous if the following holds true:

$$\xi_n \stackrel{d_{ml}}{\to} \xi \text{ implies } \mathcal{T}\xi_n \stackrel{d_{ml}}{\to} \mathcal{T}\xi.$$
(3)

Definition 7. Let (\mathcal{X}, d_{ml}) be a metric-like space. A sequence $\{\xi_n\}$ in it is called $0 - d_{ml} - Cauchy$ sequence if $\lim_{n,m\to+\infty} d_{ml}(\xi_n, \xi_m) = 0$. The space (\mathcal{X}, d_{ml}) is said to be $0 - d_{ml} - complete$ if every $0 - d_{ml} - Cauchy$ sequence in \mathcal{X} converges to a point $\xi \in \mathcal{X}$ such that $d_{ml}(\xi, \xi) = 0$.

It is obvious that every $0 - d_{ml}$ – Cauchy sequence is a d_{ml} – Cauchy sequence in (\mathcal{X}, d_{ml}) and every d_{ml} – complete metric-like space is a $0 - d_{ml}$ – complete metric-like space. In addition, every 0 – complete partial metric space (\mathcal{X}, d_{ml}) is a $0 - d_{ml}$ – complete metric-like space. In the sequel, some results on metric-like spaces are given. Proofs to most of the results are self-evident.

Proposition 1. Let (\mathcal{X}, d_{ml}) be a metric-like space. Then, we have the following:

- (*i*) If the sequence $\{\xi_n\}$ converges to $\xi \in \mathcal{X}$ as $n \to +\infty$ and if $d_{ml}(\xi, \xi) = 0$, then, for all $\zeta \in \mathcal{X}$, it follows that $d_{ml}(\xi_n, \zeta) \to d_{ml}(\xi, \zeta)$;
- (*ii*) If $d_{ml}(\xi, \zeta) = 0$, then $d_{ml}(\xi, \xi) = d_{ml}(\zeta, \zeta) = 0$;
- (iii) If $\{\xi_n\}$ is a sequence such that $\lim_{n \to +\infty} d_{ml}(\xi_n, \xi_{n+1}) = 0$, then $\lim_{n \to +\infty} d_{ml}(\xi_n, \xi_n) = \lim_{n \to +\infty} d_{ml}(\xi_{n+1}, \xi_{n+1}) = 0$;
- (iv) If $\xi \neq \zeta$, then $d_{ml}(\xi, \zeta) > 0$;
- (v) $d_{ml}(\xi,\xi) \leq \frac{2}{n} \sum_{i=1}^{n} d_{ml}(\xi,\xi_i)$ holds for all $\xi, \xi_i \in \mathcal{X}$, where $1 \leq i \leq n$;
- (vi) Let $\{\xi_n\}$ be a sequence such that $\lim_{n\to+\infty} d_{ml}(\xi_n,\xi_{n+1}) = 0$. If $\lim_{n,m\to+\infty} d_{ml}(\xi_n,\xi_m) \neq 0$, then there exists $\varepsilon > 0$ and sequences $\{m(k)\}$ and $\{n(k)\}$ such that n(k) > m(k) > k, and the following sequences tend to ε when $k \to +\infty$:

$$\left\{ d_{ml} \left(\xi_{n(k)}, \xi_{m(k)} \right) \right\}, \left\{ d_{ml} \left(\xi_{n(k)+1}, \xi_{m(k)} \right) \right\}, \left\{ d_{ml} \left(\xi_{n(k)}, \xi_{m(k)-1} \right) \right\}, \left\{ d_{ml} \left(\xi_{n(k)+1}, \xi_{m(k)-1} \right) \right\}, \left\{ d_{ml} \left(\xi_{n(k)+1}, \xi_{m(k)+1} \right) \right\}.$$

$$(4)$$

Notice that, if the condition (vi) is satisfied then the sequences $d_{ml}\left(\xi_{n(k)+q},\xi_{m(k)}\right)$ and $d_{ml}\left(\xi_{n(k)+q},\xi_{m(k)+1}\right)$ also converge to ε when $k \to +\infty$, where $q \in \mathbb{N}$. For more details on (i)–(vi), the reader can see in ([26,27,36]). The concept of \mathcal{F} -contraction was introduced by Wardowski in [16] (for more details, see also: [5,9,14–18,24,28,31–33]).

Definition 8. Let $\mathcal{F} : (0, +\infty) \to (-\infty, +\infty)$ be a mapping satisfying the following:

- (F1) \mathcal{F} is a strictly increasing, that is, for $\alpha, \beta \in (0, +\infty)$, $\alpha < \beta$ implies $\mathcal{F}(\alpha) < \mathcal{F}(\beta)$,
- (F2) For each sequence $\{\alpha_n\} \subset (0, +\infty)$, $\lim_{n \to +\infty} \alpha_n = 0$ if and only if $\lim_{n \to +\infty} \mathcal{F}(\alpha_n) = -\infty$,
- (F3) There exists $k \in (0,1)$ such that $\lim_{\alpha \to 0^+} \alpha^k \mathcal{F}(\alpha) = 0$.

Definition 9. Let (\mathcal{X}, d) be a metric space. A mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ is said to be an \mathcal{F} -contraction if there exist $\mathcal{F} : (0, +\infty) \to (-\infty, +\infty)$ satisfying $(\mathcal{F}1)$, $(\mathcal{F}2)$ and $(\mathcal{F}3)$ and $\tau > 0$ such that

$$d\left(\mathcal{T}\xi,\mathcal{T}\zeta\right) > 0 \text{ implies } \tau + \mathcal{F}\left(d\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right) \le \mathcal{F}\left(d\left(\xi,\zeta\right)\right),\tag{5}$$

for all $\xi, \zeta \in \mathcal{X}$.

In 2014, Piri and Kumam [32] investigated some fixed point results concerning \mathcal{F} contraction in complete metric spaces by replacing the condition (\mathcal{F} 3) with the condition:

 $(\mathcal{F}3')\mathcal{F}$ is continuous on $(0, +\infty)$.

Recently, in 2018, Qawaqueh et al. ([9]) defined and proved the following:

Definition 10. Let (\mathcal{X}, d_{ml}) be a metric-like space and $\alpha : \mathcal{X}^2 \to [0, +\infty)$. A mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ is said to be an $(\alpha, \beta, \mathcal{F})$ -Geraghty contraction mapping if there exist $\beta \in \mathcal{G}$ and $\tau > 0$ such that, for all $\xi, \zeta \in \mathcal{X}$ with $d(\mathcal{T}\xi, \mathcal{T}\zeta) > 0$ and $\alpha(\xi, \zeta) \ge 1$,

$$\alpha\left(\xi,\zeta\right)\left(\tau+\mathcal{F}\left(d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right)\right)\leq\beta\left(\mathcal{M}\left(\xi,\zeta\right)\right)\mathcal{F}\left(\mathcal{M}\left(\xi,\zeta\right)\right),\tag{6}$$

where

$$\mathcal{M}(\xi,\zeta) = \max\left\{ d_{ml}\left(\xi,\zeta\right), d_{ml}\left(\xi,\mathcal{T}\xi\right), d_{ml}\left(\zeta,\mathcal{T}\zeta\right), \frac{d_{ml}\left(\xi,\mathcal{T}\zeta\right) + d_{ml}\left(\mathcal{T}\xi,\zeta\right)}{4}, \frac{\left[1 + d_{ml}\left(\xi,\mathcal{T}\xi\right)\right]d_{ml}\left(\zeta,\mathcal{T}\zeta\right)}{1 + d_{ml}\left(\xi,\zeta\right)}\right\},$$
(7)

 $\mathcal{F}: (0, +\infty) \to (-\infty, +\infty)$ is strictly increasing function satisfying (\mathcal{F} 1), (\mathcal{F} 2) and (\mathcal{F} 3) and \mathcal{G} is a family of all functions $\beta: [0, +\infty) \to [0, 1)$ which satisfy the condition: $\beta(t_n) \to 1$ implies $t_n \to 0$ as $\to +\infty$.

It is worth noticing that authors in [9] denote with $E(\mathcal{X}, \alpha, \beta, \mathcal{F})$ the collection of all almost generalized $(\alpha, \beta, \mathcal{F})$ -contractive mappings. However, it is not clear what "almost generalized $(\alpha, \beta, \mathcal{F})$ -contractive mappings" mean.

Theorem 1. Let (\mathcal{X}, d_{ml}) be a metric-like space and $\alpha : \mathcal{X}^2 \to [0, +\infty)$. A mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ be an $(\alpha, \beta, \mathcal{F})$ -Geraghty contraction mapping. Assume that the following conditions are satisfied:

- (*i*) $\mathcal{T} \in E(\mathcal{X}, \alpha, \beta, \mathcal{F}) \cap WA(\mathcal{X}, \alpha).$
- (ii) There exists $\xi_0 \in \mathcal{X}$ such that $d_{ml}(\xi_0, \mathcal{T}\xi_0) \geq 1$.
- (iii) T is d_{ml} continuous.

Then, \mathcal{T} *has a unique fixed point* $\eta \in \mathcal{X}$ *with* $d_{ml}(\eta, \eta) = 0$ *.*

2. Main Result

In this section, we improve the whole concept by introducing a new definition and new approaches. Firstly, we introduce the following:

Definition 11. Let (\mathcal{X}, d_{ml}) be a metric-like space and $\alpha : \mathcal{X}^2 \to [0, +\infty)$. A mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ is said to be a triangular (α, \mathcal{F}) -contraction one if there exists $\tau > 0$ such that, for all $\xi, \zeta \in \mathcal{X}$ with $d_{ml}(\mathcal{T}\xi, \mathcal{T}\zeta) > 0$ and $\alpha (\xi, \zeta) \geq 1$ holds true,

$$\alpha\left(\xi,\zeta\right)\left(\tau+\mathcal{F}\left(d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right)\right)\leq\mathcal{F}\left(\mathcal{M}\left(\xi,\zeta\right)\right),\tag{8}$$

where

$$\mathcal{M}\left(\xi,\zeta\right) = \max\left\{d_{ml}\left(\xi,\zeta\right), d_{ml}\left(\xi,\mathcal{T}\xi\right), d_{ml}\left(\zeta,\mathcal{T}\zeta\right), \frac{d_{ml}\left(\xi,\mathcal{T}\zeta\right) + d_{ml}\left(\zeta,\mathcal{T}\xi\right)}{2}, \frac{\left[1 + d_{ml}\left(\xi,\mathcal{T}\xi\right)\right]d_{ml}\left(\zeta,\mathcal{T}\zeta\right)}{1 + d_{ml}\left(\xi,\zeta\right)}\right\},\tag{9}$$

 $\mathcal{F}: (0, +\infty) \to (-\infty, +\infty)$ is strictly increasing function.

Example 3 from [9], for instance, illustrates the validity of this definition but without the function $\beta : [0, +\infty) \rightarrow [0, 1)$. Definition 11 is an improvement of the definition given in [9] in several directions. Now, we prove the main result of our paper:

Theorem 2. Let (\mathcal{X}, d_{ml}) be a $0 - d_{ml}$ - complete metric-like space and $\alpha : \mathcal{X}^2 \to [0, +\infty)$. Assume that a mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ is a triangular (α, \mathcal{F}) -contraction one. Suppose further that the following conditions are satisfied:

(*i*) $\mathcal{T} \in WA(\mathcal{X}, \alpha)$;

- (ii) There exists $\xi_0 \in \mathcal{X}$ such that $\alpha(\xi_0, \mathcal{T}\xi_0) \geq 1$;
- (iii) T is d_{ml} continuous.

Then, \mathcal{T} has a unique fixed point $\hat{\xi} \in \mathcal{X}$ with $d_{ml}\left(\hat{\xi}, \hat{\xi}\right) = 0$.

Proof. First of all, we show the following two claims:

- If $\hat{\xi}$ is a fixed point of \mathcal{T} then $d_{ml}\left(\hat{\xi},\hat{\xi}\right) = 0$. I.
- The uniqueness of a possible fixed point. II.

Firstly, we prove I. Indeed, if $\hat{\xi}$ is a fixed point of \mathcal{T} and if $d_{ml}\left(\hat{\xi},\hat{\xi}\right) > 0$, then, putting $\xi = \zeta = \hat{\xi}$ in (8), we get

$$\tau + \mathcal{F}\left(d_{ml}\left(\mathcal{T}\widehat{\xi}, \mathcal{T}\widehat{\xi}\right)\right) \leq \alpha\left(\widehat{\xi}, \widehat{\xi}\right)\left(\tau + \mathcal{F}\left(d_{ml}\left(\mathcal{T}\widehat{\xi}, \mathcal{T}\widehat{\xi}\right)\right)\right) \leq \mathcal{F}\left(\mathcal{M}\left(\widehat{\xi}, \widehat{\xi}\right)\right),$$
(10)

where

$$\mathcal{M}\left(\widehat{\xi},\widehat{\xi}\right) = \max\left\{d_{ml}\left(\widehat{\xi},\widehat{\xi}\right), d_{ml}\left(\widehat{\xi},\mathcal{T}\widehat{\xi}\right), d_{ml}\left(\widehat{\xi},\mathcal{T}\widehat{\xi}\right), \frac{d_{ml}\left(\widehat{\xi},\mathcal{T}\widehat{\xi}\right) + d_{ml}\left(\widehat{\xi},\mathcal{T}\widehat{\xi}\right)}{2}, \frac{\left[1 + d_{ml}\left(\widehat{\xi},\mathcal{T}\widehat{\xi}\right)\right] d_{ml}\left(\widehat{\xi},\mathcal{T}\widehat{\xi}\right)}{1 + d_{ml}\left(\widehat{\xi},\widehat{\xi}\right)}\right\}\right\}$$
$$= \max\left\{d_{ml}\left(\widehat{\xi},\widehat{\xi}\right), d_{ml}\left(\widehat{\xi},\widehat{\xi}\right), d_{ml}\left(\widehat{\xi},\widehat{\xi}\right), d_{ml}\left(\widehat{\xi},\widehat{\xi}\right), \frac{\left[1 + d_{ml}\left(\widehat{\xi},\widehat{\xi}\right)\right] d_{ml}\left(\widehat{\xi},\widehat{\xi}\right)}{1 + d_{ml}\left(\widehat{\xi},\widehat{\xi}\right)}\right\} = d_{ml}\left(\widehat{\xi},\widehat{\xi}\right).$$

Then, from (10), it follows

$$au + \mathcal{F}\left(d_{ml}\left(\widehat{\xi}, \widehat{\xi}\right)\right) \leq \mathcal{F}\left(d_{ml}\left(\widehat{\xi}, \widehat{\xi}\right)\right),$$

which is a contradiction. Hence, the assumption that $d_{ml}\left(\hat{\xi},\hat{\xi}\right) > 0$ is wrong. We proved claim I.

Now, we shall prove II. Suppose that \mathcal{T} has two distinct fixed point $\hat{\xi}$ and $\hat{\zeta}$ in \mathcal{X} . By (I), we get $d\left(\hat{\xi},\hat{\xi}\right) = d_{ml}\left(\hat{\zeta},\hat{\zeta}\right) = 0$. Since $d_{ml}\left(\hat{\xi},\hat{\zeta}\right) = d_{ml}\left(\mathcal{T}\hat{\xi},\mathcal{T}\hat{\zeta}\right) > 0$ and $\alpha\left(\hat{\xi},\hat{\zeta}\right) \ge 1$, according to (8), we get:

$$\tau + \mathcal{F}\left(d_{ml}\left(\mathcal{T}\widehat{\xi}, \mathcal{T}\widehat{\zeta}\right)\right) \leq \alpha\left(\widehat{\xi}, \widehat{\zeta}\right)\left(\tau + \mathcal{F}\left(d_{ml}\left(\mathcal{T}\widehat{\xi}, \mathcal{T}\widehat{\zeta}\right)\right)\right) \leq \mathcal{F}\left(\mathcal{M}\left(\widehat{\xi}, \widehat{\zeta}\right)\right),$$
(11)

where

$$\mathcal{M}\left(\widehat{\xi},\widehat{\zeta}\right) = \max\left\{d_{ml}\left(\widehat{\xi},\widehat{\zeta}\right), d_{ml}\left(\widehat{\xi},\widehat{\xi}\right), d_{ml}\left(\widehat{\zeta},\widehat{\zeta}\right), \frac{d_{ml}\left(\widehat{\xi},\widehat{\zeta}\right) + d_{ml}\left(\widehat{\zeta},\widehat{\xi}\right)}{2}, \frac{\left[1 + d_{ml}\left(\widehat{\xi},\widehat{\xi}\right)\right]d_{ml}\left(\widehat{\zeta},\widehat{\zeta}\right)}{1 + d_{ml}\left(\widehat{\xi},\widehat{\zeta}\right)}\right\}\right\}$$
$$= \max\left\{d_{ml}\left(\widehat{\xi},\widehat{\zeta}\right), 0, 0, d_{ml}\left(\widehat{\xi},\widehat{\zeta}\right), \frac{\left[1 + 0\right] \cdot 0}{1 + 0}\right\} = d_{ml}\left(\widehat{\xi},\widehat{\zeta}\right).$$

In other words, taking $\alpha\left(\widehat{\xi},\widehat{\zeta}\right) \geq 1$ into consideration,

$$\tau + \mathcal{F}\left(d_{ml}\left(\widehat{\xi},\widehat{\zeta}\right)\right) \le \mathcal{F}\left(d_{ml}\left(\widehat{\xi},\widehat{\zeta}\right)\right)$$
(12)

is a contradiction. Hence, the uniqueness of fixed point is proved.

In the sequel, we prove the existence of the fixed point of \mathcal{T} .

Let $\xi_0 \in \mathcal{X}$ be such that $\alpha(\xi_0, \mathcal{T}\xi_0) \ge 1$. Furthermore, we define the sequence $\{\xi_n\}$ in \mathcal{X} with $\xi_{n+1} = \mathcal{T}\xi_n$ for all $n \in \mathbb{N} \cup \{0\}$. If $\xi_k = \xi_{k+1}$ for some $k \in \mathbb{N} \cup \{0\}$, then by the previous, ξ_k is a unique fixed point of \mathcal{T} and the proof of the theorem is finished. Now, let us suppose that $\xi_n \neq \xi_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$. Since $\mathcal{T} \in WA(\mathcal{X}, \alpha)$ and $\alpha(\xi_0, \mathcal{T}\xi_0) \ge 1$, we have

$$\alpha\left(\xi_{1},\xi_{2}\right)=\alpha\left(\mathcal{T}\xi_{0},\mathcal{T}\mathcal{T}\xi_{0}\right)\geq1,\alpha\left(\xi_{2},\xi_{3}\right)=\alpha\left(\mathcal{T}\xi_{1},\mathcal{T}\mathcal{T}\xi_{1}\right)\geq1$$

Using this process again, we get α (ξ_n , ξ_{n+1}) ≥ 1 .

Because \mathcal{T} : $\mathcal{X} \to \mathcal{X}$ is a triangular (α, \mathcal{F}) -contraction mapping with $\alpha(\mathcal{T}\xi_{n-1}, \mathcal{T}\mathcal{T}\xi_{n-1}) = \alpha(\xi_n, \xi_{n+1}) \ge 1$, we have according to Lemma 1:

$$0 < \tau + \mathcal{F}\left(d_{ml}\left(\xi_{n},\xi_{n+1}\right)\right)$$
$$\leq \alpha\left(\xi_{n},\xi_{n+1}\right)\left(\tau + \mathcal{F}\left(d_{ml}\left(\mathcal{T}\xi_{n-1},\mathcal{T}\xi_{n}\right)\right)\right) \leq \mathcal{F}\left(\mathcal{M}\left(\xi_{n-1},\xi_{n}\right)\right),\tag{13}$$

where

$$\begin{aligned} &\mathcal{M}\left(\xi_{n-1},\xi_{n}\right) \\ &= \max\left\{d_{ml}\left(\xi_{n-1},\xi_{n}\right),d_{ml}\left(\xi_{n-1},\mathcal{T}\xi_{n-1}\right),d_{ml}\left(\xi_{n},\mathcal{T}\xi_{n}\right),\frac{d_{ml}\left(\xi_{n-1},\mathcal{T}\xi_{n}\right)+d_{ml}\left(\mathcal{T}\xi_{n-1},\xi_{n}\right)}{2}, \\ &\frac{\left[1+d_{ml}\left(\xi_{n-1},\mathcal{T}\xi_{n-1}\right)\right]d_{ml}\left(\xi_{n},\mathcal{T}\xi_{n}\right)}{1+d_{ml}\left(\xi_{n-1},\xi_{n}\right)}\right\} \\ &= \max\left\{d_{ml}\left(\xi_{n-1},\xi_{n}\right),d_{ml}\left(\xi_{n},\xi_{n+1}\right),\frac{d_{ml}\left(\xi_{n-1},\xi_{n+1}\right)+d_{ml}\left(\xi_{n},\xi_{n}\right)}{2},d_{ml}\left(\xi_{n},\xi_{n+1}\right)\right\} \\ &\leq \max\left\{d_{ml}\left(\xi_{n-1},\xi_{n}\right),d_{ml}\left(\xi_{n},\xi_{n+1}\right),\frac{d_{ml}\left(\xi_{n-1},\xi_{n}\right)+d_{ml}\left(\xi_{n},\xi_{n+1}\right)-d_{ml}\left(\xi_{n},\xi_{n}\right)+d_{ml}\left(\xi_{n},\xi_{n}\right)}{2}\right\} \\ &= \max\left\{d_{ml}\left(\xi_{n-1},\xi_{n}\right),d_{ml}\left(\xi_{n},\xi_{n+1}\right),\frac{d_{ml}\left(\xi_{n},\xi_{n+1}\right)}{2}\right\} \\ &\leq \max\left\{d_{ml}\left(\xi_{n-1},\xi_{n}\right),d_{ml}\left(\xi_{n},\xi_{n+1}\right)\right\}. \end{aligned}$$

If max $\{d_{ml}(\xi_{n-1},\xi_n), d_{ml}(\xi_n,\xi_{n+1})\} = d_{ml}(\xi_n,\xi_{n+1})$, then a contradiction follows from

$$0 < \tau + \mathcal{F}\left(d_{ml}\left(\xi_{n},\xi_{n+1}\right)\right) \le \mathcal{F}\left(d_{ml}\left(\xi_{n},\xi_{n+1}\right)\right). \tag{14}$$

Thus, we conclude that $\max \{ d_{ml}(\xi_{n-1},\xi_n), d_{ml}(\xi_n,x_{n+1}) \} = d(\xi_{n-1},\xi_n)$ for all $n \in \mathbb{N}$. Therefore, since $\alpha(\xi_n,\xi_{n+1}) \ge 1$, we have

$$\tau + \mathcal{F}\left(d_{ml}\left(\xi_{n},\xi_{n+1}\right)\right) < \mathcal{F}\left(d_{ml}\left(\xi_{n-1},\xi_{n}\right)\right),$$

where from one can conclude that $d_{ml}(\xi_n, \xi_{n+1}) < d_{ml}(\xi_{n-1}, \xi_n)$ for all $n \in \mathbb{N}$. This further means that there exists $\lim_{n\to+\infty} d_{ml}(\xi_n, \xi_{n+1}) = \overline{d_{ml}} \ge 0$. If $\overline{d_{ml}} > 0$, we obtain a contradiction since by (\mathcal{F} 1), it follows:

$$au + \mathcal{F}\left(\overline{d_{ml}} + 0\right) \leq \mathcal{F}\left(\overline{d_{ml}} + 0\right),$$

where $\mathcal{F}(\overline{d_{ml}}+0) = \lim_{n \to +\infty} \mathcal{F}(d_{ml}(\xi_n, \xi_{n+1}))$. We use the fact that strictly increasing function $\mathcal{F}: (0, +\infty) \to (-\infty, +\infty)$ has a left and right limit in every point from $(0, +\infty)$. Hence, we obtain that $\lim_{n\to+\infty} d_{ml}(\xi_n, \xi_{n+1}) = 0$. Now, we prove that the sequence $\{\xi_n\}_{n\in\mathbb{N}\cup\{0\}}$ is a d_{ml} – Cauchy sequence by supposing the contrary. When we put $\xi = \xi_{m(k)}, \zeta = \xi_{n(k)}$ in (8), we get

$$\alpha\left(\xi_{m(k)},\xi_{n(k)}\right)\left(\tau+\mathcal{F}\left(d_{ml}\left(\xi_{m(k)+1},\xi_{n(k)+1}\right)\right)\right)\leq\mathcal{F}\left(\mathcal{M}\left(\xi_{m(k)},\xi_{n(k)}\right)\right),\tag{15}$$

where

$$\mathcal{M}\left(\xi_{m(k)},\xi_{n(k)}\right) = \max\left\{d_{ml}\left(\xi_{m(k)},\xi_{n(k)}\right), d_{ml}\left(\xi_{m(k)},\xi_{m(k)+1}\right), d_{ml}\left(\xi_{n(k)},\xi_{n(k)+1}\right)\right\}, \\ \frac{d_{ml}\left(\xi_{m(k)},\xi_{n(k)+1}\right) + d_{ml}\left(\xi_{n(k)},\xi_{m(k)+1}\right)}{2}, \\ \frac{\left[1 + d_{ml}\left(\xi_{m(k)},\xi_{m(k)+1}\right)\right] d_{ml}\left(\xi_{n(k)},\xi_{n(k)+1}\right)}{1 + d_{ml}\left(\xi_{m(k)},\xi_{n(k)}\right)}\right\} \to \max\left\{\varepsilon, 0, 0, \frac{\varepsilon + \varepsilon}{2}, \frac{[1 + 0] \cdot 0}{1 + \varepsilon}\right\} = \varepsilon.$$

Since $\alpha \left(\xi_{m(k)}, \xi_{n(k)} \right) \ge 1$ from the previous inequality, we get

$$\tau + \mathcal{F}\left(d_{ml}\left(\xi_{m(k)+1},\xi_{n(k)+1}\right)\right) < \mathcal{F}\left(\mathcal{M}\left(\xi_{m(k)},\xi_{n(k)}\right)\right),\tag{16}$$

that is,

$$\tau + \mathcal{F}\left(\varepsilon + 0\right) \le \mathcal{F}\left(\varepsilon + 0\right). \tag{17}$$

We obtain the contradiction, which means that the sequence $\{\xi_n\}_{n\in\mathbb{N}\cup\{0\}}$ is a $0 - d_{ml}$ – Cauchy. This means that there exists a unique (by Remark 2) point $\hat{\xi} \in \mathcal{X}$ such that

$$d_{ml}\left(\widehat{\xi},\widehat{\xi}\right) = \lim_{n \to +\infty} d_{ml}\left(\xi_n,\widehat{\xi}\right) = \lim_{n,m \to +\infty} d_{ml}\left(\xi_n,\xi_m\right) = 0.$$
(18)

Since the mapping \mathcal{T} is d_{ml} - continuous, we get that $\lim_{n \to +\infty} d_{ml} \left(\mathcal{T}\xi_n, \mathcal{T}\hat{\xi} \right) = d_{ml} \left(\mathcal{T}\hat{\xi}, \mathcal{T}\hat{\xi} \right)$, i.e., $\lim_{n \to +\infty} d_{ml} \left(\xi_{n+1}, \mathcal{T}\hat{\xi} \right) = d_{ml} \left(\mathcal{T}\hat{\xi}, \mathcal{T}\hat{\xi} \right)$. According to Remark 2, it follows that $\mathcal{T}\hat{\xi} = \hat{\xi}$, that is, $\hat{\xi}$ is a fixed point of \mathcal{T} . \Box

Remark 3. The following results are immediate corollaries of Theorem 2. Indeed, replacing $\mathcal{M}(\xi, \zeta)$ in (8) with one of the following sets:

$$\max \left\{ d_{ml}\left(\xi,\zeta\right), d_{ml}\left(\xi,\mathcal{T}\xi\right), d_{ml}\left(\zeta,\mathcal{T}\zeta\right) \right\},$$
$$\max \left\{ d_{ml}\left(\xi,\zeta\right), d_{ml}\left(\xi,\mathcal{T}\xi\right), d_{ml}\left(\zeta,\mathcal{T}\zeta\right), \frac{d_{ml}\left(\xi,\mathcal{T}\zeta\right) + d_{ml}\left(\zeta,\mathcal{T}\xi\right)}{2} \right\},$$
and
$$\max \left\{ d_{ml}\left(\xi,\zeta\right), \frac{d_{ml}\left(\xi,\mathcal{T}\xi\right) + d_{ml}\left(\zeta,\mathcal{T}\zeta\right)}{2}, \frac{d_{ml}\left(\xi,\mathcal{T}\zeta\right) + d_{ml}\left(\zeta,\mathcal{T}\xi\right)}{2} \right\},$$

we get that Theorem 2 also holds true.

Immediate consequences of Theorem 2 are the following new contractive conditions that compliment the ones given in [23,35].

Corollary 1. Let (\mathcal{X}, d_{ml}) be a $0 - d_{ml} - \text{complete } 0 - d_{ml} - \text{metric-like space and } \alpha_i : \mathcal{X}^2 \to [0, +\infty)$. Assume that a mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ is a triangular (α_i, \mathcal{F}) - contraction where $\mathcal{F} : (0, +\infty) \to (-\infty, +\infty)$ is the strictly increasing mapping. Suppose further that the following conditions are satisfied:

(*i*)
$$\mathcal{T} \in WA(\mathcal{X}, \alpha_i)$$
;

- (ii) There exists $\xi_0 \in \mathcal{X}$ such that $\alpha_i (\xi_0, \mathcal{T}\xi_0) \ge 1, i = \overline{1,6}$;
- (iii) T is d_{ml} continuous.

In addition, suppose that there exist $\tau_i > 0$, $i = \overline{1,6}$ and, for all $\xi, \zeta \in \mathcal{X}$ with $d_{ml}(\mathcal{T}\xi, \mathcal{T}\zeta) > 0$ and $\alpha_i(\xi, \zeta) \ge 1$, $i = \overline{1,6}$, the following inequalities hold true:

$$\begin{aligned} \alpha_{1}\left(\xi,\zeta\right)\left(\tau_{1}+d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right) &\leq \mathcal{M}\left(\xi,\zeta\right)\\ \alpha_{2}\left(\xi,\zeta\right)\left(\tau_{2}+\exp\left(d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right)\right) &\leq \exp\left(\mathcal{M}\left(\xi,\zeta\right)\right)\\ \alpha_{3}\left(\xi,\zeta\right)\left(\tau_{3}-\frac{1}{d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)}\right) &\leq -\frac{1}{\mathcal{M}\left(\xi,\zeta\right)}\\ \alpha_{4}\left(\xi,\zeta\right)\left(\tau_{4}-\frac{1}{d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)}+d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right) &\leq -\frac{1}{\mathcal{M}\left(\xi,\zeta\right)}+\mathcal{M}\left(\xi,\zeta\right)\\ \alpha_{5}\left(\xi,\zeta\right)\left(\tau_{5}+\frac{1}{1-\exp\left(d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right)}\right) &\leq \frac{1}{1-\exp\left(\mathcal{M}\left(\xi,\zeta\right)\right)}\\ \alpha_{6}\left(\xi,\zeta\right)\left(\tau_{6}+\frac{1}{\exp\left(-d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right)-\exp\left(d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right)\right)}\right) &\leq \frac{1}{\exp\left(-\mathcal{M}\left(\xi,\zeta\right)\right)-\exp\left(\mathcal{M}\left(\xi,\zeta\right)\right)}\end{aligned}$$

where $\mathcal{M}(\xi, \zeta)$ is one of the following sets:

$$\mathcal{M}(\xi,\zeta) = \max\left\{ d_{ml}(\xi,\zeta), d_{ml}(\xi,\mathcal{T}\xi), d_{ml}(\zeta,\mathcal{T}\zeta), \frac{d_{ml}(\xi,\mathcal{T}\zeta) + d_{ml}(\zeta,\mathcal{T}\xi)}{2}, \frac{[1 + d_{ml}(\xi,\mathcal{T}\zeta)]d_{ml}(\zeta,\mathcal{T}\zeta)}{1 + d_{ml}(\xi,\zeta)} \right\}$$
$$\mathcal{M}(\xi,\zeta) = \max\left\{ d_{ml}(\xi,\zeta), d_{ml}(\xi,\mathcal{T}\xi), d_{ml}(\zeta,\mathcal{T}\zeta), \frac{d_{ml}(\xi,\mathcal{T}\zeta) + d_{ml}(\zeta,\mathcal{T}\xi)}{2} \right\}$$
$$\mathcal{M}(\xi,\zeta) = \max\left\{ d_{ml}(\xi,\zeta), \frac{d_{ml}(\xi,\mathcal{T}\xi) + d_{ml}(\zeta,\mathcal{T}\zeta)}{2}, \frac{d_{ml}(\xi,\mathcal{T}\zeta) + d_{ml}(\zeta,\mathcal{T}\xi)}{2} \right\}$$
$$\mathcal{M}(\xi,\zeta) = \max\left\{ d_{ml}(\xi,\zeta), d_{ml}(\xi,\mathcal{T}\xi), d_{ml}(\xi,\mathcal{T}\xi), d_{ml}(\zeta,\mathcal{T}\zeta) \right\}$$
$$\mathcal{M}(\xi,\zeta) = \max\left\{ d_{ml}(\xi,\zeta) \right\} = d_{ml}(\xi,\zeta).$$

Then, in each of these cases, T *has a unique fixed point in* X*.*

Proof. If we put $\alpha_i(\xi,\zeta) = \alpha(\xi,\zeta)$, $i = \overline{1,6}$ and $\mathcal{F}(\iota) = \iota$, $\mathcal{F}(\iota) = \exp(\iota)$, $\mathcal{F}(\iota) = -\frac{1}{\iota}, \mathcal{F}(\iota) = -\frac{1}{\iota} + \iota, \mathcal{F}(\iota) = \frac{1}{1-\exp(\iota)}, \mathcal{F}(\iota) = \frac{1}{\exp(-\iota)-\exp(\iota)}$ in Theorem 2, respectively, then every of the functions $\iota \mapsto \mathcal{F}(\iota)$ is strictly increasing on $(0, +\infty)$, and the result follows according to Theorem 2. \Box

Remark 4. Putting $\alpha_i(\xi, \zeta) = 1$ for all $\xi, \zeta \in \mathcal{X}$, $i = \overline{1, 6}$ in the previous corollary, we get the following six new contractive conditions:

$$\begin{aligned} \tau_{1} + d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right) &\leq \mathcal{M}\left(\xi,\zeta\right) \\ \tau_{2} + \exp\left(d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right) &\leq \exp\left(\mathcal{M}\left(\xi,\zeta\right)\right) \\ \tau_{3} - \frac{1}{d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)} &\leq -\frac{1}{\mathcal{M}\left(\xi,\zeta\right)} \\ \tau_{4} - \frac{1}{d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)} + d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right) &\leq -\frac{1}{\mathcal{M}\left(\xi,\zeta\right)} + \mathcal{M}\left(\xi,\zeta\right) \\ \tau_{5} + \frac{1}{1 - \exp\left(d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right)} &\leq \frac{1}{1 - \exp\left(\mathcal{M}\left(\xi,\zeta\right)\right)} \\ \tau_{6} + \frac{1}{\exp\left(-d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right) - \exp\left(d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right)} &\leq \frac{1}{\exp\left(-\mathcal{M}\left(\xi,\zeta\right)\right) - \exp\left(\mathcal{M}\left(\xi,\zeta\right)\right)} \end{aligned}$$

where $\mathcal{M}(\xi, \zeta)$ is one of the following sets:

$$\mathcal{M}(\xi,\zeta) = \max\left\{ d_{ml}(\xi,\zeta), d_{ml}(\xi,\mathcal{T}\xi), d_{ml}(\zeta,\mathcal{T}\zeta), \frac{d(\xi,\mathcal{T}\zeta) + d_{ml}(\zeta,\mathcal{T}\xi)}{2}, \frac{[1 + d_{ml}(\xi,\mathcal{T}\zeta)]d_{ml}(\zeta,\mathcal{T}\zeta)}{1 + d_{ml}(\xi,\zeta)} \right\}$$
$$\mathcal{M}(\xi,\zeta) = \max\left\{ d_{ml}(\xi,\zeta), d_{ml}(\xi,\mathcal{T}\xi), d_{ml}(\zeta,\mathcal{T}\zeta), \frac{d_{ml}(\xi,\mathcal{T}\zeta) + d_{ml}(\zeta,\mathcal{T}\xi)}{2} \right\}$$
$$\mathcal{M}(\xi,\zeta) = \max\left\{ d_{ml}(\xi,\zeta), \frac{d_{ml}(\xi,\mathcal{T}\xi) + d_{ml}(\zeta,\mathcal{T}\zeta)}{2}, \frac{d_{ml}(\xi,\mathcal{T}\zeta) + d_{ml}(\zeta,\mathcal{T}\xi)}{2} \right\}$$
$$\mathcal{M}(\xi,\zeta) = \max\left\{ d_{ml}(\xi,\zeta), d_{ml}(\xi,\zeta), d_{ml}(\xi,\mathcal{T}\xi), d_{ml}(\zeta,\mathcal{T}\zeta) \right\}$$
$$\mathcal{M}(\xi,\zeta) = \max\left\{ d_{ml}(\xi,\zeta), d_{ml}(\xi,\mathcal{T}\xi), d_{ml}(\xi,\mathcal{T}\zeta) \right\}$$

In every one of these cases, \mathcal{T} has a unique fixed point in \mathcal{X} . The result can simply be obtained by putting $\alpha_i(\xi,\zeta) = 1$, $i = \overline{1,6}$ and $\mathcal{F}(\iota) = \iota$, $\mathcal{F}(\iota) = \exp(\iota)$, $\mathcal{F}(\iota) = -\frac{1}{\iota}$, $\mathcal{F}(\iota) = -\frac{$

In [22], Ćirić introduced one of the most generalized contractive conditions (so-called quasicontraction) in the context of metric spaces as follows:

Definition 12. The self-mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ on metric space (\mathcal{X}, d) is called quasicontraction (in the sense of Ćirić) if there exists $\lambda \in [0, 1)$ such that, for all $\xi, \zeta \in \mathcal{X}$ holds true

$$d\left(\mathcal{T}\xi,\mathcal{T}\zeta\right) \leq \lambda \max\left\{d\left(\xi,\zeta\right),d\left(\xi,\mathcal{T}\xi\right),d\left(\zeta,\mathcal{T}\zeta\right),d\left(\xi,\mathcal{T}\zeta\right),d\left(\zeta,\mathcal{T}\zeta\right)\right\}.$$
(19)

In [22], Ćirić proved the following result:

Theorem 3. Each quasicontraction \mathcal{T} on a complete metric space (\mathcal{X}, d) has a unique fixed point (say) η . Moreover, for all $\xi \in \mathcal{X}$, the sequence $\{\mathcal{T}^n\xi\}_{n=0}^{+\infty}$, $\mathcal{T}^0\xi = \xi$ converges to the fixed point η as $n \to +\infty$.

Finally, we formulate the following notion and an open question:

Definition 13. Let (\mathcal{X}, d_{ml}) be a metric-like space and $\alpha : \mathcal{X}^2 \to [0, +\infty)$. A mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ is said to be a triangular (α, \mathcal{F}) -contraction mapping of Ćirić type, if there exists $\tau > 0$ such that, for all $\xi, \zeta \in \mathcal{X}$ with $d_{ml}(\mathcal{T}\xi, \mathcal{T}\zeta) > 0$ and $\alpha(\xi, \zeta) \ge 1$ holds true:

$$\alpha\left(\xi,\zeta\right)\left(\tau+\mathcal{F}\left(d_{ml}\left(\mathcal{T}\xi,\mathcal{T}\zeta\right)\right)\right)\leq\mathcal{F}\left(\mathcal{N}\left(\xi,\zeta\right)\right),\tag{20}$$

where

 $\mathcal{N}\left(\xi,\zeta\right) = \max\left\{d_{ml}\left(\xi,\zeta\right), d_{ml}\left(\xi,\mathcal{T}\xi\right), d_{ml}\left(\zeta,\mathcal{T}\zeta\right), d_{ml}\left(\xi,\mathcal{T}\zeta\right), d_{ml}\left(\zeta,\mathcal{T}\xi\right)\right\},$

 $\mathcal{F}: (0, +\infty) \to (-\infty, +\infty)$ is strictly increasing function satisfying only (\mathcal{F} 1).

An open question: Prove or disprove the following claim: each triangular (α, \mathcal{F}) -contraction mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ of Ćirić type defined on $0 - d_{ml}$ – complete metric-like space (\mathcal{X}, d) has a unique fixed point.

Author Contributions: Conceptualization, J.V. and S.R.; methodology, J.V., S.R, Z.D.M., and S.M.; formal analysis, Z.D.M. and S.M.; investigation, J.V., S.R., and Z.D.M.; data curation, S.R. and Z.D.M.; supervision, Z.D.M., J.V., S.R., and S.M.; project administration, S.R. and S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for a *α*-ψ-contractive type mappings. *Nonlinear Anal.* 2012, 75, 2154–2165. [CrossRef]
- Karapinar, E.; Kumam, P.; Salimi, P. On α-ψ-Meir-Keeler contractive mappings. *Fixed Point Theory Appl.* 2013, 2013, 94. [CrossRef]
- 3. Sintunavarat, W. Nonlinear integral equations with new admissibility types in *b*-metric spaces. *Fixed Point Theory Appl.* **2016**, 2016, 18. [CrossRef]
- 4. Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. Pap. Ed. 1994, 728, 183–197. [CrossRef]
- Fabiano, N.; Mirković, D.; Paunović, L.; Radenović, S. On *F*-contraction of Jungck-Ćirić-Wardowski-type mappings in metric spaces. *Cogent Math. Stat.* 2020, *7*, 1792699. [CrossRef]
- 6. Fabiano, N.; Nikolić, N.; Fadail, Z.M.; Paunović, L.; Radenović, S. New fixed point results on $\alpha_L \psi$ -rational contraction mappings in metric-like spaces. *Filomat* **2020**, in press.
- 7. Fabiano, N.; Došenović, T.; Rakić, D.; Radenović, S. Some new results on (*s*, *q*)-Dass-Gupta-Juggi type contractive mappings in *b*-metric-like spaces. *Filomat* **2020**, in press.
- 8. Kirk, W.A.; Shahzad, N. *Fixed Point Theory in Distance Spaces*; Springer International Publishing: Cham, Switzerland, 2014.
- 9. Qawaqueh, H.; Noorami, M.S.; Shatanawi, W. Fixed point results for Geraghty type generalized *F*-contraction for weak *α*-admissible mappings in metric-like spaces. *Eur. J. Pure Appl. Math.* **2018**, *11*, 702–716. [CrossRef]
- 10. Rajić, V.Ć, Radenović, S.; Chauhan, S. Common fixed point of generalized weakly contractive maps in partial metric spaces. *Acta Math. Sci.* **2014**, *34*, 1345–1356. [CrossRef]
- Shukla, S.; Radenović, S.; Rajić, V.Ć. Some common fixed point theorems in 0-*σ*-complete metric-like spaces. *Vietnam J. Math.* 2013, 41, 341–352. [CrossRef]
- 12. Harandi, A.A. Metric-like spaces, partial metric spaces and fixed points. *Fixed Point Theory Appl.* **2012**, 2012, 204. [CrossRef]
- 13. Dey, L.K.; Kumam, P.; Senapati, T. Fixed point results concerning *α*-*F*-contraction mappings in metric spaces. *J. Appl. Gen. Topol.* **2019**, *20*, 81–95. [CrossRef]
- 14. Vujaković, J.; Radenović, S. On some *F*-contraction of Piri-Kumam-Dung type mappings in metric spaces. *Vojnoteh. Cki Glas. Tech. Cour.* **2020**, *68*, 697–714. [CrossRef]
- 15. Vujaković, J.; Mitrović, S.; Pavlović, M.; Radenović, S. On recent results concerning *F*-contraction in generalized metric spaces. *Mathematics* **2020**, *8*, 767. [CrossRef]
- 16. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric space. *Fixed Point Theory Appl.* **2012**, 2012, 94. [CrossRef]
- Wardowski, D.; Van Dung, N. Fixed point of *F*-weak contractions on complete metric spaces. *Demonstr. Math.* 2014, 47, 146–155. [CrossRef]
- Wardowski, D. Solving existence problems via *F*-contractions. *Proc. Amer. Math. Soc.* 2018, 146, 1585–1598.
 [CrossRef]
- 19. Abbas, M.; Jungck, G. Common fixed point results for non-commuting mappings without continuity in cone metric spaces. *J. Math. Anal. Appl.* **2008**, *341*, 416–420. [CrossRef]
- 20. Aleksić, S.; Mitrović, Z.D.; Radenović, S. Picard sequences in *b*-metric spaces. *Fixed Point Theory* **2020**, 21, 35–46. [CrossRef]
- 21. Banach, S. Sur les opérations dans les ensembles abstrait et leur application aux équations intégrales. *Fund. Math.* **1922**, *3*, 133–181. [CrossRef]
- 22. Ćirić, L. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade, Beograd, Serbia, 2003.
- 23. Collaco, P.; Silva, J.C. A complete comparison of 23 contraction conditions. *Nonlinear Anal. TMA* **1997**, 30, 471–476. [CrossRef]
- 24. Consentino, M.; Vetro, P. Fixed point result for *F*-contractive mappings of Hardy-Rogers-Type. *Filomat* 2014, 28, 715–722. [CrossRef]
- 25. Jungck, G. Commuting maps and fixed points. Amer. Math. Mon. 1976, 83, 261–263. [CrossRef]
- 26. De La Sen, M.; Nikolić, N.; Došenović, T.; Pavlović, M.; Radenović, S. Some results on (*s-q*)-graphic contraction mappings in *b*-metric spaces. *Mathematics* **2019**, *7*, 1190. [CrossRef]
- 27. Karapinar, E.; Salimi, P. Dislocated metric spaces to metric spaces with some fixed point theorems. *Fixed Point Theory Appl.* **2013**, 2013, 222. [CrossRef]

- 28. Karapinar, E.; Fulga, A.; Agarwal, R. A survey: *F*-contractions with related fixed point results. *J. Fixed Point Theory Appl.* **2020**, *22*, 69. [CrossRef]
- 29. Khamsi, M.A.; Kirk, W.A. *An introduction to Metric Spaces and Fixed Point Theory;* John Willey and Sons. INC.: Hoboken, NJ, USA, 1996.
- 30. Mitrović, Z.D. A note on the result of Suzuki, Miculesku and Mihail. *J. Fixed Point Theory Appl.* **2019**, 21, 24. [CrossRef]
- 31. Proinov, P.D. Fixed point theorems for generalized contractive mappings in metric spaces. J. Fixed Point Theory Appl. 2020, 22, 21. [CrossRef]
- 32. Piri, H.; Kumam, P. Some fixd point theorems concerning *F*-contraction in complete metric spaces. *Fixed Point Theory Appl.* **2014**, 210. [CrossRef]
- 33. Popescu, O.; Stan, G. Two fixed point theorems concerning *F*-contraction in complete metric spaces. *Symmetry* **2020**, *12*, 58. [CrossRef]
- 34. Radenović, S. Classical fixed point results in 0-complete partial metric spaces via cyclic-type extension. *Allahabad Math. Soc.* **2016**, *31*, 39–55.
- 35. Rhoades, B.E. A comparison of various definitions of contractive mappings. *Trans. Amer. Math. Soc.* **1997**, 226, 257–290. [CrossRef]
- 36. Salimi, P.; Hussain, N.; Shukla, S.; Fathollahi, S.; Radenović, S. Fixed point results for cyclic *α*-ψ*φ*-contractions with applications to integral equations. *J. Comput. Appl. Math.* **2015**, *290*, 445–458. [CrossRef]
- 37. Mebawondu, A.A.; Mewomo, O.T. Some fixed point results for TAC-Suzuki contractive mappings. *Commun. Korean Math. Soc.* **2019**, *34*, 1201–1222.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).