
mathematics

Article

Orbital Reversibility of Planar Vector Fields

Antonio Algaba 1, Cristóbal García 1 and Jaume Giné 2,*

����������
�������

Citation: Algaba, A.; García, C.; Giné,

J. Orbital Reversibility of Planar Vec-

tor Fields. Mathematics 2021, 9, 14.

https://dx.doi.org/10.3390/math90100

14

Received: 29 August 2020

Accepted: 15 October 2020

Published: 23 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Centro de Estudios Avanzados en Física, Departament Ciencias Integradas, Matemáticas y Computación,
Facultad de Ciencias, University of Huelva, 21007 Huelva, Spain; algaba@uhu.es (A.A.);
cristoba@uhu.es (C.G.)

2 Inspires Research Centre, Departament de Matemàtica, Universitat de Lleida, Av. Jaume II, 69,
25001 Lleida, Spain

* Correspondence: gine@matematica.udl.cat

Abstract: In this work we use the normal form theory to establish an algorithm to determine if
a planar vector field is orbitally reversible. In previous works only algorithms to determine the
reversibility and conjugate reversibility have been given. The procedure is useful in the center
problem because any nondegenerate and nilpotent center is orbitally reversible. Moreover, using this
algorithm is possible to find degenerate centers which are orbitally reversible.
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1. Introduction

In this work we consider vector fields in R2. A vector field F is called reversible if
there is an involution σ defined on the plane that fixes an analytic curve passing through
the origin and transforms F into −F. The most important involutions are σ(x, y) = (−x, y)
and σ(x, y) = (x,−y) because any other involution (linear or not) can be transformed
in these ones as is explained later. Vector fields reversible under these involutions are
called, respectively, Rx-reversible and Ry-reversible and, in general, time-reversible vector
fields. Orbital reversibility requires reversibility with respect to an involution and a space-
dependent change of the temporal variable. The main result of the paper is to determine
when a planar vector field is orbitally reversible proving the existence of a normal form in
which some higher-order terms must vanish (those that obstruct the orbital-reversibility).

Any invariance of a differential equation is always associated with a symmetry of
such differential equation. The most studied symmetries are the time-reversal symmetries
that, for a differential system in the plane, corresponds to a specular symmetry with respect
to one axis of symmetry. In fact a time-reversal symmetry is one of the fundamental
symmetries that appears in nature, see for instance [1–6] and references therein. The time-
reversal symmetry arises in many physically motivated systems both in classical and
quantum mechanics. For instance, a simple example is to consider a pendulum swing
without friction. If we see the pendulum moving backward in time the motion also
corresponds to a possible movement of the pendulum. Hence the system has a time-
reversal symmetry. However the presence of friction breaks the time-reversal symmetry we
can distinguish between a motion forward or backward in time. It is clear that a swinging
pendulum cannot increase its amplitude in time unless there is a source of energy feeding
the pendulum. Nevertheless what was unknown until now, which is solved in this work,
is how to determine if a differential system in the plane has a time-reversal symmetry.
Notwithstanding in statistical mechanics, when we describe a dynamical system of large
number of particles the time-reversal symmetry is broken and there is a true sense of
direction in time. In this context we have Boltzmann’s second law of thermodynamics,
saying that entropy is always a monotonically increasing function of time. This is not in
contradiction with the movement of each particle of the system that can have time-reversal
symmetry because the more probabilistic global movement implies the irreversibility of
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time. In fact, in a system that can have a time-reversal symmetry on a microscopic scale,
this symmetry is broken in its collective macroscopic behavior. A very effective example
of the irreversibility of a macroscopic process is the exit of a gas from a bottle when the
stopper is removed. This is an irreversible process since we will never see the molecules of
the gas returning spontaneously into the bottle although the movement of each molecule is
reversible.

The algorithm presented here is important because it allows to determine if there exist
a change of coordinates and a scaling of time (orbital reversibility) in which the system has
a time-reversal symmetry. Remark that, usually, the existence of such symmetries is hidden.
Hence a differential system is orbitally reversible if there is a formal change of variables and
a change of time such that the transformed system is reversible.

The axis of symmetry is, in the general case, an analytic curve. However, from the
work of Montgomery and Zippin [7], any analytic involution associated with a time-
reversal symmetry can be linearized in such a way that the symmetry axis becomes a
straight line. Furthermore, by a rotation, the symmetry axis can become the x- or y-axis.
At the beginning of the last century Birkhoff considered reversible vector fields to study
the restricted three-body problem. Some decades later the theory of reversible vector fields
was formalized by Devaney [8].

There is a narrow relation between the reversibility and the center problem. We recall
here that the center problem seeks to distinguish between a focus or a center in a mon-
odromic planar differential system, see [9–17]. It is well-known that an analytic system of
differential equations having a nondegenerate center is a reversible system with respect to
a nonlinear analytic involution (see [12,18–21]) and a nilpotent center is always an orbitally
reversible system (see [11,12,22,23]). Nevertheless there are degenerate centers of analytic
differential systems which are not orbitally reversible systems, see [24].

In any case, the relation between reversibility and degenerate centers can be estab-
lished with weaker conditions. For instance, in [25] it is proved the existence of a smooth
map that transforms an analytic system having a degenerate center at the origin (with either
an analytic first integral or a smooth inverse integrating factor) into a reversible linear sys-
tem (after a rescaling of time). Moreover in [26] it is proved that for any degenerate center
singular point of an analytic planar system always admits a smooth inverse integrating
factor in a neighborhood of it. The loss of analyticity of the inverse integrating factor does
not allow to construct an algorithm to determine necessary conditions to have a degenerate
center and consequently this remains as an open problem, see [27,28]. In [13,14,29–31],
reversibility and its relationship with the center problem is studied. In fact very few
mechanisms for producing centers are known; the analytic integrability, the existence of a
particular integrating factor and the orbitally reversibility are the most common. In this
work we give an algorithm to determine the last sufficient condition to have a center.

Algorithms to determine the time-reversibility and conjugate reversibility (they do
not include the time reparametrization) have been given in [32–34]. Moreover, in [35]
the orbitally reversibility is studied for a particular class of planar dynamical systems.
In [36] the center conditions of a particular case of polynomial nilpotent system are studied
using an orbital reversible algorithm for such particular systems. Generalizing these works
here we give an algorithm to determine if any differential system in the plane is orbitally
reversible. In fact, we construct a unique normal form that determines the invariants that
prevent the orbital reversibility of the vector field studied.

The main results of the present paper are given in Theorem 2 given in Section 3 and
Theorem 4 given in Section 4. Theorems 2 and 4 provide necessary and sufficient conditions
of orbital Rx- and Ry-reversibility, respectively. In the next section some preliminary
definitions and results necessary to prove the main results are given. The work finishes
with a section of applications of the algorithm provided.
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2. Definitions and Preliminary Results

This paper deals with analytic differential systems of the form

ẋ = F(x), x ∈ R2, (1)

having an equilibrium point located at the origin. We address the orbital-reversibility problem,
which consists in determining if system (1) admits some reversibility (possibly nonlinear)
modulo formal equivalence. In the paper, we will consider only involutions having fixed
point set with codimension one. Our aim is to adapt the ideas of the normal form theory
under equivalence to characterize orbital–reversibility in planar vector fields. First we
introduce some definitions and terminology, related to the formal normal form theory in
the quasi-homogeneous context. Our analysis is based in an adequate classification of
system (1), obtained by using nonlinear time-reparametrizations and coordinate transfor-
mations.

Let us consider a time-reparametrization dt/dT = 1 + µ(x), with µ(0) = 0. Then, it is
easy to show that the vector field F of (1) is transformed into (1 + µ)F.

More involved is the analysis of the effect of transformations in the state variables.
We denote the transformed vector field of F by a transformation Φ as Φ ∗F. In our study,
it is more convenient to use the generator of the transformation, which defines a Cauchy
problem whose solution is the transformation. Namely, any near-identity transformation
y = Φ(x) is associated to a generator U(x) (see [37]) in such away that

Φ(x) = x + U(x) +
1
2!

DU(x)U(x) + · · · .

If we use a generator U corresponding to the transformation Φ, the transformed vector
field will be denoted as U ∗∗F := Φ ∗F.

The basic tool in the characterization of the transformed vector field is the Lie product,
defined by

[F, U](x) = DF(x)U(x)− DU(x) F(x),

where F, U are smooth vector fields. The transformed system can be efficiently expressed
in terms of nested Lie products as follows. Let us define T(0)

U (F) := F, and

T(l)
U (F) := T(l−1)

U ([F, U]) =

l times︷ ︸︸ ︷
[ · · · [ F, U ], · · · , U ] =

[
T(l−1)

U (F), U
]
, for l ≥ 1.

Then, we can write the transformed system as (see [37])

U ∗∗F :=
∞

∑
l=0

1
l!

T(l)
U (F) = F + [F, U] + 1

2! [[F, U], U] + · · · .

In summary, if we use both, a nonlinear time-reparametrization dt = (1 + µ(x))dT
and a near-identity transformation with generator U(x), the vector field transformed of
F by means of the change of variables with generators (spatial U and temporal 1 + µ) is
given by

U ∗∗((1 + µ)F) = (1 + µ)F + [(1 + µ)F, U] + 1
2! [[(1 + µ)F, U], U] + · · · .

In the classical normal form theory, the analysis of simplifications in the vector field F
is done by using a linear transformation and a sequence of near-identity transformations of
successive degrees through its Taylor expansions. More concretely, the linear part requires
linear changes that are not of the near-identity type.

We will use here a more general perspective by means of quasi-homogeneous expan-
sions for the vector fields.
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We now introduce some notation in order to work in the quasi-homogeneous frame.
A scalar polynomial f is quasi-homogeneous of type t = (t1, t2) ∈ N2 and degree k if
f (εt1 x, εt2 y) = εk f (x, y). The vector space of quasi-homogeneous scalar polynomials of
type t and degree k is denoted by P t

k. A polynomial vector field F = (P, Q)T is quasi-
homogeneous of type t and degree k if P ∈ P t

k+t1
and Q ∈ P t

k+t2
. The vector space of

polynomial quasi-homogeneous vector fields of type t and degree k is denoted byQt
k. Given

an analytic vector field F, we can write it as a quasi-homogeneous expansion corresponding
to a fixed type t:

F(x) = Fr(x) + Fr+1(x) + · · · = ∑
j≥r

Fj(x), (2)

where x ∈ R2, r ∈ Z and Fj ∈ Qt
j, i.e., each term Fj is a quasi-homogeneous vector field of

type t and degree j.
We now need to introduce some definitions and terminology of the normal forms.

We denote the operator lineal `k (the Lie-derivative operator of Fr) as

`k : P t
k−r −→ P

t
k

µk−r → ∇µk−r · Fr.

An involution is a formal diffeomorphism σ, such that σ ◦ σ = Id. Denote Fix(σ) =
{x|σ(x) = x}. This set is a local sub-manifold of R2 and we are assuming throughout the
paper that dim(Fix(σ)) = 1.

We say that the system ẋ = F(x), x ∈ R2, or the vector field F is reversible if there is
an involution σ, σ(0) = 0, such that σ∗F = −F.

We say that the system ẋ = F(x), x ∈ R2, or the vector field F is orbitally reversible
if there exists an involution σ and a formal function µ, µ(0) = 0 such that σ∗((1 + µ)F) =
−(1 + µ)F.

We say that the system ẋ = F(x), or the vector field F is reversible with respect to the
coordinate x (y) or just Rx-reversible (Ry-reversible), if it is reversible with respect to the
involution

σ(x, y) = (−x, y), (σ(x, y) = (x,−y)).

We mean that the system ẋ = F(x) is invariant under the symmetry given by (x, y, t) →
(−x, y,−t) or (x, y, t)→ (x,−y,−t), respectively. In turn, this implies, for instance in the
second case, that when (x(t), y(t)) is a trajectory in phase space describing a possible mo-
tion of the system with initial position and momentum (x0, y0), then so is (x(−t),−y(−t))
with initial condition (x0,−y0). In configuration (position) space this means that if we have
a trajectory x(t), then we also have a trajectory x(−t). This is precisely what we see when
we observe a time-reversible system in reverse time.

The following result provides a necessary and sufficient condition for vector field (2)
to be orbitally reversible. This result is an adaptation of [32] [Theorem 2.3 and Corollary 1]
and [35] [Theorem 2.3], in this case, using spatial and temporal generators.

Theorem 1. The vector field F, given in (2), is orbital reversible if, and only if, there exists U
(generator of a change of variable close to the identity), a scalar function µ with µ(0) = 0 and
Φ0 ∈ Qt

0 such that U∗∗((1 + µ)(Φ0)∗F) is axis-reversible (i.e., Rx or Ry-reversible).

Notice that in order to be F orbital reversible it is necessary that there exists Φ0 ∈ Qt
0

such that (Φ0)∗Fr be Rx- or Ry-reversible. Thus, without loss of generality (applying a
change of variables of degree 0, Φ0, given by the previous Proposition), we can consider
(Φ0)∗F instead of F and, in this way, we can start from the vector field

F = F̃r + ∑
j>r

Fj, (3)

where F̃r is Rx-reversible. (The Ry-reversible case is treated analogously).
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Notice that F̃r ∈ Qt
j can be uniquely written as

F̃r = Xh + µD0, (4)

where µ := 1
r+|t| divF̃r ∈ P t

r , h := 1
r+|t|D0 ∧ F̃r ∈ P t

r+|t|, |t| := t1 + t2, D0 := (t1x, t2y)T ,

and Xh := (−∂h/∂y, ∂h/∂x)T is the Hamiltonian vector field with Hamiltonian function h,
see [38] [Prop.2.7].

In order to study the orbital Rx-reversibility of the vector field (3), we have to con-
struct a suitable normal form (suitable spatial and temporal generators) that allows us to
distinguish the terms that obstruct the orbital Rx-reversibility of the vector field studied.
To study this problem and state our main result we need to define some subspaces that
will constitute the initial and final space of the homological operators that will define the
adequate normal form to study the problem of orbital reversibility. We need the following
subspaces:

P̃ t
k :=

{
µ ∈ P t

k : µ(−x, y) = −µ(x, y)
}

, (odd scalar function)

P t
k :=

{
µ ∈ P t

k : µ(−x, y) = µ(x, y)
}

(even scalar function)

Q̃t
k :=

{
(P, Q)T ∈ Qt

k : P ∈ P t
k+t1

, Q ∈ P̃ t
k+t2

}
, (vector field reversible to x)

Qt
k :=

{
(P, Q)T ∈ Qt

k : P ∈ P̃ t
k+t1

, Q ∈ P t
k+t2

}
, (symmetric vector field)

It is verified that Qt
k = Q̃

t
k
⊕Qt

k and P t
k = P̃

t
k
⊕P t

k.
Let Pk ∈ Qt

k, µk ∈ P t
k, we denote P̃k = ProyQ̃t

k
(Pk), Pk = ProyQt

k
(Pk), µ̃k =

ProyP̃ t
k
(µk) and µk = ProyP t

k
(µk). We will use the same notation for the case of sum

of quasi-homogeneous fields or scalar functions.
The following result shows how the bracket and Lie derivative behave when taking

vector fields and scalar functions with symmetries.

Lemma 1. Let F̃r ∈ Q̃t
r, Fs ∈ Q

t
s, µ̃k ∈ P̃ t

k, µt
k, P̃k ∈ Q̃t

k, Pt
k ∈ Q

t
k. Then

a) µ̃kµ̃s ∈ P
t
k+s b) µ̃kµs ∈ P̃ t

k+s c) µkµs ∈ P
t
k+r

d) µ̃k · F̃r ∈ Q
t
k+r e) µ̃k · Fs ∈ Q̃t

k+s f) µk · F̃r ∈ Q̃t
k+r g) µk · Fs ∈ Q

t
k+r

h) ∇µ̃k · F̃r ∈ P
t
k+r i) ∇µ̃k · Fs ∈ P̃ t

k+s j) ∇µk · F̃r ∈ P̃ t
k+r k) ∇µk · Fs ∈ P

t
k+r

l)
[
P̃k, F̃r

]
∈ Qt

k+r m)
[
Pk, F̃r

]
∈ Q̃t

k+r n)
[
Pk, Fs

]
∈ Qt

k+s o) div
(

F̃r

)
∈ P̃ t

r

Proof.

• Item a) is trivial since µ̃k(−x, y)µ̃s(−x, y) = (−µ̃k(x, y))(−µ̃s(x, y)) = µ̃k(x, y)µ̃x(x, y).
Therefore µ̃kµ̃s ∈ P

t
k+s. Items b) and c) can be proved in a similar way.

• If F̃r = (P, Q̃)T then P ∈ P t
r+t1

and Q̃ ∈ P̃ t
r+t2

. Therefore µ̃kF̃r = (µ̃rP, µ̃kQ̃)T and
item d) is proved using items a) and b). Items e), f) and g) can be proved in an
analogous manner.

• Items h)–k) are proved in [33] [Lemma 2.3]

• Items l) and m) are proved in [33] [Lemma 2.7].

• Item n) can be proved using the same technique, i.e., let Pk = (P̃, Q)T and Fs = (F̃, G)T

then P̃ ∈ P̃ t
k+t1

, Q ∈ P t
k+t2

, F̃ ∈ P̃ t
s+t1

, G ∈ P t
k+t2

. So, the first component of
[
Pk, Fs

]
,
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applying item i) is ∇P̃ · Fs −∇F̃ · Pk ∈ P
t
k+s. Analogously the second component of[

Pk, Fs
]
, by item k), is ∇Q · Fs −∇G · Pk ∈ P̃ t

k+s, therefore the result is obtained.

• Item o). If F̃r ∈ Q̃t
r then F̃r = (P, Q̃)T with P ∈ P t

r+t1
and Q̃ ∈ P̃ t

r+t2
. Therefore

∂P
∂x ∈ P̃

t
r and ∂Q̃

∂y ∈ P̃
t
r , so div

(
F̃r

)
∈ P̃ t

r .

Proposition 1. Let be the following linear operators:

˜̀r+k : P t
k −→ P̃ t

r+k
µk → ∇µk · F̃r;

`r+k : P̃ t
k −→ P

t
r+k

µ̃k → ∇µ̃k · F̃r.

Then Cor
(˜̀r+k

)⊕
Cor

(
`r+k

)
is a complementary subspace of Range(`r+k).

Proof. As F̃r is Rx-reversible, by Lemma 1 items h) and k) the operators ˜̀r+k and `r+k are
well defined. Moreover, the matrix of operator `r+k can be expressed as

P̃ t
k P t

k

`r+k

(
P̃ t

k

)
0 P t

r+k

0 ˜̀r+k

(
P t

k

)
P̃ t

r+k

The matrices of the reduced operators ˜̀r+k and `r+k are submatrices of the matrix of `r+k
and the result is obtained.

We denote byRt
k a complementary subspace of Ker(`k−r)F̃r in Q̃t

k, i.e.,

Q̃t
k = Ker(`k−r)F̃r

⊕
Rt

k.

Notice that, if I ∈ Ker(`r+k), then I is a polynomial first integral of F̃r, hence I must
be even in the variable x, therefore Ker(`r+k) ⊂ P

t
k and Ker(`k)F̃r ⊂ Q̃t

k. So we can define

the vector spaceRt
k. Moreover we can affirm that Qt

k = R
t
k
⊕

Ker(`k)F̃r
⊕Qt

k.

We will denote ∆̃k+|t|, ∆k+|t| subspaces of P̃ t
k+|t|, P

t
k+|t|, respectively such that P̃ t

k+|t| =

∆̃k+|t|
⊕

hP̃ t
k−r, P

t
k+|t| = ∆k+|t|

⊕
hP t

k−r. (Notice that hP̃ t
k−r ⊂ P̃

t
k+|t| and hP t

k−r ⊂ P
t
k+|t|,

where h is defined in (4)).
We also define the following linear operator that will be necessary in the rest of

the paper:

˜̀c
r+k+|t| : ∆k+|t| −→ ∆̃r+k+|t|

g → Proy∆̃r+k+|t|

(
∇g ·

(
F̃r − r+|t|

k+|t|µD0

))
.

Notice that the linear operator ˜̀c
i+|t| is well defined since we have µ = 1

r+|t|div(F̃r) (µ

defined in (4)) and, by Lemma 1 item o) µ ∈ P̃ t
r , then µD0 ∈ Q̃t

r (D0 defined in (4)). So if
we consider G̃r := F̃r − r+|t|

i+|t| µD0 then G̃r ∈ Q̃t
r. Applying Lemma 1 item k) we see that

the operator is well defined.

3. Orbital Rx-Reversibility

The following result provides a necessary and sufficient condition to have a orbitally
Rx-reversible system through the orbitally Rx-reversible normal form. In addition, it allows
us to construct an algorithm to compute families of orbitally Rx-reversible vector fields.
This is our first main result.
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Theorem 2. Let F the vector field (3). If Ker
(˜̀c

r+k+|t|

)
= {0} for all k ∈ N then

(a) There exist Ũ = ∑k≥1 Ũk, Ũk ∈ Rt
k, µ̃ = ∑k≥1 µ̃k, µ̃k ∈ Cor

(˜̀k

)
such that

Ũ∗∗((1 + µ̃)F) = F̃r +

(
F(x2, y)

xG(x2, y)

)
+ ∑

k≥1

(
Xg̃r+k+|t| + ηr+kD0

)
, (5)

where ηr+k ∈ Cor
(
`r+k

)
, g̃r+k+|t| ∈ Cor

(˜̀c
r+k+|t|

)
and (F(x2, y), xG(x2, y))T is a vector

field sum of quasi-homogeneous vector fields of type t and degree greater than r.

(b) System (5) is orbitally Rx-reversible if, and only if, g̃r+k+|t| = 0, ηr+k = 0 for all k > 0.

3.1. Proof of Statement (a) of Theorem 2

We can adapt an orbital normal form for generic vector field expressed in [39] [page
196], using quasi-homogeneous expansion.

Theorem 3. System ẋ = F̃r + ∑k>0 Fr+k, Fr+k ∈ Qt
r+k is formally orbital equivalent to

y′ = G(y) = F̃r + ∑
k>0

Gr+k(y),

with Gr+k ∈ Cor(Lr+k), where the operator Lr+k is the homological operator under equivalence,
i.e.,

Lr+k : Qt
k ×P

t
k −→ Q

t
r+k

(Pk, µk)→ Lr+k(Pk, µk) = [Pk, F̃r]− µk F̃r.

In order to prove item a) of Theorem 3, we need to calculate a projection of Range(Lr+k)

in Qt
r+k or, equivalently, to know what terms non Rx-reversible can be eliminated in the

normal form. For that, we reduce the initial and the final subspaces of the homological
operator. The following lemmas go in this direction.

Lemma 2. Let k ∈ N, F̃r ∈ Q̃t
r, g ∈ P t

k+|t|, η ∈ P t
k and λ ∈ P t

k−r, then the following properties
are satisfied:

(a) Xg ∈ Q̃t
k if, and only if, g ∈ P t

k and Xg ∈ Q
t
k if, and only if, g ∈ P̃ t

k.

(b) ηD0 ∈ Q̃t
k if, and only if, η ∈ P̃ t

k and ηD0 ∈ Q
t
k if, and only if, η ∈ P t

k.

(c) λF̃r ∈ Q̃t
k if, and only if, λ ∈ P t

k−r and λF̃r ∈ Q
t
k if, and only if, λ ∈ P̃ t

k−r.

Proof.

(a) Xg = (− ∂g
∂y , ∂g

∂x ) ∈ Q̃
t
k if, and only if,− ∂g(−x,y)

∂y = − ∂g(x,y)
∂y and ∂g(−x,y)

∂x = − ∂g(x,y)
∂x and

this is true if, and only if, g ∈ P t
k. Analogously Xg ∈ Q

t
k if, and only if, − ∂g(−x,y)

∂y =
∂g(x,y)

∂y and ∂g(−x,y)
∂x = ∂g(x,y)

∂x and this is true if, and only if, g ∈ P̃ t
k.

(b) D0 = (t1x, t2y)T ∈ Qt
0, therefore by Lemma 1 items e) and g), ηD0 ∈ Q̃t

k if, and only

if, η ∈ P̃ t
k. Analogously ηD0 ∈ Q

t
k if, and only if, η ∈ P t

k.

(c) F̃r ∈ Q̃t
r, therefore by Lemma 1 items d) and f), λF̃r ∈ Q̃t

k if, and only if, λ ∈ P t
k−r.

Analogously λF̃r ∈ Q
t
k if, and only if, λ ∈ P̃ t

k−r.

Next lemma provides the first reduction.
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Lemma 3. If F̃r is Rx-reversible, for all k ∈ N it is verified that ProyQt
r+k

(Range(Lr+k)) =

Range
(
L̂r+k

)
where

L̂r+k : Q̃t
k × P̃

t
k → Qt

r+k

(Ũk, µ̃k) −
[
F̃r, Ũk

]
− µ̃kF̃r.

Proof. By definition Qt
k ×P

t
k =

(
Q̃t

k × P̃
t
k

)⊕(Qt
k ×P

t
k

)
.

With this choice we consider again the operator Lr+k :
(
Q̃t

k × P̃
t
k

)⊕(Qt
k ×P

t
k

)
→

Qt
k+r

⊕ Q̃t
k+r. As F̃r ∈ Q̃t

r, applying Lemma 1 items d), f), l) and m), the matrix of operator
Lr+k can be expressed as

Q̃t
k × P̃

t
k Qt

k ×P
t
k

• 0 Qt
k+r

0 • Q̃t
k+r

where • means a non-null submatrix. The matrix of the reduced operator L̂r+k is a subma-
trix of the matrix of Lr+k and the result is obtained.

The following lemma gives the second reduction.

Lemma 4. If F̃r ∈ Q̃t
r then for all k ∈ N it is satisfied that Range

(
L̂r+k

)
= Range

(
Lr+k

)
where

Lr+k : Rt
k ×Cor

(˜̀k

)
→ Qt

r+k

(Ũk, ν̃k) −
[
F̃r, Ũk

]
− ν̃kF̃r.

Proof. It is evident that Range
(
Lr+k

)
⊂ Range

(
L̂r+k

)
, we need to prove the other inclu-

sion. Let
(

Ũk, µ̃k

)
∈ Q̃t

k × P̃
t
k, as Q̃t

k = R
t
k
⊕

Ker
(˜̀k

)
F̃r we can affirm that there exist Ṽ ∈

Rt
k and λ ∈ Ker

(˜̀k

)
such that Ũk = Ṽk + λF̃r. Moreover, as P̃ t

k = Range
(˜̀k

)⊕
Cor

(˜̀k

)
,

there exist ρ ∈ P t
k \Ker

(˜̀r+k

)
and ν̃t

k ∈ Cor
(˜̀k

)
such that µ̃k = ∇ρ · F̃r + ν̃k. Notice that

if ρ ∈ Ker
(˜̀r+k

)
then ∇ρ · F̃r = 0 and therefore µ̃k = 0 + ν̃k.

Applying the following well-known property [µF, U] = µ [F, U] + (∇µ ·U) F, we get[
λF̃r, F̃r

]
= λ

[
F̃r, F̃r

]
+
(
∇λ · F̃r

)
Fr = 0 since

[
F̃r, F̃r

]
= 0 and ∇λ · F̃r = 0.

Applying the same property again, we get(
∇ρ · F̃r

)
F̃r =

[
ρF̃r, F̃r

]
− ρ
[
F̃r, F̃r

]
= −

[
F̃r, ρF̃r

]
.

Therefore

L̂r+k

(
Ũk, µ̃k

)
= −

[
F̃r , Ṽk + λF̃r

]
−
(
∇ρ · F̃r + ν̃k

)
F̃r = −

[
F̃r , Ṽk

]
−
[
F̃r , λF̃r

]
−
(
∇ρ · F̃r

)
F̃r − ν̃k F̃r

= −
[
F̃r , Ṽk

]
+
[
λF̃r , F̃r

]
+
[
F̃r , ρF̃r

]
− ν̃k F̃r = −

[
F̃r , Ṽk − ρF̃r

]
− ν̃k F̃r

= Lr+k

(
W̃k, ν̃k

)
.

where W̃k = Ṽk − ρF̃r ∈ Rt
k, since ρ /∈ Ker

(˜̀r+k

)
, and the result is obtained.
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In order to calculate a complementary subspace to Range
(
Lr+k

)
, we need to define

the following subspaces (see Properties of Lemma 2)

C̃k =
{

Xgk+|t| : gk+|t| ∈ ∆k+|t|

}
, Ck =

{
Xgk+|t| : gk+|t| ∈ ∆̃k+|t|

}
,

D̃k =
{

ηkD0 : ηk ∈ P̃ t
k

}
, Dk =

{
ηkD0 : ηk ∈ P

t
k

}
,

F̃k =
{

λk−rF̃r : λk−r ∈ P
t
k−r \Ker(`k)F̃r

}
, F k =

{
λk−rF̃r : λk−r ∈ P̃ t

k−r

}
.

Notice that P t
k−r = {0} if k < r and P t

0 = span{1}.
Next result is an adaptation to our case of [40] [Lemma 3.6].

Lemma 5. If D0 ∧ F̃r 6= 0, then Rt
k = C̃

t
k
⊕ D̃t

k
⊕ F̃ t

k and Qt
k = C

t
k
⊕Dt

k
⊕F t

k, for all k ∈ N.

Moreover if P̃k ∈ Rt
k, Pk ∈ Q

t
k, there exist g ∈ ∆k+|t|, η̃ ∈ P t

k and λ ∈ P t
k−r such that

P̃k = Xg + η̃D0 + λFr,

Pk = Xg̃ + ηD0 + λ̃Fr,

where

g =
Proy∆k+|t|

D0∧P̃k

k+|t| , λ =
Proy

hP t
k−r

D0∧P̃k

(r+|t|)h , η =
div(P̃k)−∇λ·Fr−λdiv(Fr)

r+|t| ,

g̃ =
Proy∆̃k+|t|

D0∧Pk

k+|t| , λ̃ =
ProyhP̃ t

k−r
D0∧Pk

(r+|t|)h , η =
div(Pk)−∇λ̃·Fr−λ̃div(Fr)

r+|t| .

Next result uses the above decompositions for calculating a complementary subspace
of Range

(
Lr+k

)
and, therefore, for computing a normal form for detecting the orbital

reversibility of a vector field.

Proposition 2. If F̃r ∈ Q̃t
r and Ker

(˜̀c
r+k+|t|

)
= {0} for all k ∈ N, then a complementary

subspace to range of Lr+k is Cor
(
Lr+k

)
= Xg̃ + ηD0, where g̃ ∈ Cor

(˜̀c
r+k+|t|

)
and η ∈

Cor
(
`r+k

)
. Moreover Ker

(
Lr+k

)
= {0}

Proof. By Lemma 5 Rt
k = C̃ t

k
⊕ D̃t

k
⊕ F̃ t

k , Qt
r+k = C t

r+k
⊕Dt

r+k
⊕F t

r+k. On the other

hand P t
r+k = Range

(˜̀k

)⊕
Cor

(˜̀k

)
then F t

r+k = Range
(˜̀k

)
F̃r
⊕

Cor
(˜̀k

)
F̃r. Moreover,

the following properties, that are demonstrated below, are verified

(a) −
[
F̃r, λk−rF̃r

]
= `r+k

(
λk−r

)
∈ F t

r+k if λk−r ∈ P
t
k−r,

(b) −
[
F̃r, ηkD0

]
= `r+k(η̃k)D0 − rη̃kF̃r ∈ D

t
r+k

⊕F t
r+k if η̃k ∈ P̃ t

k,

(c) ProyCr+k

(
−
[
F̃r, Xg

])
= X˜̀c

r+k+|t|(g) if g ∈ ∆k+|t|.

Items (a) and (b), are consequence of the following properties [µF, G] = (∇µ ·G)F +
µ[F, G] and [Fk, D0] = kFk, respectively. From the properties of the Lie bracket and the
previous properties we deduce
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[
F̃r, Xg

]
=

[
Xh, Xg

]
+
[
µD0, Xg

]
= X−∇g·Xh +

(
∇µ · Xg

)
D0 + µ

[
D0, Xg

]
= X−∇g·Xh +

(
∇µ · Xg

)
D0 − kµXg

= X−∇g·Xh +
(
∇µ · Xg

)
D0 − k(k+|t|)

r+k+|t|Xµg − k
r+k+|t|

(
∇µ · Xg

)
D0

= −X
∇g·Xh+

k(k+|t|)
r+k+|t| µg

+ r+|t|
r+k+|t|

(
∇µ · Xg

)
D0

= −X
∇g·

(
Fr−

r+|t|
r+k+|t| µD0

) + r+|t|
r+k+|t|

(
∇µ · Xg

)
D0,

which implies item (c).
From (a)–(c) and using Lemma 1 we obtain the following scheme for Lr+k:

C̃ t
k D̃t

k F̃ t
k Cor

(˜̀k

)
X(˜̀c

r+k+|t|(g)
) 0 0 0 C t

r+k

−
[
F̃r, Xg

]d
`r+k(η̃k)D0 0 0 Dt

r+k

−
[
F̃r, Xg

]f
−rη̃kF̃r

˜̀k
(
λk−r

)
F̃r 0 Range

(˜̀k

)
F̃r

0 −ν̃kF̃r Cor
(˜̀k

)
F̃r

where
[
F̃r, Xg

]d
= ProyDr+k

([
F̃r, Xg

])
and

[
F̃r, Xg

]f
= ProyF r+k

([
F̃r, Xg

])
. From hypoth-

esis Ker
(˜̀c

r+k+|t|

)
= {0}, we can deduce that the upper left block of the above matrix has

maximum range. Therefore Cor
(
Lr+k

)
follows from the structure of the above matrix.

Moreover all others blocks of the above matrix have maximum range. The first block
by hypothesis, the second block since, if there exists η̃k ∈ P̃ t

k such that `r+k(η̃k) = 0
then `r+k(η̃k) = 0, then η̃k is a polynomial first integral of F̃r, hence η̃k must be even
in the variable x, therefore η̃ ∈ P̃ t

k ∩ P
t
k = {0} and it is a contradiction. The third

block has maximum range, otherwise there exists λk−r ∈ P
t
k−r such that ˜̀k

(
λk−r

)
= 0,

i.e., `k
(
λk−r

)
= 0 but it is impossible since F̃k = ProyRt

k
(Fk) and Q̃t

k = Rt
k
⊕

Ker(`k)F̃r.

It is evident that the last block has maximum range. Therefore Ker
(
Lr+k

)
= {0}.

Proof. [Statement (a) of Theorem 2] By Theorem 3 a formally orbital normal form of
system ẋ = F(x) is ẋ = G(x) := Fr + ∑k>0 Gr+k, with Gr+k ∈ Cor(Lr+k) (complementary
space to the range of Lr+k). From Lemma 3 it is possible to choose a complementary
subspace such that ProyQt

r+k
(Cor(Lr+k)) = Cor

(
L̂r+k

)
, see the matrix of the operator Lr+k

described in the demonstration of the cited lemma. By Lemma 4 Cor
(
L̂r+k

)
= Cor

(
Lr+k

)
.

To finish the proof it is enough to apply the Proposition 2.

3.2. Proof of Statement (b) of Theorem 2

We begin this section by demonstrating some results (technical lemmas) regarding the
theory of normal forms that will be necessary.

The following result states that the order in which we apply the spatial and temporal
generators does not matter.

Lemma 6. Let us consider µk ∈ P t
k (k ∈ N) and U ∈ ⊕j≥1Qt

j . Then, there exists λ = ∑j≥k λj ∈⊕
j≥k P t

j , such that
(1 + µk)(U ∗∗F) = U ∗∗((1 + λ)F),

where the lowest-degree quasi-homogeneous term of λ is λk = µk.
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Proof. Let us denote the successive Lie derivatives along the vector field U of the scalar
function µk by µ

[j]
k , i.e.,

µ
[0]
k = µk, and µ

[j]
k = ∇µ

[j−1]
k ·U, for j ≥ 1.

Using induction, we can prove that

µkT(l)
U (F) =

l

∑
j=0

(
l
j

)
(−1)jT(l−j)

U

(
µ
[j]
k F
)

, for all l ≥ 0.

Then,

(1 + µk)(U ∗∗F) =
∞

∑
l=0

1
l!

T(l)
U (F) +

∞

∑
l=0

1
l!

l

∑
j=0

(
l
j

)
(−1)jT(l−j)

U

(
µ
[j]
k F
)

=
∞

∑
l=0

1
l!

T(l)
U (F) +

∞

∑
l=0

l

∑
j=0

1
j!l!

(−1)jT(l)
U

(
µ
[j]
k F
)

=
∞

∑
l=0

1
l!

T(l)
U

((
1 + ∑l

j=0
1
j! (−1)jµ

[j]
k

)
F
)
= U ∗∗((1 + λ)F),

as claimed, where λ := ∑l
j=0

1
j! (−1)jµ

[j]
k . Moreover, it is easy to show that λk = µk.

The following results are technical lemmas that will be used later.

Lemma 7. Let us consider a couple of generators: U = ∑j≥1 Uj ∈
⊕

j≥1Qt
j and V = ∑j≥k Vj ∈⊕

j≥kQt
j (k ∈ N), corresponding to near-identity transformations Φ and Ψ, respectively. If W =

∑j≥1 Wj ∈
⊕

j≥1Qt
j is a generator of Ψ ◦Φ, then U and W agree up to quasi-homogeneous degree

k− 1 (i.e., J k−1(U) = J k−1(W)), and

Wk = Uk + Vk.

Proof. The proof can be found in [33] [Lemma 2.8].

Lemma 8. Let us consider ρm ∈ P t
m (m ∈ N) and µ ∈ ⊕

j≥1 P t
j . Then, there exists η =

∑j≥1 ηj ∈
⊕

j≥1 P t
j , such that:

(ρmF) ∗∗((1 + µ)F) = (1 + η)F,

where η and µ agree up to quasi-homogeneous degree m + r− 1 (i.e., J m+r−1(η) = J m+r−1(µ)),
and ηm+r = µm+r −∇ρm · F̃r.

Proof. Firstly, we will show using induction that, for each l ∈ N, there exists η(l) ∈⊕
j≥l(m+r) P t

j satisfying:

T(l)
ρmF((1 + µ)F) = η(l)F, (6)

where η
(1)
m+r = −∇ρm · F̃r.

Namely, for l = 1, applying the following well-known property [µF, G] = (∇µ ·G)F+
µ [F, G], we deduce:

TρmF((1 + µ)F) = [(1 + µ)F, ρmF] = (ρm(∇µ · F)− (1 + µ)(∇ρm · F))F,

and it is enough to take η(1) := ρm(∇µ · F)− (1+ µ)(∇ρm · F). Equating quasi-homogeneous
terms, we get η

(1)
i = 0 for i = 1, · · · , m + r− 1, and η

(1)
m+r = −∇ρm · F̃r.
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Next, we assume that (6) holds for l − 1. Applying again [µF, G] = µ [F, G] + (∇µ ·
G) F, we obtain:

T(l)
ρmF((1 + µ)F) =

[
T(l−1)

ρmF ((1 + µ)F), ρmF
]
=
[
η(l−1)F, ρmF

]
= η(l)F,

where we have denoted η(l) := ρm

(
∇η(l−1) · F

)
− η(l−1)(∇ρm · F). As η(l−1) ∈⊕

j≥(l−1)(m+r) P t
j , it is easy to show that η(l) ∈ ⊕j≥l(m+r) P t

j . This proves the equality (6).
From this equality, we obtain:

(ρmF) ∗∗((1 + µ)F) = ∑∞
l=0

1
l! T(l)

ρmF((1 + µ)F) = (1 + µ)F + ∑∞
l=0

1
l! η

(l)F

=
(

1 + µ + ∑∞
l=1

1
l! η

(l)
)

F = (1 + η)F,

where we have introduced η := µ + ∑l≥1
1
l! η

(l).

Proposition 3. Let N ∈ N and F = F̃r + · · · , where F̃r is Rx-reversible and U ∈ ⊕j≥1Qt
j, µ ∈⊕

j≥1 P t
j such that J r+N−1(U ∗∗((1 + µ)F)) is Rx-reversible. Then, there exist W = ∑j≥1 Wj,

Wj ∈ Qt
j, J

N(W) ∈ ⊕N
j=1Rt

j and δ = ∑j≥1 δj, δj ∈ P t
j , J N(δ) =

⊕N
j=1 Cor

(˜̀j

)
satisfying

J r+N
(

W ∗∗((1 + δ)F)
)
= J r+N

(
U ∗∗((1 + µ)F)

)
,

where J M(W) denotes the M-jet of W, i.e., J M(W) := W1 + · · · + WM being W = W1 +
· · ·+ WM + · · · ∈ ⊕j≥1Qt

j and J M(δ) denotes the M-jet of δ, i.e., J M(δ) := δ1 + · · ·+ δM

being δ = δ1 + · · ·+ δM + · · · .

Proof. Let us denote

κ = min
{

k ∈ N : ProyQt
k
⊕

Ker(`k)F̃r
(Uk) 6= 0, or ProyP t

k
⊕

Range(˜̀k)
(µk) 6= 0

}
.

We assume κ < N (otherwise, as Qt
j = Rt

j
⊕

Ker
(
`j
)
F̃r
⊕Qt

j and P t
j = Cor

(˜̀j

)
⊕

Range
(˜̀j

)⊕P t
j), taking W = U, δ = µ, we complete the proof.

From the definition of κ, we get that Uj ∈ Rt
j and µj ∈ Cor

(˜̀j

)
for j = 1, . . . , κ − 1.

Our goal is to show that the result is true for the κ–degree quasi-homogeneous terms and
then, repeating the procedure, we get the result.

We can write Uκ = Uκ + Ũκ , where Uκ ∈ Q
t
κ and Ũκ ∈ Q̃t

κ . Also, we can split
µκ = µκ + µ̃κ , with µκ ∈ P

t
κ and µ̃κ ∈ P̃ t

κ .
Let us denote by V a generator of Ψ ◦ Φ, where Φ and Ψ are the transformations

generated by U and −Uκ , respectively. From Lemma 7, we have J κ−1(V) = J κ−1(U) and

Vκ = Uκ −Uκ = Ũκ ∈ Q̃t
κ .

Therefore J κ(V) ∈ ⊕κ
j=1Rt

j.

On the other hand, by Lemma 1 item n) it is verified that
[
Fk, Uj

]
∈ Qt

k+j. So we get:

V ∗∗((1 + µ)F) = (Ψ ◦Φ)∗((1 + µ)F) = Ψ∗(U ∗∗((1 + µ)F))

= −Uκ ∗∗(U ∗∗((1 + µ)F)) =
(
−Uκ

)
∗∗
(

U ∗∗((1 + µ)F)
)

.
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As J r+m−1
(

U ∗∗((1 + µ)F)
)

= 0 since J r+m−1(U ∗∗((1 + µ)F)) is Rx-reversible,
we get

J r+m
(

V ∗∗((1 + µ)F)
)
= J r+m

(
U ∗∗((1 + µ)F)

)
.

Also, from Lemma 6, there exists λ ∈ ⊕j≥κ P t
j such that

(1− µκ)(V ∗∗((1 + µ)F)) = V ∗∗((1 + λ)(1 + µ)F) = V ∗∗((1 + ν)F),

where we have defined ν := (1 + λ)(1 + µ) − 1. We observe that, as λκ = −µκ , then
J κ−1(ν) = J κ−1(µ), and

νκ = µκ − µκ = µ̃κ ∈ P̃ t
κ .

Therefore J κ(ν) ∈ ⊕κ
j=1 P̃ t

j .
Moreover, as it is possible to extend the property showed in Lemma 1 item g) for sum

of vector fields and sum of scalar functions, we get

V ∗∗((1 + ν)F) = (1− µκ)(V ∗∗((1 + µ)F)) = (1− µκ)
(

V ∗∗((1 + µ)F)
)

.

As J r+N−1
(

V ∗∗((1 + ν)F)
)
= 0, we get

J r+N
(

V ∗∗((1 + ν)F)
)
= J r+N

(
V ∗∗((1 + µ)F)

)
= J r+N

(
U ∗∗((1 + µ)F)

)
.

As Rt
κ = Ker(`κ)F̃r

⊕Rt
κ , we can write Vκ = ρκ−rF̃r + Ṽκ , with ρκ−r ∈ Ker(`κ)

(for some ρκ−r ∈ Ker(`κ)) and Ṽκ ∈ Rt
κ .

Moreover, since P̃ t
κ = Range

(˜̀
κ

)⊕
Cor

(˜̀
κ

)
, we can write νκ = ∇ηκ−r · F̃r + ν̃κ ,

where ηκ−r ∈ P
t
κ−r and ν̃κ ∈ Cor

(˜̀
κ

)
, we can assume without loss of generality that

ηκ−r ∈ P
t
κ−r \Ker

(˜̀
κ

)
since otherwise ∇ηκ−r · F̃r = 0.

Let us denote by Φ̃ and Ψ̃ the transformations generated by V and (ρκ−r + ηκ−r)F
respectively, and consider a generator W of the transformation Φ̃ ◦ Ψ̃−1. Then:

V ∗∗((1 + ν)F) =
(

Φ̃ ◦ Ψ̃−1 ◦ Ψ̃
)
∗((1 + ν)F) =

(
Φ̃ ◦ Ψ̃−1

)
∗
(

Ψ̃ ∗((1 + ν)F)
)

= W ∗∗
((
(ρκ−r + ηκ−r)F

)
∗∗((1 + ν)F)

)
.

From Lemma 8, there exists δ ∈ ⊕j≥1 P t
j such that

W ∗∗
((
(ρκ−r + ηκ−r)F

)
∗∗((1 + ν)F)

)
= W ∗∗((1 + δ)F),

where δ and ν agree up to quasi-homogeneous degree κ − 1 (i.e., J κ−1(δ) = J κ−1(ν)), and

δκ = νκ −∇ρκ−r · F̃r −∇ηκ−r · F̃r = ∇ηκ−r · F̃r + ν̃κ −∇ηκ−r · F̃r = ν̃κ ∈ Cor
(˜̀

κ

)
.

Therefore J κ(δ) ∈ ⊕κ
j=1 Cor

(˜̀j

)
.

On the other hand, we get that −(ρκ−r + ηκ−r)F̃r + · · · is a generator of the transfor-
mation Ψ̃−1. Consequently, from Lemma 7, we have J κ−1(W) = J κ−1(V), and taking
into account that ηκ−r ∈ P

t
κ−r \Ker

(˜̀
κ

)
we get:

Wκ = Vκ − (ρκ−r + ηκ−r)F̃r = ρκ−rF̃r + Ṽκ − ρκ−rF̃r − ηκ−rF̃r = Ṽκ − ηκ−rF̃r ∈ Rt
κ .

Therefore
W ∗∗((1 + δ)F) = V ∗∗((1 + ν)F).
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In summary, from the generators (U, µ) with J κ−1(U) ∈ ⊕κ−1
j=1 Q

t
j and J κ−1(µ) =⊕κ−1

j=1 P
t
j we have found others (V, ν) such thatJ κ−1(V) = J κ−1(U), Vκ ∈ Q̃t

κ , J κ−1(ν) =

J κ−1(µ), νκ ∈ P̃ t
κ and J r+N

(
V ∗∗((1 + ν)F)

)
= J r+N

(
U ∗∗((1 + µ)F)

)
. From the

generators (V, ν) we have found others (W, δ) such that J κ(W) ∈ ⊕κ
j=1Rt

j, J
κ(δ) =⊕κ

j=1 Cor
(˜̀j

)
and W∗∗((1 + δ)F) = V∗∗((1 + ν)F). Therefore J r+κ

(
W ∗∗((1 + δ)F)

)
=

J r+κ
(

U ∗∗((1 + µ)F)
)

, so the value of κ for these new temporal and spatial generators is
greater than the previous value. Taking W and δ as new U and µ, this procedure continues
until the statement is proven.

Proof. [Statement b) of Theorem 2] If g̃i = 0, ηi = 0 for all i > r then the system (5) is
reversible to x, therefore system ẋ = F(x) is orbitally Rx-reversible and the sufficiency
conditions follows.

We prove the necessity. Let N = min
{

i ∈ N : g̃r+i 6= 0 or ηr+i 6= 0
}

. On the other
hand F is orbitally Rx-reversible, then by applying Theorem 1 there exists V = ∑j≥1 Vj,
Vj ∈ Qt

j, ν = ∑j≥1 νj, νj ∈ P t
j and Φ0 ∈ Qt

0 such that V∗∗((1 + ν)(Φ0)∗F) is Rx-reversible.

As F = F̃r + · · · , we can take Φ0 = Id. In particular J r+N−1
(

V ∗∗((1 + ν)F)
)

= 0.

By applying Proposition 3 there exists W = ∑j≥1 Wj, Wj ∈ Qt
j, such that J N(W) ∈⊕N

j=1Rt
j and δ = ∑j≥1 δj, δj ∈ P t

j such that J N(δ) ∈ ⊕N
j=1 Cor

(˜̀j

)
verifying

J r+N
(

W ∗∗((1 + δ)F)
)
= J r+N

(
V∗∗((1 + ν)F)

)
.

Therefore J r+N−1
(

W ∗∗((1 + δ)F)
)
= 0.

Consider the spatial generator Ũ = ∑i≥1 Ũi given in (5). We will prove that Ũi = Wi
for 1 ≤ i < N which will lead us to a contradiction.

• Case i = 1, N > 1. In this case

Lr+1

(
Ũ1, µ̃1

)
= −Ũ∗∗((1 + µ̃)F)r+1 = 0 = −W∗∗((1 + δ)F)r+1 = Lr+1(W1, δ1).

Notice that W1 ∈ Q̃t
1 and δ1 ∈ Cor

(˜̀1

)
. Therefore Lr+1

(
Ũ1 −W1, µ̃1 − δ1

)
= 0,

but by Proposition 2 Ker
(
Lr+1

)
= {0}, then we get Ũ1 = W1, µ̃1 = δ1.

• Case N > 1 and we suppose that Ũi = Wi, µ̃i = δi for 1 ≤ i < i0, with i0 < N. In this
case

((
∑i0−1

j=1 Ũj

)
∗∗

(
(1 + ∑i0−1

j=1 µ̃j)F
))

r+i0
=
((

∑i0−1
j=1 Wj

)
∗∗

(
(1 + ∑i0−1

j=1 δj)F
))

r+i0
.

On the other hand

0 =
(

Ũ∗∗((1 + µ̃)F)
)

r+i0
= −Lr+i0

(
Ũi0 , µ̃i0

)
+


i0−1

∑
j=1

Ũj


∗∗

(1 +
i0−1

∑
j=1

µ̃j)F




r+i0

,

0 =
(

W∗∗((1 + δ)F)
)

r+i0
= −Lr+i0

(
Wi0 , δi0

)
+


i0−1

∑
j=1

Wj


∗∗

(1 +
i0−1

∑
j=1

δj)F




r+i0

.

Notice that Wi0 ∈ Q̃t
i0

and δi0 ∈ Cor
(˜̀i0

)
. Therefore Lr+i0

(
Ũi0 −Wi0 , µ̃i0 − δi0

)
= 0,

but by Proposition 2 Ker
(
Lr+i0

)
= {0}, then we get Ũi0 = Wi0 , µ̃i0 = δi0 .
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Reasoning in this way we would obtain that Ũi = Wi and µ̃i = δi for 1 ≤ i < N and then((
∑N−1

j=1 Ũj

)
∗∗

(
(1 + ∑N−1

j=1 µ̃j)F
))

r+N
=
((

∑N−1
j=1 Wj

)
∗∗

(
(1 + ∑N−1

j=1 δj)F
))

r+N
. So

Xg̃N + ηND0 =
(

Ũ∗∗((1 + µ̃)F)
)

r+N
= −Lr+N

(
ŨN , µ̃N

)
+

(N−1

∑
j=1

Ũj

)
∗∗

(
(1 +

N−1

∑
j=1

µ̃j)F

)
r+N

,

0 =
(

W∗∗((1 + δ)F)
)

r+N
= −Lr+N(WN , δN) +

(N−1

∑
j=1

Wj

)
∗∗

(
(1 +

N−1

∑
j=1

δj)F

)
r+N

.

Notice that WN ∈ Q̃t
N and δN ∈ Cor

(˜̀N

)
. Therefore Xg̃N + ηND0 = Lr+N(WN −

ŨN , δN − µ̃N). In consequence, Xg̃N + ηND0 ∈ Range
(
Lr+N

)
∩ Cor

(
Lr+N

)
. Therefore

Xg̃N + ηND0 = 0 and then g̃N = ηN = 0, which is contradictory.

4. Orbital Ry-Reversibility

The following result provides a necessary and sufficient condition to have an orbital
Ry-reversible vector field whose first quasi-homogenous component is Ry-reversible.

Theorem 4. Let F := Fr + · · · be the vector field (3) such that F̃r is Ry-reversible. If Ker(˜̀c
r+k+|t|)

= {0} for all k ∈ N then

(a) There exist Ũ = ∑k≥1 Ũk, Ũk ∈ Rt
k and µ̃ = ∑k≥1 µ̃k, µ̃k ∈ Cor

(˜̀k

)
such that

Ũ∗∗((1 + µ̃)F) = F̃r +

(
yF(x, y2)
G(x, y2)

)
+ ∑

k≥1

(
Xg̃r+k+|t| + ηr+kD0

)
, (7)

where ηr+k ∈ Cor
(
`r+k

)
, g̃r+k+|t| ∈ Cor

(˜̀c
r+k+|t|

)
and (yF(x, y2), G(x, y2))T is a vector

field sum of quasi-homogeneous vector fields of type t and degree greater than r. Notice that
the notations Ũ, µ̃, `k, ˜̀r+k, ˜̀c

r+k+|t| have the same meaning as those used in Theorem 2 but
applied to variable y instead of variable x. In this case the distinguished variable is y.

(b) System (7) is orbitally Ry-reversible if, and only if, gr+k+|t| = 0, ηr+k = 0 for all k > 0.

Proof. The proof follows the same steps as the proof of Theorem 2 since symmetry proper-
ties are verified either with respect to x or with respect to y.

The following result and the previous Proposition 1 provide a tool to calculate the
corranges that appear in the previous Theorems regardless of whether the distinguished
variable is the variable x or y.

Proposition 4. Let be the following linear operators:

`c
r+k+|t| : ∆k+|t| −→ ∆r+k+|t|

g → Proy∆r+k+|t|

(
∇g · G̃r

)
,

`
c
r+k+|t| : ∆̃k+|t| −→ ∆r+k+|t|

g → Proy∆r+k+|t|

(
∇g · G̃r

)
,

where ∆k+|t| = ∆̃k+|t|
⊕

∆k+|t| and G̃r = F̃r − r+|t|
i+|t| µD0.Then Cor

(˜̀c
r+k+|t|

)⊕
Cor

(
`

c
r+k+|t|

)
is a complementary subspace of Range

(
`c

r+k+|t|

)
.

Proof. Notice that we have µ = 1
r+|t|div(F̃r) (µ defined in (4)), and by Lemma 1 item o)

µ ∈ P̃ t
r , then µD0 ∈ Q̃t

r (D0 defined in (4)). So, if we considered G̃r := F̃r − r+|t|
i+|t| µD0,

then G̃r ∈ Q̃t
r. Therefore `c

r+k+|t| is the Lie-derivative operator of G̃r restricted to ∆k+|t|.
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As ∆k+|t| = ∆̃k+|t|
⊕

∆k+|t| and, by Lemma 1 items h) and j), the matrix of operator `c
r+k+|t|

can be expressed as

∆̃t
k+|t| ∆t

k+|t|

`
c
r+k+|t|

(
∆̃k+|t|

)
0 ∆t

r+k+|t|

0 ˜̀c
r+k+|t|

(
∆k+|t|

)
∆̃t

r+k+|t|

The matrices of the reduced operator ˜̀c
i+|t| and `

c
i+|t| are submatrices of the matrix of `c

i+|t|
and the result is obtained.

The following results will be useful in the computation of orbitally reversible families.

Lemma 9. Let F := Fr + · · · be a vector field such that Fr = Xh and h has only simple factors in
its decomposition on C[x, y], then Ker

(˜̀c
r+k+|t|

)
= {0} for all k ∈ N.

Proof. Suppose that there exist k ∈ N such that Ker
(˜̀c

r+k+|t|

)
6= {0}, by proof of Propo-

sition 4 there exists g ∈ ∆k+|t| such that `c
r+k+|t|(g) ∈ 〈h〉. In this case, i.e., Fr = Xh, is

`c
r+k+|t|(g) = `r+k+|t|(g). So `r+k+|t|(g) ∈ 〈h〉. As h has simple factor h = ∏s

i=1 fi, where
each fi is a simple factor, therefore Xh is irreducible and `r+k+|t|(g) ∈ 〈 fi〉 for all 1 ≤ i ≤ s.
By [40] [Lemma 3.21] we get g ∈ 〈 fi〉 and then g ∈ 〈h〉 ∩∆k‘+|t| which is a contradiction.

Proposition 5. Let H = h + · · · with h ∈ P t
s , Φ a change of variable and G = H ◦Φ, then XG

is orbitally equivalent to XH .

Proof. It is enough to see that XG = XH◦Φ = (det DΦ)Φ∗XH .

5. Applications

The results of Theorem 2 allow to build an algorithm for the computation of the
necessary conditions for a vector field within a family of vector fields to be orbitally Rx-
reversible. (Analogously with the Theorem 4 for the orbitally Ry-reversibility). In this
section we apply these algorithms to detect vector fields that are orbitally reversible within
a family of vector fields.

We are interested in studying the orbital reversibility of certain families of monodromic
systems and thereby determine some families of systems with a center at the origin.

Example 1. First we come back to the example of the simple pendulum swing without friction.
The movement equation is `θ̈ + g sin θ = 0 where ` is the length of the pendulum, g is acceleration
due to gravity and θ is the angular displacement. Using the small-angle approximation sin θ ≈ θ we
arrive to the equation of the harmonic oscillator `θ̈ + gθ = 0. Scaling this equation and renaming
the new variable as x we get ẍ + x = 0 that can be transformed into the differential system ẋ = y,
ẏ = −x introducing the new variable y = ẋ. This system has a global center at the origin and all the
phase portrait is foliated by periodic orbits. Moreover this differential system has the time-reversal
symmetry, in fact is Rx-reversible and Ry-reversible. It is true that, in general, the presence of
friction breaks the time-reversal symmetry but sometimes this is not true and in fact it depends on
the way we model the friction. A first approximation to the friction is to consider that is proportional
to velocity adding the term kθ̇ where k is the friction constant. In this case the differential equation
takes the form `θ̈ + kθ̇ + gθ = 0. This equation doing the same rescaling that before is transformed
to ẍ + kẋ + x = 0 or into the differential system ẋ = y, ẏ = −ky− x. This system for values of
k 6= 0 has a focus at the origin and consequently has not a time-reversal symmetry. However we
can consider generalizations of the friction term that must be determined according with the values
obtained from the experimentation of the model.
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Van der Pol studied an electrical circuit with a vacuum tube, in fact with a triode,
and arrived to an equation of the form ẍ+µ(x2 + 1)ẋ+ x = 0, see for instance [41]. Here the
friction term is given by µ(x2 + 1)ẋ. During the development of radio and vacuum tube
technology, Liénard [42] showed the existence and uniqueness of a limit cycle for Van der
Pol equation and established a generalization of the Van der Pol equation given by

ẍ + f (x)ẋ + x = 0,

where f (x) is an analytic function called the damping of the Liénard equation. This Liénard
equation can be rewritten into the differential system ẋ = y, ẋ = −x− y f (x). By means of
the Liénard transformation y→ y + F(x) where F(x) =

∫ x
0 f (x)dx, this last system can be

written as
ẋ = y− F(x), ẏ = −x.

Inside such family of differential systems there are systems that admit a time-reversal
symmetry. If we apply the method developed in this work we can arrive to the follow-
ing theorem.

Theorem 5. System ẋ = y− F(x), ẏ = −x is orbitally reversible if, and only if, F(x) = Φ(x2).
Moreover under this condition the system has a center at the origin.

In fact such result can be generalized for differential systems of the form ẋ = y −
F(x), ẏ = −g(x) where g is an analytic function with g(0) = 0 and g′(0) > 0, see for
instance [30,41] and references therein. Consequently when we have damping or some type
of friction we still can have a time-reversal symmetry that implies a specular symmetric of
the phase portrait. However this symmetry can be hidden because we have not our system
in the normal form that reveals the existence of such symmetry.

This analysis can be applied to more general differential systems as the following
examples show.

Example 2. Consider the differential system whose vector field is the sum of two quasi-homogenous
fields of degrees 7 and 8 respectively with respect to type t = (2, 3).

(
ẋ
ẏ

)
=

F7︷ ︸︸ ︷(
y3 + 2ax3y
−x5 − 3ax2y2

)
+

F8︷ ︸︸ ︷(
a50x5 + a22x2y2

b41x4y + b13xy3

)
, |a| 6= 1√

6
. (8)

The origin of system (8) is monodromic, see [24] [Lemma 4.37], therefore the origin of
these fields are possible centers. The analytical integrability of system (8) has been studied
in [24]. Here we are interested in studying the orbital reversibility and thereby to determine
degenerate centers in this family.

In order to study the orbital reversibility of the family (8), we first compute the possible
reversibilities of the first component F7 (modulo a zero-degree change of variables).

Proposition 6. The quasi-homogeneous vector field F7 given in (8) is Rx-reversible if a = 0 and
F7 is Ry-reversible for all a ∈ R and they are the only reversibilities of F7 (modulo a zero-degree
change of variables).

Proof. For the type t = (2, 3) we get Qt
0 =

{
(a10x, b01y)T : a10, b01 ∈ R

}
, then (Φ0)∗F7 is

Rx-reversible if, and only if, a = 0, and (Φ0)∗F7 is Ry-reversible for all Φ0 ∈ Qt
0. Therefore,

these two reversibilities are the only reversibilities of F7 modulo a zero degree change of
variables.

Remark 1. As a consequence of the previous result we only have to analyze the orbital Rx-
reversibility of system (8) for a = 0 and the orbital Ry-reversibility for a ∈ R.



Mathematics 2021, 9, 14 18 of 25

Theorem 6. System (8) is orbitally reversible if, and only if, one of following conditions holds.

(a) 5a50 + b41 = 2a22 + 3b13 = 0.

(b) a = b41 = a50 = 0.

Proof. By Remark 1 we have to study only the orbital Rx- or Ry-reversibility. The first
quasi-homogeneous term of system (8) is F7 = Xh ∈ Qt

7 with t = (2, 3) and h = −(2x6 +
12ax3y2 + 3y4)/12.

If 6a2 6= 1, h has only simple factors in its decomposition on C[x, y], so by Lemma 9,
Ker

(
˜̀c

r+k+|t|

)
= {0} for all k ∈ N and we can apply Theorems 2 and 4.

We first study the orbital Rx-reversibility in the case a = 0. Applying Theorem 2
statement (a), a normal form of system (8) is(

ẋ
ẏ

)
= F7 +

(
F(x2, y)

xG(x2, y)

)
+ ∑

k≥1

(
Xg̃12+k

+ η7+kD0

)
,

where g̃12+k ∈ Cor
(˜̀c

12+k

)
and η7+k ∈ Cor

(
`7+k

)
. So, by Theorem 2 statement (b),

system (8) is orbitally Rx-reversible if, and only if, g̃12+k = η7+k = 0 for k ∈ N.
In order to calculate the first terms in the normal form that prevent the orbital re-

versibility of system (8), we need to compute the first four non-reversible terms and for
this we need to determine Cor(`7+k) and Cor

(
`c

12+k

)
for 1 ≤ k ≤ 4.

• P̃ t
1 = {0} and P t

8 = span
{

x4}, therefore Cor
(
`8

)
= span

{
x4}.

• ∆6 = {0} and ∆̃13 = {0}, therefore Cor
(˜̀c

13

)
= {0}.

• P̃ t
2 = span{x} and P t

9 = span
{

y3}. If we take p(x, y) = a10x ∈ P̃ t
1, then `9(p) =

a10y3 and therefore Cor
(
`9

)
= {0}.

• ∆7 = span
{

x2y
}

and ∆̃14 = spanx7. If we take g(x, y) = c21x2y ∈ ∆t
7, then ˜̀c

14(g) =

2c21xy4 − c21x7 = − 7
3 c21x7 − 8

3 c21h and therefore Cor
(˜̀c

14

)
= {0}.

• P̃ t
3 = span{0} and P t

10 = span
{

x2y2}, therefore Cor
(
`10

)
= span

{
x2y2}.

• ∆8 = span
{

x4} and ∆̃15 = spanx3y3. If we take g(x, y) = c40x4 ∈ ∆t
8, then ˜̀c

15(g) =

4c40x3y3 and therefore Cor
(˜̀c

15

)
= {0}.

• P̃ t
4 = span{0} and P t

11 = span
{

x4y
}

, therefore Cor
(
`11

)
= span

{
x4y
}

.

• ∆9 = span
{

y3} and ∆̃16 = spanx5y2. If we take g(x, y) = c03y3 ∈ ∆t
9, then ˜̀c

15(g) =

−3c40x5y2 and therefore Cor
(˜̀c

15

)
= {0}.

So, η8 = α8x4, η9 = 0, η10 = α10x2y2, η11 = α11x4y and g̃12+k = 0 for 1 ≤ k ≤ 4.
Calculating the first coefficient of the normal form, we obtain α8 = 1

13 (5a50 + b41) = 0.
Imposing this condition, i.e., b41 = −5a50, the second coefficient is given by

α10 = 1
35 (a50(2a22 + 3b13)(5a22 − 3b13)).

(i) If 2a22 + 3b13 = 0 we get a particular case of item (a). In this case system (8) is
Hamiltonian with Hamiltonian function H(x, y) = −( 1

6 x6 + ax3y2 + 1
4 y4 + a50x5y +

1
3 a22x2y3). There exists a change of variables of the form identity plus non linear
terms Φ, such that G(x, y) := H ◦Φ(x, y) = −( 1

6 x6 + ax3y2 + 1
4 y4 + β9x4y2), see [43]

[Theorem 4]. By Proposition 5 we have that XH is orbitally equivalent to XG. Finally,
taking into account that G(x,−y) = G(x, y), system (8) is Ry-orbitally reversible.
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(ii) If a50 = 0 we get case b) and system (8) is Rx-reversible.

(iii) If 5a22 − 3b13 = 0, a50 6= 0, a22 6= 0. Imposing this condition, i.e., b13 = 5
3 a22, we get

α11 = − 385
48 a22a50 6= 0.

Therefore system (8) is not orbitally Rx-reversible.

Now we study the orbital Ry-reversibility. Using Theorem 4 statement (a), a normal
form of system (8) is(

ẋ
ẏ

)
= F7 +

(
yF(x, y2)
G(x, y2)

)
+ ∑

k≥1

(
Xg̃12+k

+ η7+kD0

)
,

where g̃12+k ∈ Cor
(˜̀c

12+k

)
and η7+k ∈ Cor

(
`7+k

)
.

First, we are going to determine Cor(`8) and Cor
(
`c

13
)
.

• P̃ t
1 = {0} and P t

8 = span
{

x4, xy2}, therefore Cor
(
`8

)
= span

{
x4, xy2}.

• ∆6 = span
{

x3, y2} and ∆̃13 = span
{

x5y, x2y3}. If we take g(x, y) = c30x3 + c02y2 ∈
∆t

8, then ˜̀c
13(g) = (6ac30 − 2c02)x5y + (3c30 − 6ac02)x2y3 and therefore Cor

(˜̀c
13

)
=

{0}.

So, η8 = α
(1)
8 x4 + α

(2)
8 xy2 and g̃13 = 0.

In this case, using the theory of normal forms, we obtain

α
(1)
8 = 1

13 (5a50 + b41) = 0, α
(2)
8 = 1

3 (2a22 + 3b13) = 0.

Imposing these conditions we obtain case a). Sufficient condition is previously demon-
strated.

This completes the proof.

Example 3. Consider the differential system whose vector field is sum of two quasi-homogenous
fields of degrees 13 and 14, respectively, with respect to type t = (2, 5)

(
ẋ
ẏ

)
=

F13︷ ︸︸ ︷(
y3 + a51x5y
−x9 + b42x4y2

)
+

F14︷ ︸︸ ︷(
a80x8 + a32x3y2

b71x7y + b23x2y3

)
. (9)

We are interested in studying the orbital reversibility of system (9), whose origin is
monodromic, in order to calculate degenerate centers.

First, we study the monodromy of system (9).

Proposition 7. The origin of system (9) is monodromic if, and only if, (2b42 − 5a51)
2 < 40.

Proof. The Hamiltonian function of the first quasi-homogeneous component of system (9)
is

h(x, y) = − 1
10 x10 + 2b42−5a51

20 x5y2 − 1
4 y4 = − 1

10

[(
x5 − 2b42−5a51

4 y2
)2

+ 1
16

(
40− (2b42 − 5a51)

2
)

y4
]

.

If 40− (2b42 − 5a51)
2 > 0, h(x, y) is negative-defined and then the origin of system (9)

is monodromic.
If 40− (2b42 − 5a51)

2 < 0, h(x, y) has simple real factors. By [44] [Proposition 6] the
origin of system (9) in this case is not monodromic.
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If 40− (2b42 − 5a51)
2 = 0, i.e., b42 = 5

2 a51 + σ
√

10 with σ = ±1. In this case h(x, y)

has a real factor of multiplicity two. This factor is x5 − σ
√

10
2 y2.

Applying to system (9) the directional blow-up x =

(
v + σ

5
√√

10
2

)
u2, y = u5 and the

reparametrization in the time dt = dT
u13 we obtain

du/dT = u
[
−23/552/5

(
σ
√

10 + 5a51

)
+O(‖u, v‖)

]
,

dv/dT = − 804/5

800

√
10
[
(2b71 − 5a80)

√
10 + 2(2b23 − 5a32)σ

]
u +O(‖u, v‖2).

(10)

• If σ
√

10 + 5a51 6= 0 the Newton diagram of system (10) has even ordinates. Then by
[44] [Theorem 2, item 3b] the origin of system (9) is not monodromic.

• If a51 = − σ
5

√
10 then b42 = σ

2

√
10 and system (10) is

du/dT = u
[
− 801/5

20 (b71
√

10σ + 2b23)u + 12501/5

2 v +O(‖u, v‖2)
]
,

dv/dT = − 804/5

800

√
10
[
(2b71 − 5a80)

√
10 + 2(2b23 − 5a32)σ

]
u +O(‖u, v‖2).

(11)

(i) If (2b71 − 5a80)
√

10 + 2(2b23 − 5a32)σ 6= 0, the Newton diagram of system (11)
has only one compact wedge whose associated vector field is

F1 =
(

12501/5

2 uv,− 804/5

800

√
10
[
(2b71 − 5a80)

√
10 + 2(2b23 − 5a32)σ

]
u
)
∈ Q(2,1)

1

and its Hamiltonian function is

h4(u, v) = −u
(

804/5

400

√
10
[
(2b71 − 5a80)

√
10 + 2(2b23 − 5a32)σ

]
u + 12501/5

2 v
)

,

that has a strong factor. By [44] [Theorem 2, item 2b], the origin of system (9) is
not monodromic.

(ii) If b71 =
√

10
20 (5a80

√
10+ 10a32σ− 4b23σ)), v = 0 is an invariant axis of system (11),

then the origin of system (9) is not monodromic.

Consequently the proof is complete.

In order to study the orbital reversibility of the family (9) whose origin is monodromic,
i.e., (2b42 − 5a51)

2 < 40, we first have to calculate the possible reversibilities of the first
component F13 (modulo a zero-degree change of variables).

Proposition 8. The quasi-homogeneous vector field F13 given in (9) is Rx-reversible if a51 =
b42 = 0 and F13 is Ry-reversible for all a51, b42 ∈ R and they are the only reversibilities of F13
(modulo a zero-degree change of variables).

Proof. For the type t = (2, 5) we get Qt
0 =

{
(a10x, b01y)T : a10, b01 ∈ R

}
, then (Φ0)∗F13 is

Rx reversible if and only if a51 = b42 = 0, and (Φ0)∗F13 is Ry reversible for all Φ0 ∈ Qt
0.

Therefore, these two are the only reversibilities of F13 modulo a zero-degree change of
variables.

Remark 2. As a consequence of the previous result we only have to analyze the orbital Rx-
reversibility of system (9) for a51 = b42 = 0 and the orbital Ry-reversibility for a51, b42 ∈ R.

Theorem 7. If the origin of system (9) is monodromic then system is orbitally reversible if, and
only if, one of the following conditions holds:

(a) a80 = a32 = b71 = b23 = 0 (Ry-reversible case).



Mathematics 2021, 9, 14 21 of 25

(b) 5a51 + 2b42 = 3a80 − a51a32 = 3b71 + 8a51a32 = b23 + a32 = 0 (particular case of
Hamiltonian)

(c) a51 = b42 = a32 = b23 = 0 (Rx-reversible case).

Proof. By Remark 2 we have only to study the orbital Rx- or Ry-reversibility.
First we study the orbital Rx-reversibility. From Proposition 8 it must be a51 = b42 = 0.

In this case the first quasi-homogeneous component is a Hamiltonian vector field F13 = Xh,
where h = −x10/10 − y4/4 with simple factor in C[x, y]. Thus, by Lemma 9, we get
Ker

(˜̀c
r+k+|t|

)
= {0} and we can apply Theorem 2.

Applying Theorem 2 statement (a). a normal form of system (9) is(
ẋ
ẏ

)
= Xh +

(
F(x2, y)

xG(x2, y)

)
+ ∑

k≥1

(
Xg̃20+k

+ η13+kD0

)
,

where g̃20+k ∈ Cor
(˜̀c

20+k

)
and η13+k ∈ Cor

(
`13+k

)
. So, by Theorem 2 item (b), system (9)

is orbitally Rx-reversible if, and only if, g̃20+k = η13+k = 0 for k ∈ N. Using Lemma 10

stated below and Proposition 1 we obtain Cor
(
`14

)
= span

{
x2y2}, Cor

(
`15

)
= {0},

Cor
(
`16

)
= span

{
x8} and Cor

(
`17

)
= span

{
x6y
}

. So η14 = α14x2y2, η15 = 0, η16 =

α16x8, η17 = α17x6y. Analogously, applying Lemma 11 stated below and Proposition

4, we have Cor
(˜̀c

21

)
= Cor

(˜̀c
22

)
= Cor

(˜̀c
23

)
= {0} and Cor

(˜̀c
24

)
= span

{
x7y2}.

So g̃21 = 0, g̃22 = 0, g̃23 = 0, g̃24 = β24x7y2.
The value obtained at order 14 is α14 = 3(a32 + b23)/20. If we vanish this constant

assuming b23 = −a32 the next constant is α16 = 3a32(8a80 + b71)(3a80 − b71)/220. Hence
we have three possibilities a32 = 0, 8a80 + b71 = 0 and 3a80 − b71 = 0.

If a32 = 0, we get the case (c).
If 8a80 + b71 = 0 and a32 6= 0 then taking b71 = −8a80, the next constants are

β24 = 34
123 a3

32a80, α17 = 308
405 a3

32a80.

Then a80 = 0 and therefore b71 = 0 and we obtain a particular case of case (b).
If 3a80 − b71 = 0, with a32(8a80 + b71) 6= 0, taking b71 = 3a80, the next constants are

β24 = − 17
324 a3

32a80, α17 = − 77
270 a3

32a80,

that cannot be canceled since a32 6= 0 and, if a80 = 0, then b71 = 0 giving a contradiction.

Second, we study the orbital Ry-reversibility. From Proposition 8 we consider a51, b42

arbitrary. By Lemma 11 stated below, we have that Ker
(
`c

20+k

)
= {0} for all k ∈ N

then Ker
(˜̀c

r+k+|t|

)
= {0} (see proof of Proposition 4) and therefore the hypothesis of the

Theorem 4 are fulfilled.
Applying Theorem 4 item (a), a normal form of system (9) is(

ẋ
ẏ

)
= F13 +

(
yF(x, y2)
G(x, y2)

)
+ ∑

k≥1
Xg̃20+k

+ η13+kD0,

where g̃20+k ∈ Cor
(˜̀c

20+k

)
and η13+k ∈ Cor

(
`13+k

)
. So, by Theorem 4 item (b), system (9)

is orbitally Ry-reversible if, and only if, g̃20+k = η13+k = 0 for k ∈ N (in this case with
distinguished variable y). Using Lemma 10 stated below and Proposition 1 we have
Cor

(
`14

)
= span

{
x7, x2y2}, Cor

(
`15

)
= {0} and Cor

(
`16

)
= span

{
x8, x3y2}. So η14 =

α
(1)
14 x7 + α

(2)
14 x2y2, η15 = 0, η16 = α

(1)
16 x8 + α

(2)
16 x3y2. Analogously, using Lemma 11 stated
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below and Proposition 4, we obtain Cor
(˜̀c

21

)
= span

{
x8y
}

, Cor
(˜̀c

22

)
= Cor

(˜̀c
23

)
= {0}.

So g̃21 = β21x8y, g̃22 = 0, g̃23 = 0.
The values obtained at order 14 are

β21 = 1
441 (42b71 − 105a80 + 8b42b23 − 20b42a32 − 22a51b23 + 55a51a32),

α
(1)
14 = 1

420 (21b71 + 168a80 − 25a32a51 − 10a32b42 + 10a51b23 + 4b23b42),

α
(2)
14 = 3

20 (a32 + b23).

If we vanish these constants, we get

a80 = 1
3 a51a32, b71 = −a51a32 +

2
3 b42a32, b23 = −a32.

Imposing these equalities the second condition is

α
(1)
16 = − 23

270
(5a51+2b42)(−13b42+25a51)a3

32
−529+52b2

42−269b42a51+325a2
51

,

α
(2)
16 = 1058

135
a3

32(5a51+2b42)

−529+52b2
42−269b42a51+325a2

51
.

The vanishing of these two constants gives two possibilities, a32 = 0 or 5a51 + 2b42 = 0.
The first one corresponds to case (a) and the second one to case (b), respectively.

Now we see the sufficiency.

(a) In this case the system is Ry-reversible.

(b) In this case the system (9) is Hamiltonian, i.e., F = XH with a Hamiltonian function
H = h + h21, where h(x, y) = −x10/10− a51x5y2/2− y4/4 ∈ P t

20 and h21(x, y) =
−a51a32x8y/3 − a32x3y3/3 ∈ P t

21. Taking into account that in the conservative

case, i.e., 5a51 + 2b42 = 0, we have that `c
20+k = Proy∆20+k

(
`20+k|∆13+k

)
, by [43]

[Theorem 4] H is conjugated to a polynomial vector field G = h + ∑16
k=1 g20+k

with g20+k ∈ Cor
(
`c

20+k

)
. By Lemma 11 stated below, H is conjugated to G =

h + β21x8y + β22x6y2 + β24x7y2 + β26x8y2.

If we apply the change of variables x = u, y = v− 1
3 a32u3, the function H is trans-

formed into H̃ = h + h̃22 + h̃23 + h̃24, where h̃22(u, v) = a51a2
32u11/18 + a2

32u6v2/6 ∈
P t

22, h̃23(u, v) = −2a3
32u9v/27 ∈ P t

23 and h̃24 = a4
32u12/108 ∈ P t

24. Therefore H is
conjugated to G = h + β22x6y2 + β24x7y2 + β26x8y2, because the quasi-homogeneous
term of degree 21 in H̃ is null, i.e., β21 = 0. By Proposition 5, system (9) is orbitally
equivalent to system (ẋ, ẏ)t = XG which is Ry-reversible and, consequently, system (9)
is orbitally reversible.

(c) In this case the vector field is Rx-reversible.

This completes the proof.

Appendix for Example 2

Here we present two technical lemmas used in the study of Example 2.

Lemma 10. The first four subspaces Cor(`13+k), k = 1, 2, 3, 4, where `13+k is the Lie-derivative
of F13, the first quasi-homogeneous term of system (9) are:

Cor(`14) = span
{

x7, x2y2}, Cor(`15) = span
{

x5y
}

, Cor(`16) = span
{

x8, x3y2} and
Cor(`17) = span

{
xy3} if a51 6= 0, Cor(`17) = span

{
x6y
}

if a51 = 0.

Proof.

• Case k = 1, we have P t
1 = {0} and P t

14 = span
{

x7, x2y2}. Therefore Cor(`14) =
span

{
x7, x2y2}.
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• Case k = 2, we have P t
2 = span{x} and P t

15 = span
{

x5y.y3}. If p2 = u0x then
∇p2 · F13 = u0y3 + u0a51x5y. Therefore we can choose Cor(`15) = span

{
x5y
}

.

• Case k = 3, we have P t
3 = {0} and P t

16 = span
{

x8, x3y2}. Therefore Cor(`16) =
span

{
x8, x3y2}.

• Case k = 4, we have P t
4 = span

{
x2} and P t

17 = span
{

x6y, xy3}. Therefore we can
choose Cor(`17) = span

{
xy3} if a51 6= 0 and Cor(`17) = span

{
x6y
}

if a51 = 0.

Lemma 11. If the origin of system (9) is monodromic the following conditions are verified:
Ker

(
`c

20+k

)
= {0} for all k ∈ N, Cor

(
`c

20+k

)
= {0} for k ∈ N, k /∈ {1, 2, 4, 6} and Cor

(
`c

21
)
=

span
{

x8y
}

, Cor
(
`c

22
)
= span

{
x6y2}, Cor

(
`c

24
)
= span

{
x7y2}, Cor

(
`c

26
)
= span

{
x8y2}.

Proof. Rename a51 = 2d41− 2c52, b42 = 5d41 + 5c52. We have that the first quasi-homogeneous
component is F13 = X

− 1
10 x10+c52x5y2− 1

4 y4 + d41x4yD0. The inverse change is c52 = 2b42−5a51
20 ,

d41 = 5a51+2b42
20 . Taking into account that the origin of system (9) is monodromic, by Propo-

sition 7 we have that (2b42 − 5a51)
2 < 40, which implies c2

52 < 1/10. Now we study the

subspaces Ker
(
`c

20+k

)
and Cor

(
`c

20+k

)
for k ∈ N.

• Case k = 1. We have ∆8 = span
{

x4} and ∆21 = span
{

x8y, x3y3}. Moreover if
p8 = u40x4 ∈ ∆8 then `c

21(p8) = 8
21 (−21c52 + d41)u0x8y + 4u0x3y3 and therefore

Ker
(
`c

21
)
= {0} and Cor

(
`c

21
)
= span

{
x8y
}

.

• Case k = 2l − 1, l ≥ 2. We have ∆2(l+3) = span
{

xl+3, xl−2y2
}

and ∆2(l+9)+1 =

span
{

xl+7y, xl+2y3
}

. If p2(l+3) = u0xl+3 + u1xl−2y2 then

`c
2(l+9)+1(p2(l+3)) = l+3

5(2l+19)

{
−2[(5(2l + 19)c52 − 5(2l − 1)d41)u0 + (2l + 19)u1]xl+7y

+5[(2l + 19)u0 + 2((2l + 19)c52 + (2l − 1)d41)u1]xl+2y3
}

.

Therefore Ker
(
`c

2(l+9)+1

)
= {0} and Cor

(
`c

2(l+9)+1

)
= {0} if 0 6= (2l + 19)2c2

52 −

(2l − 1)2d2
41 −

(2l+19)2

10 and, as c2
52 < 1

10 , this condition is satisfied.

• Case k = 2. We have that ∆9 = span
{

x2y
}

and ∆22 = span
{

x11, x6y2}. If p9 = u0x2y
then `c

22(p9) = − 9
5 u0x11 + 9

11 (11c52 + d41)u0x6y2. Therefore Ker
(
`c

22
)
= {0} and

Cor
(
`c

22
)
= span

{
x6y2}.

• Case k = 4. We have that ∆11 = span
{

x3y
}

and ∆24 = span
{

x12, x7y2}. If p11 =

u0x3y then `c
24(p11) = − 11

5 u31x12 + 11
120 u31(−25a51 + 14b42)x7y2. Therefore we have

Ker
(
`c

24
)
= {0} and Cor

(
`c

24
)
= span

{
x7y2}.

• Case k = 6. We have that ∆13 = span
{

x4y
}

and ∆26 = span
{

x13, x8y2}. If p13 =

u0x4y then `c
26(p13) = − 13

5 u0x13 + u0(13c52 + 3d41)x8y2. Therefore we have Ker(`c
26)

= {0} and Cor
(
`c

26
)
= span

{
x8y2}.

• Case k = 2l, l ≥ 4. We have ∆2(l+3)+1 = span
{

xl+1y, xl−4y3
}

and ∆2(l+10) =

span
{

xl+10, xl+5y2
}

. If p2(l+3)+1 = u0xl+1y + u1xl−4y3 then

`c
2(l+10)(p2(l+3)+1) =

2l+7
5(l+10)

{
[−10(l + 10)u0 + 2((l + 10)c52 + ld41)u1]xl+10

+[5((l + 10)c52 + ld41)u0 + [(20c52((l + 10)c52 + ld41)− l − 10)]u1]xl+5y2
}

.
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Therefore Ker
(
`c

2(l+10)

)
= {0} and Cor

(
`c

2(l+10)

)
= {0} if it is satisfied (l + 10)2c2

52−

d2
41 −

(l+10)2

10 6= 0. But since c2
52 < 1/10, this condition is verified.
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