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Abstract: This paper investigates the asymptotical behavior of the equilibrium of linear classical
duopolies by reconsidering the two-delay model with two different positive delays. In a two-
dimensional analysis, the stability switching curves were first analytically determined. Numerical
studies verified and illustrated the theoretical results. In the sensitivity analysis it was demonstrated
that the inertia coefficient has a twofold effect: enlarges the stability region as well as simplifies the
complicated dynamics with period-halving cascade. In contrary, the adjustment speed contracts the
stability region and complicates simple dynamics with period-doubling bifurcation. In addition, for
various values of τ1 and τ2, a wide variety of dynamics appears ranging from simple cycle via a Hopf
bifurcation to chaotic oscillations.

Keywords: two delays; Cournot duopoly; gradient dynamics; stability switching curve; bifurcation
diagram; complex dynamics

1. Introduction

The earliest studies on oligopoly theory focused on the existence and uniqueness
of the equilibrium. If the firms are in an equilibrium state, then the common interest of
the firms is to keep this state. However, in a disequilibrium situation, the firms start to
adjust their output levels in order to gain as much profit as possible. So a dynamic process
develops. There are many different versions of such models. First is the selection of time
scales. The reason for using discrete time scales is based on the fact that the firms need to
use time-to-build technology, so they can act only after certain delays, which can be used as
time steps. The mathematical methodology to deal with the resulting difference equations
is well established. Trading takes place repeatedly almost instantaneously in many cases
in which the choice of continuous time scales is more appropriate. A bridge between
discrete and continuous time models is the selection of continuous time scales and the
introduction of discrete delays. This makes sense economically, since collecting information
about the competitors, determining best decision and its implementation need time. If
the delay is known, then discrete delays are used, and if they are uncertain, then they are
considered random and, therefore, continuously distributed delays are assumed. Several
model variants were developed based on the type of the adjustment process, which is
based on how the firms assess the actions of the competitors. Static, adaptive, extrapolative
expectations or sequential adjustment processes are mostly assumed. Another choice is
between best response and gradient dynamics. In the linear cases, they are mathematically
equivalent, the only difference is between the speeds of adjustments. In the earliest studies,
linear models were assumed, which were easy to examine and local stability implied global
stability.

Mathematics 2021, 9, 32. https://dx.doi.org/10.3390/math9010032 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://dx.doi.org/10.3390/math9010032
https://dx.doi.org/10.3390/math9010032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/math9010032
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/1/32?type=check_update&version=2


Mathematics 2021, 9, 32 2 of 19

A summary of the results up to the mid 1970s can be found in [1] and their multi-
product generalizations are discussed in [2]. If the model is nonlinear, then there are several
ways to examine stability. The Lyapunov function method can be used to show marginal
stability, and local and global asymptotical stability. Its foundation can be found in almost
any textbook on ordinary differential equations, such as [3]. In the discrete case, the critical
curve method is often used to detect the long-term behavior of the firms [4]. The most
common approach is local linearization around the equilibrium. The linearized equations
are the same as those of linear oligopolies and their asymptotical stability implies local
asymptotical stability in the nonlinear models. [5] offered a comprehensive summary of
stability analysis of nonlinear oligopolies. If discrete time scales are selected, then the
delays are integers, so the delay equations are equivalent with higher order equations
without delays. In the case of continuous time scales, differential-difference equations
describe the dynamic processes. Ref [6] contains the most important properties of such
models.

In the economic literature, the classical Cournot model is most frequently examined
with gradient adjustments. An example of selecting continuously distributed delays is
given for example, in [7]. The mathematical methods for analyzing the stability of models
with two and three delays are developed in [8,9]. Based on mathematical developments,
many studies examined different classes of dynamic economic models with delays such as
[10–13] among others. Different versions of delay oligopolies are discussed with discrete
and continuous time scales in [14], where the mathematical methodology is also presented
in detail. A new development was the introduction of the inertia coefficient in modeling
difficulties in adjusting production over time. This idea was known earlier from physics
(e.g., [15]) and was first introduced into economics by [16]. An important further step was
given by [11] by introducing an interesting version of transforming discrete time oligopolies
to continuous time models with two discrete delays and gave stability analysis in several
cases. This paper is based on Gori’s model considering two positive different delays. In
a two-dimensional analysis, the stability switching curves are analytically determined
and verified with numerical studies in which the effects of the inertia coefficient and the
adjustment speeds on the asymptotic behavior of the equilibrium are also demonstrated.

The paper develops as follows. Section 2 introduces the basic model. The stability
switching curves are analytically determined in Section 3. Numerical studies of Section 4
verify and illustrate the theoretical results and sensitivity analysis is detailed with respect
to the inertia coefficient and the speeds of adjustments. Concluding remarks and further
research directions are outlined in the final section.

2. Model

There are two firms in a market. Firm i produces output xi with the production
marginal cost ci. A normalized linear price function is

p = 1− (x1 + x2).

The profit of firm i is
πi = (1− x1 − x2)xi − cixi.

Assumption 1. ci = c for i = 1, 2 and 0 < c < 1.

Each firm determines its output to maximize its profit. The first-order conditions for
profit maximization are

∂πi
∂xi

= 1− c− 2xi − xj = 0 for i, j = 1, 2 and i 6= j
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and the second-order conditions are confirmed. Solving the first-order conditions gives the
Cournot equilibrium outputs,

x∗i = x∗j = x∗ =
1− c

3
.

In the output adjustment process, [17] adopt the gradient method in a discrete-time
framework,

xi(t + 1) = xi(t) + αxi(t)
∂πi(t)
∂xi(t)

(1)

where α is a positive adjustment coefficient and reveals that the dynamic system can gener-
ate various dynamics including chaotic behavior. To re-examine the gradient dynamics
in a continuous-time framework, based on [11,15] constructed the following forms of the
dynamic equations with distinct time delays,

ẋ1(t) =
−x1(t)+x1(t−τ1)+αx1(t−τ1)[1−c−2x1(t−τ1)−x2(t−τ1)]

σ1
,

ẋ2(t) =
−x2(t)+x2(t−τ2)+αx2(t−τ2)[1−c−x1(t−τ2)−2x2(t−τ2)]

σ2

(2)

where σi > 0 weights the inertia in the production process of firm i and (τ1, τ2) ≥ 0 are two
parameters that capture time delays. Ref. [11] considers the following cases,

(1) τ1 = τ2 = τ, σ1 = σ2 and x1(t) = x2(t) for t ∈ [−τ, 0),

(2) τ1 = 0 and τ2 > 0,

(3) τ1 > 0 and τ2 is fixed in its stable interval, [0, τ20),

(4) τ1 = τ2.

All these cases lead to single-delay systems. We complement their study by consider-
ing both delays as variables and perform a bivariable analysis for

τ1 > 0, τ2 > 0 and τ1 6= τ2.

3. Stability Switching Curves

To find out information about the stability of the Cournot point, we linearize the
dynamic system around it and take its homogeneous version,

ẋ1(t) =
−x1(t) + x1(t− τ1) + αx∗[−2x1(t− τ1)− x2(t− τ1)]

σ1
,

ẋ2(t) =
−x2(t) + x2(t− τ2) + αx∗[−x1(t− τ2)− 2x2(t− τ2)]

σ2
.

(3)

Substituting exponential solutions xi(t) = eλtui, these equations give a homogeneous
system of u1 and u2. Nontrivial solution exists if its determinant is zero, leading to the the
characteristic equation,

det

 λ +
1
σ1

(
1− e−λτ1 + 2αx∗e−λτ1

) αx∗

σ1
e−λτ1

αx∗

σ2
e−λτ2 λ +

1
σ2

(
1− e−λτ2 + 2αx∗e−λτ2

)
 = 0.

As a benchmark, we examine the no-delay case of τ1 = τ2 = 0 in which the character-
istic equation reads

λ2 +
2αxe(σ1 + σ2)

σ1σ2
λ +

3(αxe)2

σ1σ2
= 0.
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The discriminant of this equation is positive, so the positive coefficients imply that the
characteristic roots are real and negative, leading to the locally asymptotically stability of
Cournot point. (see Lemma 3 of [11] in which this stability result already has been shown.)
Since it is verified that λ = 0 does not solve the characteristic equation with positive delays,
the stability of the Cournot point depends on the locations of the roots of the characteristic
equation in the complex plane. To proceed, we first expand the determinant and simplify
the characteristic equation as follows:

(1 + σ1λ)(1 + σ2λ)− (1− 2αx∗)(1 + σ2λ)e−λτ1

−(1− 2αx∗)(1 + σ1λ)e−λτ2 + (1− αx∗)(1− 3αx∗)e−λ(τ1+τ2) = 0.

We then assume λ = iω with ω > 0 and substitute it into the above equation to yield(
P0(iω) + P1(iω)e−iωτ1

)
+
(

P2(iω) + P3(iω)e−iωτ1
)

e−iωτ2 = 0. (4)

where
P0(iω) = (1 + iσ1ω)(1 + iσ2ω),

P1(iω) = −(1− 2αx∗)(1 + iσ2ω),

P2(iω) = −(1− 2αx∗)(1 + iσ1ω),

P3(iω) = (1− αx∗)(1− 3αx∗).

(5)

Applying the method developed by [14] (Appendix A) that is based on [9], we derive
the set of point (τ1, τ2) for which the delay system (2) has purely complex roots.

Lemma 1. The characteristic Equation (4) can be written as

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2A1(ω) cos ωτ1 − 2B1(ω) sin ωτ1

where
A1(ω) = A and B1(ω) = σ1ωA

with

A =
[3− 2α(1− c)]

{
3σ2

2 ω2 − α(1− c)[α(1− c)− 4]
}

9
. (6)

Proof. See Appendix A.

Concerning the sign of A defined in Lemma 1, we have the following results.

Proposition 1. The sign of A is determined in the following way.

if α(1− c) < 3/2, then A > 0,
if α(1− c) = 3/2, then A = 0
if 3/2 < α(1− c) ≤ 4, then A < 0.

Proof. Proof is clear from (6), the definition of A.

The definition of A can be rewritten as

A =
σ2

2 [3− 2α(1− c)]
3

(ω + ω̄)(ω− ω̄) (7)
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where

ω̄ =

√
α(1− c)[α(1− c)− 4]√

3σ2


= 0 if α(1− c) = 4,
> 0 if α(1− c) > 4,
complex if α(1− c) < 4.

(8)

Then we have

Proposition 2. If α(1− c) > 4, then A > 0 as ω < ω̄, A = 0 as ω = ω̄ and A < 0 as ω > ω̄.

Proof. Proof is clear form (7), a different form defining A.

3.1. A1(ω)2 + B1(ω)2 > 0

In this subsection, A is nonzero, so α(1− c) differs from 3/2. For the sake of analytical
simplicity, we impose the following:

Assumption 2. α(1− c) ≤ 4.

The case of α(1− c) > 4 will be examined at the end of this section. For analytical
simplicity, we impose the following:

Assumption 3. σ1 = σ2 = σ.

First, we determine the feasible range of ω. Assumptions 1 and 3 together imply that
the firms are identical.

Lemma 2. Under Assumptions 1, 2 and 3, the characteristic equation (4) can be written as

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2
√

A1(ω)2 + B1(ω)2 cos[φ1(ω) + ωτ1] (9)

with
φ1(ω) = arg[P2P̄3 − P0P̄1].

Proof. See the Appendix A.

To satisfy the transformed characteristic Equation (9) defined in Lemma 2, we need∣∣∣∣∣ |P0|2 + |P1|2 − |P2|2 − |P3|2

2
√

A1(ω)2 + B1(ω)2

∣∣∣∣∣ ≤ 1. (10)

Define a function,

F(ω) =
(
|P0|2 + |P1|2 − |P2|2 − |P3|2

)2
− 4
(

A1(ω)2 + B1(ω)2
)

.

An ω value is feasible if and only if F(ω) ≤ 0. With substituting Pk(iω) for k =
0, 1, 2, 3 in (5), A1(ω) and B1(ω) into the right hand side of F(ω), and defining x = ω2, we
can rewrite F(ω) as

f (x) = a4x4 + a3x3 + a2x2 + a1x + a0
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where

a4 = σ8,

a3 = −16α(1− c)[3− α(1− c)]
9

σ6,

a2 =
2α2(1− c)2[138− 88α(1− c) + 13α2(1− c)2]

27
σ4,

a1 = −
8α3(1− c)3[4− α(1− c)]

[
7(3− 2α(1− c)) + 2α2(1− c)2]

81
σ2,

a0 =
α4(1− c)4[2− α(1− c)][4− α(1− c)]2[6− α(1− c)]

81
.

(11)

Solving f (x) = 0 gives four solutions, (Mathematica, v. 12 is used to solve this equation.)

x1 =
α(1− c)[α(1− c)− 2]

σ2 > 0 if α >
2

1− c
,

x2 =
α(1− c)[α(1− c)− 4]

3σ2 > 0 if α >
4

1− c
,

x3 =
α(1− c)[α(1− c)− 4]

3σ2 > 0 if α >
4

1− c
,

x4 =
α(1− c)[α(1− c)− 6]

9σ2 > 0 if α >
6

1− c
.

(12)

Assumption 4. α(1− c) > 2.

Assumptions 2 and 4 imply

2 < α(1− c) ≤ 4

under which
x1 > 0 and x4 < x3 = x2 ≤ 0.

Therefore,

F(ω) < 0 for 0 ≤ ω < ω1 =

√
α(1− c)[α(1− c)− 2]

σ
.

Further, since A1 < 0 and B1 < 0 due to A < 0 and B1/A1 = σω > 0, the definition
of φ1(ω) implies

φ1(ω) = tan−1
(

B1(ω)

A1(ω)

)
− π. (13)

Define ψ1(ω) such that

cos[ψ1(ω)] =
|P0|2 + |P1|2 − |P2|2 − |P3|2

2
√

A1(ω)2 + B1(ω)2
= cos[φ1(ω) + ωτ1].

We then have
φ1(ω) + ωτ1 = ±ψ1(ω) + 2mπ

or
τ±1,m(ω) =

1
ω
[±ψ1(ω)− φ1(ω) + 2mπ], m = 0, 1, 2, ... (14)

Rewriting (4) as(
P0(iω) + P2(iω)e−iωτ2

)
+
(

P1(iω) + P3(iω)e−iωτ2
)

e−iωτ1 = 0,
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we can define new functions φ2(ω) and ψ2(ω) accordingly, as in the same way defining
φ1(ω) and ψ1(ω), from which we can have

τ±2,n(ω) =
1
ω
[±ψ2(ω)− φ2(ω) + 2nπ], n = 0, 1, 2, ... (15)

where

φ2(ω) = tan−1
(

B2(ω)

A2(ω)

)
− π (16)

and A2(ω) and B2(ω) are defined according to A1(ω) and B1(ω).
In summary, we obtained the following results:

Theorem 1. If Assumptions 1, 2, 3 and 4 are given, then the stability switching curve consists of
the following segments,

Bm,n(ω) =
{
(τ+

1,m(ω), τ−2,n(ω))
∣∣∣ ω ∈ (0, ω1), (m, n) ∈ Z

}
,

Rm,n(ω) =
{
(τ−1,m(ω), τ+

2,n(ω))
∣∣∣ ω ∈ (0, ω1), (m, n) ∈ Z

}
.

(17)

Instead of Assumption 2, we now impose the following:

Assumption 5. α(1− c) > 4.

In this case, we have
0 < x2 = x3 = ω̄2 < x1,

furthermore, x4 < ω̄2 and

x4


> 0 if α(1− c) > 6,

= 0 if α(1− c) = 6,

< 0 if α(1− c) < 6.

Therefore, F(ω) ≤ 0 if
max[0, x4] ≤ ω2 ≤ ω2

1.

Assume first that ω < ω̄, then A > 0, in which case both A1 and B1 are positive, and
then B1/A1 = σω. Hence, we have

φ1(ω) = tan−1
(

B1(ω)

A1(ω)

)
(18)

and

φ2(ω) = tan−1
(

B2(ω)

A2(ω)

)
. (19)

Assume next that ω > ω̄, then A < 0 implying A1 and B1 are negative. A2 and
B2 are defined accordinglyφ1(ω). ψ1(ω) and ψ2(ω) can be obtained from (13) and (16),
respectively. Theorem 1 is modified as follows.

Theorem 2. Given Assumptions 1, 3, 4 and 5, the stability switching curves consist of the following
segments,

Bm,n(ω) =
{
(τ+

1,m(ω), τ−2,n(ω))
∣∣∣ max[0, x4] ≤ ω2 ≤ ω̄2, ω 6= ω̄, (m, n) ∈ Z

}
,

Rm,n(ω) =
{
(τ−1,m(ω), τ+

2,n(ω))
∣∣∣ max[0, x4] ≤ ω2 ≤ ω̄2, ω 6= ω̄, (m, n) ∈ Z

}
where φ1(ω) and φ2(ω) depend on whether ω < ω̄ or ω > ω̄.
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Figure 1 illustrates the stability switching curves that are a set of open-ended curves
for the following parameter values that satisfy Assumption 2,

c = 0.5, α = 4.5, σ = 0.1 and (m, n) = 0, 1, 2.

The curves take tilted corn-shapes and are symmetric for the diagonal. As are shown in
(14) and (15), increasing the values of m and n shifts the curves horizontally and vertically.
For n = 0, 1, 2, the solid blue-red curves have m = 0, the dotted blue-red curve m = 1
and the solid green-orange curves m = 2. The stationary point is unstable in the region
surrounded by the stability switching curves. Hence, it is locally asymptotically stable in
the remaining region including the origin.region including the origin.

Figure 1. The stability switching curves

3.2 A1(!)
2 +B1(!)

2 = 0

In this section, retaining Assumption 3, however, instead of Assumption 2, we
impose Assumption 5. Notice �rst that A = 0 if ! = �! > 0 by (7) implying that
A1(!) = B1(!) = 0: Then the right hand side of (9) is 0 with arbitrary values of
�1: Let �10 be an arbitrary value in interval [0; 2�=!] and let �1m = �10+2m�=!
for m = 0; 1; 2; ::: Hence, from Lemma 1 together with P1(i!) = P2(i!) under
Assumption 3,p

F0(!) = jP0(i!)j2 � jP3(i!)j2 ;

= �4
�
!2 � �(1� c) [�(1� c)� 4]

3�2

��
!2 +

�(1� c) [�(1� c)� 4] + 6
3�2

�
(20)

where the second pararenthesed term is positive for all ! � 0: Therefore this is
zero if

!2 = �!2 =
�(1� c) [�(1� c)� 4]

3�2
> 0:

Hence, for any �1 > 0; the corresponding values of �2 can be obtained from
equation (4),

e�i!�2 = �P0(i!) + P1(i!)e
�i!�1

P2(i!) + P3(i!)e�i!�1
: (21)

Applying Euler�s formula to the left-hand side of (21) and substituting Pi(i!)
in (5) into the right-hand side leads to

cos!�2 � i sin!�2 = �
a1 + ib1
a2 + ib2

: (22)

10

Figure 1. The stability switching curves.

3.2. A1(ω)2 + B1(ω)2 = 0

In this section, retaining Assumption 3, but instead of Assumption 2, we impose
Assumption 5. Notice first that A = 0 if ω = ω̄ > 0 by (7) implying that A1(ω) = B1(ω) =
0. Then the right hand side of (9) is 0 with arbitrary values of τ1. Let τ10 be an arbitrary
value in interval [0, 2π/ω] and let τ1m = τ10 + 2mπ/ω for m = 0, 1, 2, ... Hence, from
Lemma 1 together with P1(iω) = P2(iω) under Assumption 3,

|P0(iω)|2 − |P3(iω)|2,

= σ4
(

ω2 − α(1− c)[α(1− c)− 4]
3σ2

)(
ω2 +

α(1− c)[α(1− c)− 4] + 6
3σ2

) (20)

where the second pararenthesed term is positive for all ω ≥ 0. Therefore, this is zero if

ω2 = ω̄2 =
α(1− c)[α(1− c)− 4]

3σ2 > 0.

Hence, for any τ1 > 0, the corresponding values of τ2 can be obtained from Equation (4),

e−iωτ2 = −P0(iω) + P1(iω)e−iωτ1

P2(iω) + P3(iω)e−iωτ1
. (21)
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Applying Euler’s formula to the left-hand side of (21) and substituting Pi(iω) in (5)
into the right-hand side leads to

cos ωτ2 − i sin ωτ2 = − a1 + ib1

a2 + ib2
. (22)

The denominator and the numerator of (21) are rewritten as

P0(iω) + P1(iω)e−iωτ1 = a1 + b1i

and
P2(iω) + P3(iω)e−iωτ1 = a2 + b2i

where

a1 = 1− (σω)2 +
2α(1− c)− 3

3
(cos ωτ1 + σω sin ωτ1),

b1 = 2σω +
2α(1− c)− 3

3
(σω cos ωτ1 − sin ωτ1),

a2 =
2α(1− c)− 3

3
+

[α(1− c)− 3][α(1− c)− 1]
3

cos ωτ1,

b2 =
σω[2α(1− c)− 3]

3
− [α(1− c)− 3][α(1− c)− 1]

3
sin ωτ1.

Multiplying the right-hand side of (22) by the conjugate of the denominator yields

cos ωτ2 − i sin ωτ2 = M− iN

where
M(τ1) = −

a1a2 + b1b2

a2
2 + b2

2
and N(τ1) =

a2b1 − a1b2

a2
2 + b2

2
. (23)

Hence, we have

cos ωτ2 = M(τ1) and sin ωτ2 = N(τ1). (24)

Notice that a1, b1, a2 and b2 have the same values at τ10 and τ1m = τ10 + 2mπ/ω. The
graphs of M(τ1) and N(τ1) are illustrated in Figure 2 as red and blue curves for τ1 = τ10
from interval [0, 2π/ω], α = 10 and σ = 0.1. If τ1 is from interval [2mπ/ω, 2(m + 1)π/ω],
then τ1 = τ1m and the corresponding τ2 values are the same as with τ10. Therefore, Figure
2 remains the same with a different scale for τ1. Each of the red and blue curves intersects
the horizontal axis twice at the following points,

τB
1 ' 0.163, τD

1 ' 0.247, τA
1 ' 0.119 and τC

1 ' 0.186

where, needless to say, τ
q
1 for q = A, B, C, D is the τ1-element of point q.

where, needless to say, � q1 for q = A;B;C;D is the �1-element of point q.

Figure 2. Graphs of M(�1) (red) and N(�1) (blue).

The interval [0; 2�=!] is divided into �ve subintervals, in each of which the
signs of cos!�2 and sin!�2 are determined. Solving the equations in (24)
presents the corresponding function of �2(�1): Since cos!�2 < 0 and sin!�2 > 0
for �1 2 [0; �A1 );

�C2;m(�1) =
1

!
cos�1 (M(�1) + 2m�) ;

�S2;n(�1) =
1

!

�
� � sin�1 (N(�1) + 2n�)

� (25)

where the superscript C and S stand for "cos" and "sin", respectively. In the
same way, cos!�2 < 0 and sin!�2 < 0 for �1 2 [�A1 ; �B1 ), then

�C2;m(�1) =
1

!

�
2� � cos�1 (M(�1) + 2m�)

�
;

�S2;n(�1) =
1

!

�
� � sin�1 (N(�1) + 2n�)

�
:

(26)

Observing that cos!�2 > 0 and sin!�2 < 0 for �1 2 [�B1 ; �C1 ) imply

�C2;m(�1) =
1

!

�
2� � cos�1 (M(�1) + 2m�)

�
;

�S2;n(�1) =
1

!

�
2� + sin�1 (N(�1) + 2n�)

�
:

(27)

For �1 2 [�C1 ; �D1 ); cos!�2 > 0 and sin!�2 > 0 give

�C2;m(�1) =
1

!
cos�1 (M(�1) + 2m�) ;

�S2;n(�1) =
1

!
sin�1 (N(�1) + 2n�) :

(28)

12

Figure 2. Graphs of M(τ1) (red) and N(τ1) (blue).
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The interval [0, 2π/ω] is divided into five subintervals, in each of which the signs of
cos ωτ2 and sin ωτ2 are determined. Solving the equations in (24) presents the correspond-
ing function of τ2(τ1). Since cos ωτ2 < 0 and sin ωτ2 > 0 for τ1 ∈ [0, τA

1 ),

τC
2,m(τ1) =

1
ω

cos−1(M(τ1) + 2mπ),

τS
2,n(τ1) =

1
ω

[
π − sin−1(N(τ1) + 2nπ)

] (25)

where the superscript C and S stand for “cos” and “sin”, respectively. In the same way,
cos ωτ2 < 0 and sin ωτ2 < 0 for τ1 ∈ [τA

1 , τB
1 ), then

τC
2,m(τ1) =

1
ω

[
2π − cos−1(M(τ1) + 2mπ)

]
,

τS
2,n(τ1) =

1
ω

[
π − sin−1(N(τ1) + 2nπ)

]
.

(26)

Observing that cos ωτ2 > 0 and sin ωτ2 < 0 for τ1 ∈ [τB
1 , τC

1 ) imply

τC
2,m(τ1) =

1
ω

[
2π − cos−1(M(τ1) + 2mπ)

]
,

τS
2,n(τ1) =

1
ω

[
2π + sin−1(N(τ1) + 2nπ)

]
.

(27)

For τ1 ∈ [τC
1 , τD

1 ), cos ωτ2 > 0 and sin ωτ2 > 0 give

τC
2,m(τ1) =

1
ω

cos−1(M(τ1) + 2mπ),

τS
2,n(τ1) =

1
ω

sin−1(N(τ1) + 2nπ).
(28)

Finally, cos ωτ2 < 0 and sin ωτ2 > 0 for τ1 ∈ [τD
1 , 2π/ω],

τC
2,m(τ1) =

1
ω

cos−1(M(τ1) + 2mπ),

τS
2,n(τ1) =

1
ω

[
π − sin−1(N(τ1) + 2nπ)

]
.

(29)

Since τC
2,k(τ1) = τS

2,k(τ1) for τ1 ∈ [2kπ/ω, 2(k + 1)π/ω] for k = 0, 1, 2, ..., the solution
can be denoted by τ2(τ1). As in the previous case, increasing the value of m shifts the
stability switching curve to the right, and increasing the value of n shifts it upward.

The locus of (τ1, τ2(τ1)) for τ1 ∈ [0, 2π/ω̄] constructs a stability switching curve when
α(1− c) > 4 and ω = ω̄. Under c = 0.5, α = 0.1 and σ = 10, it has two black curves, as
illustrated in Figure 3. More precisely, the upper convex-shaped curve is divided into three
segments and their connected points are denoted by A, B, C that correspond to the same
points in Figure 2. Its lowest segment is described by (25), the middle AB segment by (26),
and the highest BC segment by (27). The lower concave-shaped curve is divided into two
segments, the left segment by (28) and the right segment by (29).

Theorem 3. Suppose Assumptions 1, 3, 4 and 5 are given. In addition, if α(1− c) > 4 and
ω = ω̄, then A > 0 and stability switches occur on the locus of (τ1, τ2(τ1)) where

τ2(τ1) =
1
ω̄

cos−1[M(τ1)] for τ1 ∈
(

0, τA
1

)
∪
(

τC
1 ,

2π

ω̄

)
and

τ2(τ1) =
1
ω̄

(
2π − cos−1[M(τ1)]

)
for τ1 ∈

(
τA

1 , τC
1

)
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and

ω̄ =

√
α(1− c)[α(1− c)− 4]√

3σ
.

If we take Assumption 2, then in (20) is positive implying no occurrence of stability
switch.

Figure 3. Stability switching curves for A = 0

If we take Assumption 2, then F0(!) in (20) is positive implying no occur-
rence of stability switch.

4 Numerical Simulations.

Dynamic system (2) is nonlinear and not solvable in closed forms. Numerical
simulations become the useful means of obtaining information on what dynamic
it can generate. Throughout the simulations, we take the �xed value of c = 0:5
and constant initial functions such as

'1(t) = xe1 + x
0
1 and '2(t) = xe2 + x

0
2 for t � 0

where x01 and x
0
2 are some constants. We will make various parameter speci�-

cations of �; � and � i for i = 1; 2 to observe their e¤ects on dynamics.

4.1 The case of A 6= 0
In the �rst example, we examine the roles of � representing the inertia in the
production process. Taking �xed values of (m;n) = 0; 1 and � = 5:5, we
illustrate the solid switching curves with � = 0:1 and the dotted switching curve
with � = 0:2 in Figure 4(A). The curve with m = n = 0 has the connecting
point of the two branches in the lower part of the diagonal3 , and increasing m
shifts it rightward, increasing n shifts it upward while the curve with m = n = 1

3The connecting point of the solid curve is

�+1;0(!1) = �
�
1;0(!1) ' 0:3035

��2;0(!1) = �
+
1;0(!1) ' 0:3035

where !1 = ~!.

14

Figure 3. Stability switching curves for A = 0.

4. Numerical Simulations

Dynamic system (2) is nonlinear and not solvable in closed forms. Numerical simula-
tions become the useful means of obtaining information on what dynamics it can generate.
Throughout the simulations, we take the fixed value of c = 0.5 and constant initial functions
such as

ϕ1(t) = xe
1 + x0

1 and ϕ2(t) = xe
2 + x0

2 for t ≤ 0

where x0
1 and x0

2 are some constants. We will make various parameter specifications of α, σ
and τi for i = 1, 2 to observe their effects on dynamics.

4.1. The Case of A 6= 0

In the first example, we examine the roles of σ representing the inertia in the pro-
duction process. Taking fixed values of (m, n) = 0, 1 and α = 5.5, we illustrate the solid
switching curves with σ = 0.1 and the dotted switching curve with σ = 0.2 in Figure 4A.
The curve with m = n = 0 has the connecting point of the two branches in the lower part
of the diagonal. The connecting point of the solid curve is

τ+
1,0(ω1) = τ−1,0(ω1) ' 0.3035

τ−2,0(ω1) = τ+
1,0(ω1) ' 0.3035

where ω1 = ω̃, and increasing m shifts it rightward, increasing n shifts it upward while the
curve with m = n = 1 is located upper-right. It is observed that the dotted curves move
further away from the origin than the solid curves, implying that increasing σ enlarges
the stability region. The dotted point (τ1, τ2) = (1, 1) is located within the corn-shaped
instability regions for σ = 0.1 and σ = 0.2. However, as the value of σ increases, the
switching curves shift in the upper-right direction, and in consequence, the dotted point
becomes located in the stable region for σ > σs ' 0.659. This σ-stabilizing effect can be
demonstrated more prominently in the bifurcation diagram for σ in Figure 4B. We choose
σ as a bifurcation parameter there and increase its value from 0.01 to 0.7 in steps of 0.0002.
For each value of σ, dynamic system (2) is run for 0 ≤ t ≤ 1000 under the parametric
specification of

x0
1 = 0.001, x0

2 = 0.002, τ1 = τ2 = 1, m = n = 0.
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is located upper-right. It is observed that the dotted curves get more away from
the origin than the solid curves, implying that increasing � enlarges the stability
region. The dotted point (�1; �2) = (1; 1) is located within the corn-shaped
instability regions for � = 0:1 and � = 0:2. However, as the value of � increases,
the switching curves shift in the upper-right direction, and in consequence, the
dotted point becomes located in the stable region for � > �s ' 0:659. This
�-stabilizing e¤ect can be demonstrated more prominently in the bifurcation
diagram for � in Figure 4(B). We choose � as a bifurcation parameter there
and increase its value from 0:01 to 0:7 in steps of 0:0002. For each value of �,
dynamic system (2) is run for 0 � t � 1000 under the parametric speci�cation
of

x01 = 0:001; x
0
2 = 0:002, �1 = �2 = 1; m = n = 0.

Discarding the data for t � 950; we plot the local maxima and minima obtained
from the remaining data vertically above the selected value of �. Increasing the
value of �; we repeat the same procedure until � arrives at 0:7. The diagram
shows that complex dynamics can arise for smaller values of �; due to the fact
that the dynamic structure with the Berezowski transformation is similar to
that of the discrete-time system that exhibits complex dynamics. As � is getting
larger, the complicated dynamics gradually disappear through a period-halving
cascade. The �xed point is �nally stabilized when the value of � arrives at �s
and becomes even larger. These results are summarized as follows:

Proposition 3 The inertia � of dynamic system (2) has a twofold stabilizing
e¤ect in the sense that with increasing values, it (i) enlarges the stability region
and (ii) simpli�es the complicated dynamics through a period-halving cascade.

(A) Switching curves (B) Bifurcation diagram

Figure 4. Stabilizing e¤ect of �

15

Figure 4. Stabilizing effect of σ.

Discarding the data for t ≤ 950, we plot the local maxima and minima obtained
from the remaining data vertically above the selected value of σ. Increasing the value of
σ, we repeat the same procedure until σ arrives at 0.7. The diagram shows that complex
dynamics can arise for smaller values of σ, due to the fact that the dynamic structure with
the Berezowski transformation is similar to that of the discrete-time system that exhibits
complex dynamics. As σ increases, the complicated dynamics gradually disappear through
a period-halving cascade. The fixed point is finally stabilized when the value of σ arrives
at σs and increases. These results are summarized as follows:

Proposition 3. The inertia σ of dynamic system (2) has a twofold stabilizing effect in the sense
that with increasing values, it (i) enlarges the stability region and (ii) simplifies the complicated
dynamics through a period-halving cascade.

In the second example, we cfocus on the roles of α representing the relative speed of
production adjustment. To explore this α-effect, we take σ = 0.2 and plot the solid stability
switching curves with α = 4.5 and the dotted switching curves with a = 5.5 in Figure
5A. The relative locations of the curves depend on the values of m and n as in Figure
4A. It shows that the dotted curves are closer to the origin than the solid curves. Hence,
increasing the value of α shrinks the stability region. The bifurcation diagram for α is
illustrated with σ = 0.2. It confirms the α-destabilizing effect in which the fixed point with
τ1 = τ2 = 1 loses stability for α = αb ' 4.264. It is also seen that a limit cycle appears for
α = 4.5, a cycle with many periods for α = 5.5 and erratic oscillations for larger values of α.
These results are summarized as follows:

Proposition 4. The adjustment speed α has a twofold destabilizing effect in the sense that with
increasing values, it (i) contracts the stability region and (ii) complicates simple dynamics through
a period-doubling cascade.
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In the second example, we concern about the roles of � representing the
relative speed of production adjustment. To explore this �-e¤ect, we take � =
0:2 and plot the solid stability switching curves with � = 4:5 and the dotted
switching curves with a = 5:5 in Figure 5(A). The relative locations of the curves
depend on the values of m and n as in Figure 4(A). It shows that the dotted
curves get closer to the origin than the solid curves. Hence, increasing the value
of � shrinks the stability region. The bifurcation diagram for � is illustrated
with � = 0:2. It con�rms the �-destabilizing e¤ect in which the �xed point
with �1 = �2 = 1 loses stability for � = �b ' 4:264. It is also seen that a limit
cycle appears for � = 4:5, a cycle with many periods for � = 5:5 and erratic
oscillations for larger values of �. These results are summarized as follows:

Proposition 4 The adjustment speed � has a twofold destabilizing e¤ect in the
sense that with increasing values, it (i) contracts the stability region and (ii)
complicates simple dynamics through a period-doubling cascade.

(A) Switching curves (B) Bifurcation diagram

Figure 5. The �-destabilizing e¤ect

Next, we have a closer look at the global dynamic behavior for �1 and �2.
Therefore, we carry out more numerical simulations with the following parame-
ters,4

� = 5:5; � = 0:1 and �2 = 1:5

and the initial conditions,

x01 = 0:01 and x
0
2 = 0:02:

4For any other parameter speci�cation, we might have qualitatively the same results.

16

Figure 5. The α-destabilizing effect.

Next, we take a closer look at the global dynamic behavior for τ1 and τ2. Therefore,
we carry out more numerical simulations with the following parameters. For any other
parameter specification, we might obtain the same qualitative results.

α = 5.5, σ = 0.1 and τ2 = 1.5

and the initial conditions,
x0

1 = 0.01 and x0
2 = 0.02.

We increase the value of τ1 along the horizontal segment ab in the upper-left corner
in Figure 4A. In this study, the firms are identical under Assumptions 1 and 3, and the
resultant stability switching curves are symmetric for the diagonal. In consequence, varying
τ1 and fixing τ2 and fixing τ1 and varying τ2 can generate the same results. Notice that the
horizontal line at τ2 = 1.5 crosses the upper-left corn-shaped dotted curve twice at

τa
1 ' 0.295 and τc

1 ' 0.552.

The first result is described by the bifurcation diagram in Figure 6(A) in which τ1 ∈
[τa

1 − p, τb
1 ], p > 0 is a small number and τb

1 = 0.38. For τ1 < τa
1 , there is a stable fixed

point. We can see that an interesting phenomenon begins to happen when the value of τ1
exceeds the critical value of τa

1 . For τ1 = τa
1 , the fixed point loses stability and is replaced

with a limit cycle. As the value of τ1 increases, the cyclic solution branches to form a
doubly cyclic solution at the second bifurcation point near τ̂1 ' 0.335. This value is a
rough estimation. Further increasing τ1 to τb

1 gives rise to a third bifurcation, after which
much more complicated oscillations emerge. For τ1 > τb

1 , the dynamic system generates
trajectories that might be negative, as is demonstrated in Figure 6B. The model is not well-
behaved and loses its economic meaning. However, for τ1 just a little bit smaller than τc

1 , a
limit cycle is obtained again and then the fixed point regains stability for τ1 = τc

1 . Figure
6B shows the second result obtained for τd

1 = 0.48 that is between τb
1 and τc

1 . It displays an
expanding phase diagram in which x1(t) oscillates around the fixed point denoted by the
blue dot for a while but gradually moves away from it, finally becomes negative for some
values of t.
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We increase the value of �1 along the horizontal segment ab in the upper-left
corner in Figure 4(A).5 Notice that the horizontal line at �2 = 1:5 crosses the
upper-left corn-shaped dotted curve twice at

�a1 ' 0:295 and � c1 ' 0:552:

The �rst result is described by the bifurcation diagram in Figure 6(A) in which
�1 2 [�a1 � p; � b1], p > 0 is a small number and � b1 = 0:38. For �1 < �a1 ; there
is a stable �xed point. We can see that an interesting phenomenon begins to
happen when the value of �1 exceeds the critical value of �a1 . For �1 = �a1 ; the
�xed point loses stability and is replaced with a limit cycle. As the value of �1
increases, the cyclic solution branches to form a doubly cyclic solution at the
second bifurcation point near �̂1 ' 0:335.6 Further increasing �1 to � b1 gives rise
to a third bifurcation, after which much more complicated oscillations emerge.
For �1 > � b1; the dynamic system generates trajectories that might be negative
as is demonstrated in Figure 6(B). The model is not well-behaved and loses its
economic meaning. However, for �1 just a little bit smaller than � c1; a limit cycle
is obtained again and then the �xed point regains stability for �1 = � c1: Figure
6(B) shows the second result obtained for �d1 = 0:48 that is between � b1 and
� c1: It displays an expanding phase diagram in which x1(t) oscillates around the
�xed point denoted by the blue dot for a while but gradually moves away from
it, �nally becomes negative for some values of t.

(A) Bifurcation diagram (B) Phase diagram

Figure 6. Possible global dynamics for various values of �1 < � c1 and �2 = 1:5

Under the same parameter set, we carry out the fourth example. Its result
is illustrated in Figure 4(A) when the value of �1 increases along the segment

5 In this study, the �rms are identical under Assumptions 1 and 3, and the resultant stability
switching curves are symmetric for the diagonal. In consequence, varying �1 and �xing �2 and
�xing �1 and varying �2 can generate the same results.

6This value is a rough estimation.
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Figure 6. Possible global dynamics for various values of τ1 < τc
1 and τ2 = 1.5.

Under the same parameter set, we carry out the fourth example. Its result is illustrated
in Figure 4A when the value of τ1 increases along the segment AB. The extreme values of
τ1 are

τA
1 ' 1.15 and τB

1 ' 1.85.

Notice that the segment AB is located within the largest dotted corn-shaped stability
switching curve. The fixed point is unstable for τ1 ∈ [τA

1 , τB
1 ]. As compared to Figure 6A,

we present Figure 7A in which the bifurcation diagram for τ1 within this interval undergoes
more complicated motions. The solution of the system bifurcates to erratic oscillations
from regular oscillations and vice versa. A bit after τ1 = τA

1 , a regular cycle is clearly
seen, which proceeds to spreading oscillations and then a regular cycle again with more
periodicity appears as τ1 increases. However, just raising τ1 slightly from τB

1 or lowering it
from τA

1 , we find unfavorable trajectories that sooner or later take negative values. Figure
7B illustrates a phase portrait for τC

1 = 0.9 < τA
1 . The time trajectory oscillates around the

fixed point for smaller values of t but gets out of the nonnegative region for larger values.
The numerical results obtained along the horizontal line at τ2 = 1.5 are summarized as
follows:

Proposition 5. For the fixed value of τ2 = 3/2, a solution of delay system (2) exhibits various
dynamics ranging from a limit cycle to an erratic oscillation as τ1 increases. Further, some solution
could be negative and thus loses its economic meaning.

AB: The extreme values of �1 are

�A1 ' 1:15 and �B1 ' 1:85:

Notice that the segment AB is located within the largest dotted corn-shaped
stability switching curve. The �xed point is unstable for �1 2 [�A1 ; �B1 ]. As com-
pared to Figure 6(A), we present Figure 7(A) in which the bifurcation diagram
for �1 within this interval undergoes more complicated motions. The solution
of the system bifurcates to erratic oscillations from regular oscillations and vice
versa. A bit after �1 = �A1 ; a regular cycle is clearly seen, which proceeds to
spreading oscillations and then a regular cycle again with more periodicity ap-
pears as �1 increases. However, just raising �1 a little bit from �B1 or lowering
it from �A1 , we �nd unfavorable trajectories that sooner or later take negative
values. Figure 7(B) illustrates a phase portrait for �C1 = 0:9 < �A1 . The time
trajectory oscillates around the �xed point for smaller values of t but gets out of
the nonnegative region for larger values. The numerical results obtained along
the horizontal line at �2 = 1:5 are summarized as follows:

Proposition 5 For the �xed value of �2 = 3=2; a solution of delay system (2)
exhibits various dynamics ranging from a limit cycle to an erratic oscillation
as �1 increases. Further, some solution could be negative and thus loses its
economic meaning.

(A) Bifurcation diagram (A) Phase diagram

Figure 7. Possible global dynamics for various values of �1 > �A1 and �2 = 1:5

4.2 The case including A = 0

We now draw attention to the dynamic behavior under

� = 10; � = 0:1; m = n = 0

18

Figure 7. Possible global dynamics for various values of τ1 > τA
1 and τ2 = 1.5.
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4.2. The Case Including A = 0

We now draw attention to the dynamic behavior under

α = 10, σ = 0.1, m = n = 0

for which 4 < α(1− c) < 6 holds. From xi for i = 1, 2, 3, 4 in (12),

x4 < 0 < x2 = x3 < x1.

Let ω̃ =
√

x1 and ω̄ defined in (8) is equal to
√

x2 =
√

x3 where

ω̄ =

√
α(1− c)[α(1− c)− 4]

3σ2 = 10
√

5/3 ' 12.91

and

ω̃ =

√
α(1− c)[α(1− c)− 2]

σ2 = 10
√

15 ' 38.73.

The black curves in Figure 8 are the same as those in Figure 3 in which ω = ω̄.
Applying Theorem 3 with the newly specified values of the parameters, we obtain that the
solid red-blue curve is loci of

(τ+
1,m(ω), τ−2,n(ω)) and (τ−1,m(ω), τ+

2,n(ω)) for ω ∈ (ω̄, ω̃) and m = n = 0

whereas the dotted red-blue curves as loci of

(τ+
1,m(ω), τ−2,n(ω)) with (m, n) = (1, 0)

and
(τ−1,m(ω), τ+

2,n(ω)) with (m, n) = (0, 1) for ω ∈ (0, ω̄)

where φ1(ω) and φ2(ω) in (13) and (16) are re-defined as

φ1(ω) = tan−1
(

B1(ω)

A1(ω)

)
and φ2(ω) = tan−1

(
B2(ω)

A2(ω)

)
.

Notice that A = 0 along the black curves, A < 0 along the dotted curves and A > 0
along the solid curves.

The stability region including the origin is surrounded by the upper black curve
starting at τ0

2 on the vertical axis, the solid red-blue segment and the lower black curve
ending at τ0

1 on the horizontal axis. Points A and D are those shown in Figure 3. The
orange point is the connecting point of the blue and red segments,

(τ+
1,0(ω̃), τ−2,0(ω̃)) = (τ−1,0(ω̃), τ+

2,0(ω̃)) ' (0.047, 0.047)

and the green points are on the black curves,

(τ+
1,0(ω̄), τ−2,0(ω̄)) = (τ+

2,0(ω̄), τ−1,0(ω̄)) ' (0.234, 0.111).

These green points are asymmetric with respect to the diagonal, the starting points of
the solid curves and the end points of the dotted curves.
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points of the solid curves and the end points of the dotted curves.

Figure 8. The stability switching curve for � = 10 and � = 0:1

We present some numerical results to observe what dynamics system (2) can
generate. The red and blue segments correspond to the case of A 6= 0 and the
case of A = 0 is shown by the two black segments. Let �A2 = 0:075 and choose �1
as a bifurcation parameter. The horizontal line at �2 = �A2 crosses the stability
switching curve three times whose �1-coordinates are

�a1 ' 0:044; � c1 ' 0:163 and �d1 ' 0:209:

The �xed point is asymptotically stable for �1 < �a1 ; loses its stability at �1 = �a1
and undergoes a Hopf bifurcation. It regains stability at �1 = �d1 and then
loses stability again at �1 = �e1. Although it is known that the �xed point is
unstable for �1 2 [�a1 ; � c1) and �1 > �e1; it is not known what kind of dynamics
could emerge. For this reason, we perform simulations, focusing on the unstable
intervals. Figure 9(A) describe possible dynamics for �1 2

�
�a1 � p; � b1

�
with

� b1 = 0:09 and p is a small number. The Hopf value is �
a
1 : A cyclic solution occurs

for �1 > �a1 and its amplitude gets larger as �1 becomes larger. The second
bifurcation takes place around �̂1 ' 0:067 and periodicity of the cycle is doubled.
Figure 9(B) is a bifurcation diagram for �1 2

h
�d1; �

f
1

i
with �f1 = 0:25: A Hopf

bifurcation occurs at �1 = �e1 and the stable �xed point for �1 < �e1 bifurcates

7This value is also a rough estimation.
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Figure 8. The stability switching curve for α = 10 and σ = 0.1.

We present some numerical results to observe what dynamics system (2) can generate.
The red and blue segments correspond to the case of A 6= 0 and the case of A = 0 is
shown by the two black segments. Let τA

2 = 0.075 and choose τ1 as a bifurcation parameter.
The horizontal line at τ2 = τA

2 crosses the stability switching curve three times whose
τ1-coordinates are

τa
1 ' 0.044, τd

1 ' 0.163 and τe
1 ' 0.209.

The fixed point is asymptotically stable for τ1 < τa
1 , loses its stability at τ1 = τa

1 and
undergoes a Hopf bifurcation. It regains stability at τ1 = τd

1 and then loses stability again
at τ1 = τe

1 . Although it is known that the fixed point is unstable for τ1 ∈ [τa
1 , τd

1 ) and
τ1 > τe

1 , it is not known what kind of dynamics could emerge. For this reason, we perform
simulations, focusing on the unstable intervals. Figure 9A describes possible dynamics
for τ1 ∈

[
τa

1 − p, τb
1

]
with τb

1 = 0.09 and p is a small number. The Hopf value is τa
1 . A

cyclic solution occurs for τ1 > τa
1 and its amplitude gets larger as τ1 becomes larger. The

second bifurcation takes place around τ̂1 ' 0.06 (This value is also a rough estimation.) and
periodicity of the cycle is doubled. Figure 9B is a bifurcation diagram for τ1 ∈

[
τd

1 , τ
f

1

]
with τ

f
1 = 0.25. A Hopf bifurcation occurs at τ1 = τe

1 and the stable fixed point for τ1 < τe
1

bifurcates to a limit cycle for τ1 > τe
1 .to a limit cycle for �1 > �e1:

(A) 0 < �1 < � b1 (B) � c1 < �1 < � e1

Figure 9. Two bifurcation diagrams along the �2 = �m2 (= 0:075)

Two more examples are given to explore the occurrence of stability switch-
ing. We change only the value of �2 from 0:075 to 0:1(= �B2 ); keeping other
parameter values �xed as given. Figure 10(A) shows that delay system (2) un-
dergoes a period-doubling bifurcation for �1 2 [�a

0

1 ; �
b0

1 ] with �
a0

1 = 0:04 and
� b

0

1 = 0:062 along the horizontal curve at �B2 : The solution can exchange its
form (stable point, limit cycle, period-doubling and chaos) for di¤erent values
of �1: Comparing Figure 10(A) with Figure 9(A) indicates that system (2) ap-
parently generates more complicated dynamics involving the transition from
order to chaos when �2 is increased. The next example in Figure 10(B) is a
phase diagram at point c with �1 = 0:13 between points b and c in Figure 8. It
indicates that system (2) possesses exploded dynamics for bifurcation parame-
ter �1 in the range of [� b1; �

c
1]: A trajectory starting in the neighborhood of the

�xed point oscillatory moves away, repeat erratic ups and downs several times
and then crosses the horizontal or vertical axis. Crossing the axis means that
such a trajectory takes a negative value and loses its economic meaning. Similar
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Figure 9. Two bifurcation diagrams along the τ2 = τm
2 (=0.075).
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Two more examples are given to explore the occurrence of stability switching. We
change only the value of τ2 from 0.075 to 0.1(= τB

2 ), keeping other parameter values fixed
as given. Figure 10A shows that delay system (2) undergoes a period-doubling bifurcation
for τ1 ∈ [τa′

1 , τb′
1 ] with τa′

1 = 0.04 and τb′
1 = 0.062 along the horizontal curve at τB

2 . The
solution can exchange its form (stable point, limit cycle, period-doubling and chaos) for
different values of τ1. Comparing Figure 10A with Figure 9A indicates that system (2)
apparently generates more complicated dynamics involving the transition from order to
chaos when τ2 is increased. The next example in Figure 10B is a phase diagram at point c
with τ1 = 0.13 between points b and c in Figure 8. It indicates that system (2) possesses
exploded dynamics for bifurcation parameter τ1 in the range of [τb

1 , τc
1 ]. A trajectory starting

in the neighborhood of the fixed point oscillatory moves away, repeat erratic ups and downs
several times and then crosses the horizontal or vertical axis. Crossing the axis means that
such a trajectory takes a negative value and loses its economic meaning. Similar exploded
results are obtained for the different values of τ1 and τ2.exploded results are obtained for the di¤erent values of �1 and �2.

(A) Bifurcation diagram (A) Phase diagram

Figure 10. Possible global dynamics for various values of �1 and �2 = 1:

5 Concluding Remarks

This paper is based on the model given by Gori et al. (2015), which uses a
special transformation of discrete time duopoly models into continuous models
and investigates the asymptotical behavior of the equilibrium when two discrete
delays are present. Several cases were examined. This paper reexamines this
model and in a two-dimensional analysis the stability switching curves are an-
alytically determined and illustrated. The analysis was performed in two parts
depending on model parameters. Two di¤erent sets of stability switching curves
were determined giving a collection of curves. The second case appears with a
special value of !; when one delay can have arbitray value and the other delay is
its function. With increasing values of m and n continuous curves are obtained.
Two di¤erent sets of the stability switching curves were determined. In the �rst
case, for each value of !, the set of corresponing values of the delays were de-
termined giving a collections of curves. The second case appears with a special
value !, when one delay can have arbitrary value and the other delays is its
function. With increasing values of m and n, continuous curves are determined.
Numerical simulations veri�ed the theoretical results, and a detailed sensitivity
analysis was performed. It was illustrated that both the inertia coe¢ cient and
the speed of adjustments have twofold e¤ects on the stability of the equilibrium:
the inertia coe¢ cient enlarges the stability region and simpli�es the complicated
dynamics with period-halving cascade, while the adjustment speed contracts the
stability region and complicates dynamics through a period-doubling bifurca-
tion. In the analysis the most simple linear duopoly model was considered.
More complex linear and even nonlinear duopoly models could be the subject

22

Figure 10. Possible global dynamics for various values of τ1 and τ2 = 1.

5. Concluding Remarks

This paper is based on the model given by [11], which used a special transformation
of discrete time duopoly models into continuous models and investigated the asymptotical
behavior of the equilibrium when two discrete delays were present. Several cases were
examined. This paper reexamines this model and in a two-dimensional analysis, the sta-
bility switching curves were analytically determined and illustrated. The analysis was
performed in two parts depending on model parameters. Two different sets of stability
switching curves were determined. In the first case, for each value of ω, the set of corre-
sponing values of the delays were determined giving a collection of curves. The second
case appears with a special value ω, when one delay can have an arbitrary value and
the other delays are its function. With increasing values of m and n, continuous curves
were determined. Numerical simulations verified the theoretical results, and a detailed
sensitivity analysis was performed. It was illustrated that both the inertia coefficient and
the speed of adjustments have twofold effects on the stability of the equilibrium: the
inertia coefficient enlarges the stability region and simplifies the complicated dynamics
with period-halving cascade, while the adjustment speed contracts the stability region and
complicates dynamics through a period-doubling bifurcation. In the analysi,s the most
simple linear duopoly model was considered. More complex linear and even nonlinear
duopoly models could be the subject of future studies. To preserve the dimension of the
model, a semi-symmetric n-firm oligopoly could be examined, which has two groups, with
each group having identical firms.
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Appendix A

Proof.

Proof of Lemma 1:
Since

∣∣e−iωτ2
∣∣ = 1, from equation (4), we have∣∣∣P0(iω) + P1(iω)e−iωτ1

∣∣∣ = ∣∣∣P2(iω) + P3(iω)e−iωτ1
∣∣∣ (A1)

Equation (A1) can be written as

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2A1(ω) cos ωτ1 − 2B1(ω) sin ωτ1

where
A1(ω) = Re(P2P̄3 − P0P̄1) = A,

B1(ω) = Im(P2P̄3 − P0P̄1) = σ1ωA,

with

A =
[3− 2α(1− c)]

{
3σ2

2 ω2 − α(1− c)[α(1− c)− 4]
}

9
.

Proof.

Proof of Lemma 2:
Under Assumption 2, A1(ω)2 + B1(ω)2 > 0. Thus, there exists a continuous function

φ1(ω) such that
A1(ω) =

√
A1(ω)2 + B1(ω)2 cos[φ1(ω)],

B1(ω) =
√

A1(ω)2 + B1(ω)2 sin[φ1(ω)]

where
φ1(ω) = arg[P2P̄3 − P0P̄1].

Therefore, Equation (A1) becomes

|P0|2 + |P1|2 − |P2|2 − |P3|2 = 2
√

A1(ω)2 + B1(ω)2 cos[φ1(ω) + ωτ1].
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