Variational Nonlinear Optimization in Fluid Dynamics: The Case of a Channel Flow with Superhydrophobic Walls
Abstract
:1. Introduction
2. Mathematical and Computational Framework
2.1. Variational Optimization
- An initial condition, , with given initial energy , is imposed.
- The direct NS Equations (4) are numerically integrated from to .
- At , the compatibility condition (7) provides the adjoint variables, .
- Starting from these values of the adjoint variables at , the adjoint NS Equations (6) are integrated backward in time.
- At , the initial direct state is updated in a direction determined by the gradient (8) using different gradient-based methods, which are detailed below.
- The objective function and its gradient are evaluated to determine the convergence of the algorithm. If convergence is achieved, the loop is stopped; otherwise, the procedure is continued from step 2.
2.1.1. The Gradient Rotation Algorithm
- (a)
- Orthogonalize the gradient computed at the present iteration with respect to
- (b)
- Normalize the orthogonal gradient as in Equation (12)
- (c)
- Update the initial perturbation for the iteration using Equation (9)
- (d)
- Evaluate convergence evaluating the residual . If , the algorithm is stopped, being the desired optimal solution. Otherwise, the whole procedure continues from step (2).
2.1.2. The Conjugate Gradient Rotation Method
- (a)
- Compute the conjugate gradient using Equation (14)
- (b)
- Orthogonalize the conjugate gradient computed at the present iteration with respect to
- (c)
- Normalize the orthogonal gradient as in Equation (12)
- (d)
- Update the initial perturbation for the iteration using Equation (13)
- (e)
- Evaluate convergence evaluating the residual . If , the algorithm is stopped, being the desired optimal solution. Otherwise, the whole procedure continues from step (2).
2.2. Modeling of the Superhydrophobic Surfaces
3. Results
3.1. Optimal Perturbations in Channel Flow with No-Slip Walls
3.2. Transition Scenarios in a Superhydrophobic Channel: A Review
3.3. Nonlinear Optimal Perturbations in a Superhydrophobic Channel
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SHS | Superhydrophobic Surface |
PPF | Plane Poisueille Flow |
DNS | Direct Numerical Simulation |
References
- Saric, W.S.; Reed, H.L.; Kerschen, E.J. Boundary-Layer Receptivity to Freestream Disturbances. Annu. Rev. Fluid Mech. 2002, 34, 291–319. [Google Scholar] [CrossRef] [Green Version]
- Trefethen, L.; Trefethen, A.; Reddy, S.; Driscoll, T. Hydrodynamic stability without eigenvalues. Science 1993, 261, 578–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adrian, R.J. Hairpin vortex organization in wall turbulence. Phys. Fluids 2007, 19, 041301. [Google Scholar] [CrossRef] [Green Version]
- Schmid, P.J.; Henningson, D.S. Stability and Transition in Shear Flows; Springer: Berlin, Germany, 2001; Volume 142. [Google Scholar]
- Farrell, B.F. Optimal excitation of perturbations in viscous shear flow. Phys. Fluids 1988, 31, 2093. [Google Scholar] [CrossRef]
- Luchini, P. Reynolds-number-independent instability of the boundary layer over a flat surface: Optimal perturbations. J. Fluid Mech. 2000, 404, 289–309. [Google Scholar] [CrossRef]
- Andersson, P.; Berggren, M.; Henningson, D.S. Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 1999, 11, 134–150. [Google Scholar] [CrossRef]
- Landahl, M. A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 1980, 98, 243–251. [Google Scholar] [CrossRef]
- Jacobs, R.G.; Durbin, P.A. Simulations of bypass transition. J. Fluid Mech. 2001, 428, 185–212. [Google Scholar] [CrossRef]
- Brandt, L.; Schlatter, P.; Henningson, D.S. Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 2004, 517, 167–198. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, S.; Robinet, J.C.; Bottaro, A.; De Palma, P. Optimal wave packets in a boundary layer and initial phases of a turbulent spot. J. Fluid Mech. 2010, 656, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.C.; Schmid, P.J.; Baggett, J.S.; Henningson, D.S. On stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech. 1998, 365, 269–303. [Google Scholar] [CrossRef]
- Biau, D.; Bottaro, A. An optimal path to transition in a duct. Philos. Trans. R. Soc. 2009, 367, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Cossu, C. An optimality condition on the minimum energy threshold in subcritical instabilities. Comptes Rendus MÉC. 2005, 333, 331–336. [Google Scholar] [CrossRef]
- Zuccher, S.; Luchini, P.; Bottaro, A. Algebraic growth in a Blasius boundary layer: Optimal and robust control by mean suction in the nonlinear regime. J. Fluid Mech. 2004, 513, 135–160. [Google Scholar] [CrossRef] [Green Version]
- Zuccher, S.; Bottaro, A.; Luchini, P. Algebraic growth in a Blasius boundary layer: Nonlinear optimal disturbances. Eur. J. Mech. B/Fluids 2006, 25, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pralits, J.O.; Bottaro, A.; Cherubini, S. Weakly nonlinear optimal perturbations. J. Fluid Mech. 2015, 785, 135–151. [Google Scholar] [CrossRef]
- Pringle, C.C.T.; Kerswell, R. Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 2010, 105, 154502. [Google Scholar] [CrossRef]
- Cherubini, S.; De Palma, P.; Robinet, J.C.; Bottaro, A. Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow. Phys. Rev. E 2010, 82, 066302. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, S.; De Palma, P.; Robinet, J.C.; Bottaro, A. The minimal seed of turbulent transition in the boundary layer. J. Fluid Mech. 2011, 689, 221–253. [Google Scholar] [CrossRef] [Green Version]
- Rabin, S.; Caulfield, C.; Kerswell, R. Triggering turbulence efficiently in plane Couette flow. J. Fluid Mech. 2012, 712, 244–272. [Google Scholar] [CrossRef]
- Monokrousos, A.; Bottaro, A.; Brandt, L.; Di Vita, A.; Henningson, D.S. Non-equilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys. Rev. Lett. 2011, 106, 134502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherubini, S.; Robinet, J.C.; De Palma, P. Nonlinear control of unsteady finite-amplitude perturbations in the Blasius boundary-layer flow. J. Fluid Mech. 2013, 737, 440–465. [Google Scholar] [CrossRef] [Green Version]
- Pringle, C.C.T.; Willis, A.P.; Kerswell, R.R. Fully localised nonlinear energy growth optimals in pipe flow. Phys. Fluids 2015, 27, 064102. [Google Scholar] [CrossRef] [Green Version]
- Farano, M.; Cherubini, S.; Robinet, J.C.; De Palma, P. Hairpin-like optimal perturbations in plane Poiseuille flow. J. Fluid Mech. 2015, 775. [Google Scholar] [CrossRef] [Green Version]
- Farano, M.; Cherubini, S.; Robinet, J.C.; De Palma, P. Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane Poiseuille flow. Fluid Dyn. Res. 2016, 48, 061409. [Google Scholar] [CrossRef]
- Vermach, L.; Caulfield, C.P. Optimal mixing in three-dimensional plane Poiseuille flow at high Peclet number. J. Fluid Mech. 2018, 850, 875–923. [Google Scholar] [CrossRef] [Green Version]
- Farano, M.; Cherubini, S.; Robinet, J.C.; De Palma, P. Optimal bursts in turbulent channel flow. J. Fluid Mech. 2017, 817, 35–60. [Google Scholar] [CrossRef]
- Farano, M.; Cherubini, S.; Palma, P.D.; Robinet, J.C. Nonlinear optimal large-scale structures in turbulent channel flow. Eur. J. Mech. B/Fluids 2018, 72, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Pringle, C.C.; Willis, A.P.; Kerswell, R.R. Minimal seeds for shear flow turbulence: Using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech. 2012, 702, 415–443. [Google Scholar] [CrossRef] [Green Version]
- Duguet, Y.; Monokrousos, A.; Brandt, L.; Henningson, D.S. Minimal transition thresholds in plane Couette flow. Phys. Fluids 2013, 25, 084103. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, S.; De Palma, P.; Robinet, J.C. Nonlinear optimals in the asymptotic suction boundary layer: Transition thresholds and symmetry breaking. Phys. Fluids 2015, 27, 034108. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, S.; De Palma, P. Minimal-energy perturbations rapidly approaching the edge state in Couette flow. J. Fluid Mech. 2015, 764, 572–598. [Google Scholar] [CrossRef] [Green Version]
- Rabin, S.M.E.; Caulfield, C.P.; Kerswell, R.R. Designing a more nonlinearly stable laminar flow via boundary manipulation. J. Fluid Mech. 2014, 738, R1. [Google Scholar] [CrossRef] [Green Version]
- Passaggia, P.; Ehrenstein, U. Adjoint based optimization and control of a separated boundary-layer flow. Eur. J. Mech. B/Fluids 2013, 41, 169–177. [Google Scholar] [CrossRef]
- Xiao, D.; Papadakis, G. Nonlinear optimal control of bypass transition in a boundary layer flow. Phys. Fluids 2017, 29, 054103. [Google Scholar] [CrossRef]
- Olvera, D.; Kerswell, R.R. Optimizing energy growth as a tool for finding exact coherent structures. Phys. Rev. Fluids 2017, 2, 083902. [Google Scholar] [CrossRef] [Green Version]
- Farano, M.; Cherubini, S.; Robinet, J.C.; De Palma, P.; Schneider, T.M. Computing heteroclinic orbits using adjoint-based methods. J. Fluid Mech. 2019, 858, R3. [Google Scholar] [CrossRef] [Green Version]
- Kerswell, R.R.; Pringle, C.C.T.; Willis, A.P. An optimisation approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar. Rep. Prog. Phys. 2014, 77, 085901. [Google Scholar] [CrossRef] [Green Version]
- Kerswell, R. Nonlinear Nonmodal Stability Theory. Annu. Rev. Fluid Mech. 2018, 50, 319–345. [Google Scholar] [CrossRef] [Green Version]
- Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant Surfaces: Structures and Functions for Biomimetic Innovations. Nano-Micro Lett. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546. [Google Scholar] [CrossRef]
- Ou, J.; Perot, B.; Rothstein, J.P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys. Fluids 2004, 16, 4635–4643. [Google Scholar] [CrossRef] [Green Version]
- Byun, D.; Kim, J.; Ko, H.S.; Park, H.C. Direct measurement of slip flows in superhydrophobic microchannels with transverse grooves. Phys. Fluids 2008, 20, 113601. [Google Scholar] [CrossRef]
- Schäffel, D.; Koynov, K.; Vollmer, D.; Butt, H.J.; Schönecker, C. Local Flow Field and Slip Length of Superhydrophobic Surfaces. Phys. Rev. Lett. 2016, 116, 134501. [Google Scholar] [CrossRef] [Green Version]
- Daniello, R.J.; Waterhouse, N.E.; Rothstein, J.P. Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 2009, 21, 085103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yao, Z.; Hao, P. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow. Phys. Rev. E 2016, 94, 053117. [Google Scholar] [CrossRef]
- Rosenberg, B.J.; Van Buren, T.; Fu, M.K.; Smits, A.J. Turbulent drag reduction over air- and liquid- impregnated surfaces. Phys. Fluids 2016, 28, 015103. [Google Scholar] [CrossRef]
- Gose, J.W.; Golovin, K.; Boban, M.; Mabry, J.M.; Tuteja, A.; Perlin, M.; Ceccio, S.L. Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. J. Fluid Mech. 2018, 845, 560–580. [Google Scholar] [CrossRef] [Green Version]
- Emami, B.; Hemeda, A.A.; Amrei, M.M.; Luzar, A.; el Hak, M.G.; Tafreshi, H.V. Predicting longevity of submerged superhydrophobic surfaces with parallel grooves. Phys. Fluids 2013, 25, 062108. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Maynes, D.; Webb, B.W.; Woolford, B. Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs. Phys. Fluids 2006, 18, 087110. [Google Scholar] [CrossRef]
- Haase, A.S.; Wood, J.A.; Lammertink, R.G.H.; Snoeijer, J.H. Why bumpy is better: The role of the dissipation distribution in slip flow over a bubble mattress. Phys. Rev. Fluids 2016, 1, 054101. [Google Scholar] [CrossRef]
- Li, Y.; Alame, K.; Mahesh, K. Feature-resolved computational and analytical study of laminar drag reduction by superhydrophobic surfaces. Phys. Rev. Fluids 2017, 2, 054002. [Google Scholar] [CrossRef]
- Alinovi, E.; Bottaro, A. Apparent slip and drag reduction for the flow over superhydrophobic and lubricant-impregnated surfaces. Phys. Rev. Fluids 2018, 3, 124002. [Google Scholar] [CrossRef]
- Lee, C.; Choi, C.H.; Kim, C.J. Superhydrophobic drag reduction in laminar flows: A critical review. Exp. Fluids 2016, 57, 176. [Google Scholar] [CrossRef] [Green Version]
- Ybert, C.; Barentin, C.; Cottin-Bizonne, C.; Joseph, P.; Bocquet, L. Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Phys. Fluids 2007, 19, 123601. [Google Scholar] [CrossRef]
- Henoch, C.; Krupenkin, T.; Kolodner, P.; Taylor, J.; Hodes, M.; Lyons, A.; Peguero, C.; Breuer, K. Turbulent Drag Reduction Using Superhydrophobic Surfaces. In Proceedings of the 3rd AIAA Flow Control Conference. American Institute of Aeronautics and Astronautics, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar]
- Jung, Y.C.; Bhushan, B. Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J. Phys. Condens. Matter 2009, 22, 035104. [Google Scholar] [CrossRef]
- Ling, H.; Srinivasan, S.; Golovin, K.; McKinley, G.H.; Tuteja, A.; Katz, J. High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. J. Fluid Mech. 2016, 801, 670–703. [Google Scholar] [CrossRef] [Green Version]
- Rowin, W.A.; Hou, J.; Ghaemi, S. Inner and outer layer turbulence over a superhydrophobic surface with low roughness level at low Reynolds number. Phys. Fluids 2017, 29, 095106. [Google Scholar] [CrossRef]
- Rowin, W.A.; Hou, J.; Ghaemi, S. Turbulent channel flow over riblets with superhydrophobic coating. Exp. Therm. Fluid Sci. 2018, 94, 192–204. [Google Scholar] [CrossRef]
- Srinivasan, S.; Kleingartner, J.A.; Gilbert, J.B.; Cohen, R.E.; Milne, A.J.; McKinley, G.H. Sustainable Drag Reduction in Turbulent Taylor-Couette Flows by Depositing Sprayable Superhydrophobic Surfaces. Phys. Rev. Lett. 2015, 114, 014501. [Google Scholar] [CrossRef] [Green Version]
- Min, T.; Kim, J. Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 2004, 16, L55–L58. [Google Scholar] [CrossRef]
- Picella, F.; Robinet, J.C.; Cherubini, S. Laminar-turbulent transition in channel flow with superhydrophobic surfaces modelled as a partial slip wall. J. Fluid Mech. 2019, 881, 462–497. [Google Scholar] [CrossRef]
- Picella, F.; Robinet, J.C.; Cherubini, S. On the influence of the modelling of superhydrophobic surfaces on laminar-turbulent transition. J. Fluid Mech. 2020, 901, A15. [Google Scholar] [CrossRef]
- Pralits, J.O.; Alinovi, E.; Bottaro, A. Stability of the flow in a plane microchannel with one or two superhydrophobic walls. Phys. Rev. Fluids 2017, 2, 013901. [Google Scholar] [CrossRef]
- Yu, K.H.; Teo, C.J.; Khoo, B.C. Linear stability of pressure-driven flow over longitudinal superhydrophobic grooves. Phys. Fluids 2016, 28, 022001. [Google Scholar] [CrossRef]
- Davis, E.A.; Park, J.S. Dynamics of laminar and transitional flows over slip surfaces: Effects on the laminar-turbulent separatrix. J. Fluid Mech. 2020, 894, A16. [Google Scholar] [CrossRef]
- Xiao, D.; Papadakis, G. Nonlinear optimal control of transition due to a pair of vortical perturbations using a receding horizon approach. J. Fluid Mech. 2019, 861, 524–555. [Google Scholar] [CrossRef]
- Foures, D.; Caulfield, C.; Schmid, P. Localization of flow structures using ∞-norm optimization. J. Fluid Mech. 2013, 729, 672–701. [Google Scholar] [CrossRef] [Green Version]
- Tretheway, D.C.; Meinhart, C.D. Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 2002, 14, L9–L12. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.H.; Westin, K.J.A.; Breuer, K.S. Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 2003, 15, 2897. [Google Scholar] [CrossRef]
- Seo, J.; Mani, A. On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces. Phys. Fluids 2016, 28, 025110. [Google Scholar] [CrossRef]
- Bottaro, A. Flow over natural or engineered surfaces: An adjoint homogenization perspective. J. Fluid Mech. 2019, 877, P1–P91. [Google Scholar] [CrossRef]
- Philip, J.R. Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Und Phys. ZAMP 1972, 23, 353–372. [Google Scholar] [CrossRef]
- Min, T.; Kim, J. Effects of hydrophobic surface on stability and transition. Phys. Fluids 2005, 17, 108106. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Seo, J.; García-Mayoral, R.; Mani, A. Turbulent flows over superhydrophobic surfaces: Flow-induced capillary waves, and robustness of air–water interfaces. J. Fluid Mech. 2017, 835, 45–85. [Google Scholar] [CrossRef] [Green Version]
- Bidkar, R.A.; Leblanc, L.; Kulkarni, A.J.; Bahadur, V.; Ceccio, S.L.; Perlin, M. Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Phys. Fluids 2014, 26, 085108. [Google Scholar] [CrossRef]
- Fairhall, C.T.; Abderrahaman-Elena, N.; García-Mayoral, R. The effect of slip and surface texture on turbulence over superhydrophobic surfaces. J. Fluid Mech. 2018, 861, 88–118. [Google Scholar] [CrossRef] [Green Version]
- Fischer, P.; Lottes, J.; Kerkemeir, S. nek5000 Web Pages. 2008. Available online: http://nek5000.mcs.anl.gov (accessed on 20 December 2020).
- Deville, M.O.; Fischer, P.F.; Mund, E.H. High-Order Methods for Incompressible Fluid Flow; Cambridge University Press: Cambridge, UK, 2002; Volume 9. [Google Scholar]
- Cherubini, S.; De Palma, P. Nonlinear optimal perturbations in a Couette flow: Bursting and transition. J. Fluid Mech. 2013, 716, 251–279. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.M.; Kim, J.; Waleffe, F. Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 1995, 287, 317–348. [Google Scholar] [CrossRef]
- Orr, W.M. The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid. In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences; Royal Irish Academy: Dublin, Ireland, 1907; pp. 69–138. [Google Scholar]
- Watanabe, K.; Udagawa, Y.; Udagawa, K. Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J. Fluid Mech. 1999, 381, 225–238. [Google Scholar] [CrossRef]
- Alinovi, E. Modelling the Flow over Superhydrophobic and Liquid-Impregnated Surfaces. Ph.D. Dissertation, University of Genova, Genoa, Italy, 2018. [Google Scholar]
- Zang, T.A.; Krist, S.E. Numerical experiments on stability and transition in plane channel flow. Theor. Comput. Fluid Dyn. 1989, 1, 41–64. [Google Scholar]
- Picella, F.; Bucci, M.A.; Cherubini, S.; Robinet, J.C. A synthetic forcing to trigger laminar-turbulent transition in parallel wall bounded flows via receptivity. J. Comput. Phys. 2019, 393, 92–116. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, N.; Kleiser, L. Near-wall phenomena in transition to turbulence. In Near-Wall Turbulence; Hemisphere Publishing Corporation: New York, NY, USA, 1990; pp. 7–27. [Google Scholar]
- Sandham, N.D.; Kleiser, L. The late stages of transition to turbulence in channel flow. J. Fluid Mech. 1992, 245, 319. [Google Scholar] [CrossRef]
- Guo, H.; Borodulin, V.I.; Kachanov, Y.S.; Pan, C.; Wang, J.J.; Lian, Q.X.; Wang, S.F. Nature of sweep and ejection events in transitional and turbulent boundary layers. J. Turbul. 2010, 11, N34. [Google Scholar] [CrossRef]
- Brandt, L.; Cossu, C.; Chomaz, J.M.; Huerre, P.; Henningson, D.S. On the convectively unstable nature of optimal streaks in boundary layers. J. Fluid Mech. 2003, 485, 221–242. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Philip, J.; Ben-Dov, G. Aspects of linear and nonlinear instabilities leading to transition in pipe and channel flows. Phil. Trans. R. Soc. A 2009, 367, 509–527. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherubini, S.; Picella, F.; Robinet, J.-C. Variational Nonlinear Optimization in Fluid Dynamics: The Case of a Channel Flow with Superhydrophobic Walls. Mathematics 2021, 9, 53. https://doi.org/10.3390/math9010053
Cherubini S, Picella F, Robinet J-C. Variational Nonlinear Optimization in Fluid Dynamics: The Case of a Channel Flow with Superhydrophobic Walls. Mathematics. 2021; 9(1):53. https://doi.org/10.3390/math9010053
Chicago/Turabian StyleCherubini, Stefania, Francesco Picella, and Jean-Christophe Robinet. 2021. "Variational Nonlinear Optimization in Fluid Dynamics: The Case of a Channel Flow with Superhydrophobic Walls" Mathematics 9, no. 1: 53. https://doi.org/10.3390/math9010053
APA StyleCherubini, S., Picella, F., & Robinet, J. -C. (2021). Variational Nonlinear Optimization in Fluid Dynamics: The Case of a Channel Flow with Superhydrophobic Walls. Mathematics, 9(1), 53. https://doi.org/10.3390/math9010053