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Abstract: In the Black and Scholes system, the underlying asset price model follows geometric
Brownian motion (GBM) with no bankruptcy risk. While GBM is a commonly used model in
financial markets, bankruptcy risk should be considered in the case of a severe economic crisis, such
as that caused by the COVID-19 pandemic. The omission of bankruptcy risk could considerably
influence the setting of a trading strategy. In this article, we adopt an extended GBM model that
considers the bankruptcy risk and study its optimal limit price problem. A limit order is a classical
trading strategy for investing in stocks. First, we construct the explicit expressions of the expected
discounted profit functions for sell and buy limit orders and then derive their optimal limit prices.
Furthermore, via sensitivity analysis, we discuss the influence of the omission of bankruptcy risk in
executing limit orders.

Keywords: geometric Brownian motion; Black–Scholes model; limit orders; optimal limit prices

1. Introduction

Limit orders are a popular and typical mode for trading stocks. If an investor has a
long position on one stock, she/he can set a sell limit order with a specific selling price in
order to obtain a profit. Alternatively, if one has a short position on a security, she/he can
set a buy limit order with a specific buying price to obtain a profit. Hence, a reasonable
execution price is a crucial characteristic for limit orders.

This problem is a popular and worthy issue in finance and can be used to investigate
optimal investment timing. It has been well solved for the case of geometric Brownian
motion. McDonald and Siegel [1] first studied this problem based on geometric Brownian
motion and provided the explicit solution via the profit criterion. There are many other
criteria for setting the optimal timing. Shiryaev et al. [2] adopted minimizing the expected
relative error as a criterion to study the optimal selling timing. Dai et al. [3] utilize the
squared error between the selling price and the global maximum price to study the optimal
selling strategy. From an empirical point of view, Handa and Schwartz [4] discussed
the effect of limit order trading on the market. Lo et al. [5] applied survival analysis to
historical limit order data to develop a strategy for setting the execution time of limit orders
and empirically showed that adopting geometric Brownian motion with the first passage
time setting had poor performance in limit order execution. Agliardi [6] and Agliardi
and Gencay [7] constructed stochastic dynamic programming problems for limit order
execution based on the limit order book and provided their explicit solutions. In this article,
in order to discuss the effect of the omission of bankruptcy risk and analyze the expected
discounted profits directly, we adopt the profit criterion with the first passage time setting
to derive the optimal limit price. Furthermore, we compare the performance of the stock
price model with bankruptcy risk with that of the model with no bankruptcy risk, which is

Mathematics 2021, 9, 54. https://doi.org/10.3390/math9010054 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6799-9830
https://doi.org/10.3390/math9010054
https://doi.org/10.3390/math9010054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9010054
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/1/54?type=check_update&version=2


Mathematics 2021, 9, 54 2 of 13

that with geometric Brownian motion, via optimal limit prices and expected discounted
profits.

Owing to the positive behavior, geometric Brownian motion fails to illustrate the real
occurrence of bankruptcy. Ignoring the occurrence of bankruptcies could cause geometric
Brownian motion to provide higher estimations of the future stock price. Under the global
economic crisis, both economics and finance are severely shocked. A firm will encounter
troublesome difficulties in running its business and then the bankruptcy risk will increase.
Especially when studying the impacts of the COVID-19 pandemic, bankruptcy risk should
be integrated into the stock price model. Several articles about the impact of the COVID-19
pandemic on economics and finance can be found in Goodell [8], Baldwin and Weder di
Mauro [9], and Zhang et al. [10].

Therefore, we consider the stock price model, which is proposed by Hsu and Wu [11],
as follows:

Sb(t) =
(

c1eaB(t)+bt − c2e−aB(t)−bt
)

I{t<T0} = Y(t)I{t<T0}, (1)

where Y(t) = c1eaB(t)+bt− c2e−aB(t)−bt, c1 ≥ c2 > 0, a > 0, b ∈ R and T0 = inf{t|Y(t) = 0}.
Based on Hsu and Wu [11], model (1) can extend geometric Brownian motion to illustrate
bankruptcy risk and reduce its overestimation of prices. Note that there exists an equivalent
martingale measure for model (1) and then model (1) is an arbitrage-free market model
with admissible strategies, see Hsu and Wu [11] for more details. Intuitively, a higher
estimated price could cause an investor to set a higher limit price for a sell limit order and
have more risk. For a buy limit order, if an investor adopts a model that overestimates
the price, she/he could set a higher executed price and lose profits. Thus, we discuss
the optimal limit price for a limit order based on model (1) and compare its performance
with that of geometric Brownian motion in order to explore the effect of the omission of
bankruptcy risk in trading stocks via limit orders.

The remainder of this article is organized as follows. We introduce the strategy of
setting the limit price and construct the expression of the expected discounted profits in
Section 2. The existence of optimal limit prices is verified in Section 3. The results on
setting the strategies for limit orders at any time are presented in Section 4. The influence
of the omission of bankruptcy risk is discussed using sensitivity analysis in Section 5. The
conclusions are given in Section 6.

2. The Expected Discounted Profit Function for Limit Prices

Assume that the stock price follows model (1). In this section, we derive the expected
discounted profit function and construct the criterion for setting the limit price. We adopt
the profit criterion that was proposed in McDonald and Siegel [1]. Note that the optimal
investment timing problem based on the profit criterion with constant investment costs
is set using the first passage time setting, see Reference [1] for more details. Furthermore,
the superiority of the first passage time setting with the profit criterion is that the explicit
expression of the expected discounted profit function can be derived and then investors
can tractably analyze the profits of their investments.

For a sell limit order, we assume that the cost of possessing a stock at the beginning is
L ≥ Sb(0) = c1 − c2. We explore the optimal execution timing based on the first passage
time setting and denote the first passage time as Tx = inf{t|Sb(t) = x} with the specific
limit price x. Assume that the sum of trading fee and tax is proportional to the stock price
with a constant rate σ, where 0 < σ < 1. Hence, we construct the discounted profit of a sell
limit order as:

e−r(Tx∧T0)[(1− σ)Sb(Tx)− L] = (1− σ)e−r(Tx∧T0)
[
Sb(Tx)− L−σ

]
,

where r is the constant interest rate, L−σ = L
1−σ and T0 represents the bankruptcy time.

Then, the discounted profit of a sell limit order can be rewritten as:

(1− σ)
[(

x− L−σ
)

I{Tx<T0}e
−rTx − L−σ I{T0<Tx}e

−rT0
]
. (2)
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We construct the expected discounted profit function of a sell limit order as:

gs(x) = (1− σ)E
[
e−r(Tx∧T0)(Sb(Tx ∧ T0)− L−σ )

]
= (1− σ)

[
(x− L−σ )E

(
I{Tx<T0}e

−rTx
)
− L−σ E

(
I{T0<Tx}e

−rT0
)]

,
(3)

for x ≥ L−σ . The positive term in (2) represents the expected profits when the stock price
hits x before the bankruptcy time, and the minus term in (2) represents the loss when
bankruptcy occurs before Tx. In the following proposition, we derive the exact expression
of the expected discounted profit function gs(x).

Proposition 1. Assume the cost of possessing the underlying asset at the beginning is L ≥ Sb(0) =
c1 − c2 and the limit price x ≥ L−σ . The expected discounted profit function of a sell limit order is:

gs(x) = (1− σ)

[
(x− L−σ )eµD(x)sinh(−µrD(0))− L−σ eµD(0)sinh(µrD(x))

sinh(µr(D(x)− D(0)))

]
, (4)

for x ≥ L−σ , where µ = b
a , µr =

√
2r + µ2 and D(y) = 1

a ln
(

y+
√

y2+4c1c2
2c1

)
.

Proof. First, we demonstrate the expressions of E
(

I{TB
w<TB

v }e
−rTB

w

)
and E

(
I{TB

v <TB
w}e
−rTB

v

)
,

where v < 0 < w and TB
y = inf{t|B(t) + µt = y}. Let Z(t) = exp

(
−µB(t)− 1

2 µ2t
)

and
W(t) = B(t) + µt. By Girsanov’s theorem and the optional sampling theorem, we obtain

E
(

I{TB
w<TB

v <t}e
−rTB

w

)
= E

(
I{TB

w<TB
v <t}e

−r(TB
w∧TB

v ∧t)
)

= EP
(

I{TB
w<TB

v <t}e
−r(TB

w∧TB
v ∧t)Z−1(t)

)
= EP

(
EP
(

I{TB
w<TB

v <t}e
−r(TB

w∧TB
v ∧t)Z−1(t)

∣∣∣FTB
w∧TB

v ∧t

))
= EP

(
I{TB

w<TB
v <t}e

−r(TB
w∧TB

v ∧t)Z−1(TB
w ∧ TB

v ∧ t
))

= EP
(

I{TB
w<TB

v <t}e
−r(TB

w∧TB
v ∧t)eµW(TB

w∧TB
v ∧t)− 1

2 µ2(TB
w∧TB

v ∧t)
)

= EP
(

I{TB
w<TB

v <t}e
−rTB

w eµw− 1
2 µ2TB

w
)

= eµwEP
(

I{TB
w<TB

v <t}e
−(r+ 1

2 µ2)TB
w
)

,

where P is the probability measure derived by Girsanov’s theorem such that the Brownian
motion with drift, {B(t) + µt}, is a standard Brownian motion under P. It is clear that:

I{TB
w<TB

v <t}e
−kTB

w → I{TB
w<TB

v }e
−kTB

w

for any positive constant k as t approaches infinity and:

0 < I{TB
w<TB

v <t}e
−kTB

w ≤ 1.

By the bounded convergence theorem, we obtain:

E
(

I{TB
w<TB

v <t}e
−rTB

w
)
→ eµwEP

(
I{TB

w<TB
v }e
−(r+ 1

2 µ2)TB
w
)

as t→ ∞ . Hence, we have:

E
(

I{TB
w<TB

v }e
−rTB

w

)
= eµwEP

(
I{TB

w<TB
v }e
−(r+ 1

2 µ2)TB
w
)

= eµw sinh
(
−v
√

2r+µ2
)

sinh
(
(w−v)

√
2r+µ2

) .
(5)
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Similarly, we have:

E
(

I{TB
v <TB

w}e
−rTB

v

)
= eµvEP

(
I{TB

v <TB
w}e
−(r+ 1

2 µ2)TB
v
)

= eµv sinh
(

w
√

2r+µ2
)

sinh
(
(w−v)

√
2r+µ2

) .
(6)

Expressions (5) and (6) can be derived directly, see Karatzas and Shreve [12], p. 100
for more details. Note that based on (5) and (6), for x ≥ L−σ , the expected discounted profit
function of the sell limit order is:

gs(x) = (1− σ)

[
(x− L−σ )eµD(x)sinh(−µrD(0))− L−σ eµD(0)sinh(µrD(x))

sinh(µr(D(x)− D(0)))

]
,

where µ = b
a , µr =

√
2r + µ2 and D(y) = 1

a ln
(

y+
√

y2+4c1c2
2c1

)
. �

Next, we derive the expected profit function for the buy limit order. Assume that an
investor acquires income L ≤ Sb(0) = c1 − c2 from a short position at the beginning and
the costs of short covering are (1 + σ)Sb(Tx). Then, the discounted profit of a limit order
follows:

e−rTx (L− (1 + σ)Sb(Tx)) = (1 + σ)e−rTx
(

L+
σ − Sb(Tx)

)
,

where x is the limit price of the buy limit order, L+
σ = L

1+σ and 0 < x ≤ L+
σ . Since

Tx ∧ T0 = Tx, we obtain the expected discounted profit function of the buy limit order as:

gb(x) = (1 + σ)
(

L+
σ − x

)
E
(

e−rTx
)

,

for 0 ≤ x ≤ L+
σ . Since Tx = inf{t|B(t) + µt = D(x)}, we obtain:

gb(x) = (1 + σ)
(

L+
σ − x

)( x +
√

x2 + 4c1c2

2c1

) 1
a (µ+
√

µ2+2r)

, (7)

based on the Laplace transform of the first passage time of Brownian motion with drift.
We aim to construct the optimal sell/buy limit prices based on the following criterion:

argmax
x≥L−σ

gs(x)

and:
arg max

0≤x≤L+
σ

gb(x)

respectively. In the next subsection, we clarify the existence of the optimal sell limit price
and derive the expression of the optimal buy limit price.

3. The Optimal Limit Prices

In this section, we discuss the optimal limit price for sell and buy limit orders. In the
following theorem, we verify the existence of the optimal limit price for a sell limit order
and confirm that the optimal sell limit price can be found in some bounded and closed
interval.

Theorem 1. If r > |b|+ a2

2 , gs(x) attains its absolute maximum value on [L−σ , ∞). Moreover,
there is a number δ > L−σ such that:

max
x≥L−σ

gs(x) = max
x∈[L−σ ,δ]

gs(x).
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Proof. First, we claim that gs(x) converges to a constant as x tends to infinity. Then, we
show that gs(x) attains its absolute maximum value on some closed and bounded interval.
Let y = x +

√
x2 + 4c1c2 and z = µr

a . Define g1(y) = gs(x), and then we have:

g1(y) = (1− σ)
K1
(
y2 − 2L−σ y− 4c1c2

)
y

µ
a +z − L−σ eµD(0)

(
(2c1)

−zy2z+1 − (2c1)
zy
)

e−µr D(0)(2c1)
−zy2z+1 − eµr D(0)(2c1)

zy
,

for y ≥ L−σ +
√(

L−σ
)2

+ 4c1c2, where K1 = (2c1)
− µ

a sinh(−µrD(0)). Since r > |b|+ a2

2 , we
have z− µ

a − 1 > 0, and then 2z + 1 > z + µ
a + 2. Hence, we obtain:

g1(y)→ −(1− σ)L−σ eD(0)(µ+
√

2r+µ2)

as y→ ∞ . This implies gs(x)→ −(1− σ)L−σ eD(0)(µ+
√

2r+µ2) as x → ∞ . Since D(L−σ ) > 0
and D(L−σ )− D(0) > 0, we have sinh(µr(D(L−σ )− D(0))) > 0 and sinh(µrD(L−σ )) > 0.
Furthermore, owing to D(L−σ )− D(0) > D(L−σ ), we have:

0 <
sinh(µrD(L−σ ))

sinh
(
µr
(

D
(

L−σ
)
− D(0)

)) < 1

and then we obtain:

gs
(

L−σ
)
= (1− σ)

−L−σ eµD(0)sinh(µrD(L−σ ))
sinh

(
µr
(

D
(

L−σ
)
− D(0)

)) > −(1− σ)L−σ eD(0)(µ+
√

2r+µ2).

Choose ε > 0 such that gs(L−σ ) > ε− (1− σ)L−σ eD(0)(µ+
√

2r+µ2). Then, there exists a
number δ > 0 such that:

− ε− (1− σ)L−σ eD(0)(µ+
√

2r+µ2) < gs(x) < ε− (1− σ)L−σ eD(0)(µ+
√

2r+µ2)

for x ∈ [δ, ∞). Consequently, we obtain max
x≥L−σ

gs(x) = max
x∈[L−σ ,δ]

gs(x). Since gs(x) is continu-

ous on [L−σ , δ], we verify that gs(x) attains its absolute maximum value on [L−σ , ∞) by the
extreme value theorem. �

Owing to (4) being so complex that it is difficult to obtain the explicit form of the
optimal sell limit price, we can calculate this optimal price via a numerical method directly
based on Theorem 1.

We proceed to derive the explicit form of the optimal limit price for the buy limit order
in the following theorem.

Theorem 2. Let z1 = 1
a

(
µ +

√
µ2 + 2r

)
and x∗b =

L+
σ z2

1−
√

z2
1(L+

σ )
2
+4c1c2(z2

1−1)
z2

1−1
. We have the

following conclusions.

(a) Assume z2
1 > 1. If 2

√
c1c2

z1
≤ L+

σ ≤ c1 − c2, then max
x∈[0,L+

σ ]
gb(x) = gb

(
x∗b
)
. If 0 < L <

min
(

2
√

c1c2
z1

, c1 − c2

)
, then max

x∈[0,L+
σ ]

gb(x) = gb(0).

(b) Assume 0 < z2
1 < 1 and L+

σ > 2
√

c1c2

(
z−2

1 − 1
)

. If 2
√

c1c2
z1

≤ L+
σ ≤ c1 − c2, then

max
x∈[0,L+

σ ]
gb(x) = gb

(
x∗b
)
. If 0 < L+

σ < min
(

2
√

c1c2
z1

, c1 − c2

)
, then max

x∈[0,L+
σ ]

gb(x) = gb(0).
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Proof. It is clear that:

g′b(x) = (1 + σ)
z1(L+

σ − x)−
√

x2 + 4c1c2√
x2 + 4c1c2

(
x +

√
x2 + 4c1c2

2c1

)z1

.

Based on the following properties:

(i) If z2
1 > 1, then

L+
σ z2

1+
√

z2
1(L+

σ )
2
+4c1c2(z2

1−1)
z2

1−1
> L+

σ , and

(ii) If z2
1 < 1 and L+

σ ≥ 2
√

c1c2

(
z−2

1 − 1
)

, then
L+

σ z2
1+
√

z2
1(L+

σ )
2
+4c1c2(z2

1−1)
z2

1−1
< 0, we obtain

that:

x∗b =
L+

σ z2
1 −

√
z2

1
(

L+
σ

)2
+ 4c1c2

(
z2

1 − 1
)

z2
1 − 1

is the only candidate critical number for gb(x) on [0, L+
σ ]. Note that we need L+

σ ≥

2
√

c1c2

(
z−2

1 − 1
)

to ensure that
√

z2
1
(

L+
σ

)2
+ 4c1c2

(
z2

1 − 1
)

is defined when z2
1 < 1.

We proceed to prove (a). Assume z2
1 > 1. If 2

√
c1c2

z1
≤ L+

σ ≤ c1 − c2, then 0 ≤ x∗b ≤ L+
σ .

Since:

g′b(x)
{
≥ 0, if x ∈

[
0, x∗b

]
,

≤ 0, if x ∈
[
x∗b , L+

σ

]
,

we have max
x∈[0,L+

σ ]
gb(x) = gb

(
x∗b
)
. If 0 < L+

σ < min
(

2
√

c1c2
z1

, c1 − c2

)
, then x∗b < 0 and

max
x∈[0,L+

σ ]
gb(x) = gb(0). The conclusion in (b) follows easily by similar arguments applied in

(a). �

4. The Results for Entering a Long or Short Position at Any Time

To set a more elastic limit order, we assume that the investor can enter a long or short
position at any time t1 with the stock price Sb(t1) = y. In this section, we construct the
expected discounted profit functions and their optimal limit prices for the limit orders in
which the investor enters a position at any time t1 with the stock price Sb(t1) = y.

First, we demonstrate the results for the sell limit order in which the investor has
bought the stock at time t1 with price Sb(t1) = y. Define the conditional stock price
(Sb(t)|Sb(t1) = y) at time t, given Sb(t1) = y, and its first passage time:

TC
k = inf{t|(Sb(t)|Sb(t1) = y) = k}.

We define the discounted profit of the sell limit order, given Sb(t1) = y, as:

e−r((TC
x ∧TC

0 )−t1)
(
(1− σ)

(
Sb

(
TC

x

)∣∣∣Sb(t1) = y
)
− L

)
, (8)

for L ≥ y, where L represents the cost of entering long position at time t1 and x represent
the sell limit price. Define:

TC,B
k,1 = inf

{
t
∣∣∣∣(B(t) +

b
a

t
)
−
(

B(t1) +
b
a

t1

)
= D(k)− D(y)

}
.

Since TC
x ∧ TC

0 = TC,B
x,1 ∧ TC,B

0,1 , we can rewrite (8) as:

(1− σ)e−r((TC
x ∧TC

0 )−t1)
(
(Sb
(
TC

x
)∣∣Sb(t1) = y )− L−σ

)
= (1− σ)ert1

[
I{TC,B

x,1 <TC,B
0,1 }

e−rTC,B
x,1 (x− L−σ )− L−σ I{TC,B

0,1 <TC,B
x,1 }

e−rTC,B
0,1

]
,



Mathematics 2021, 9, 54 7 of 13

where L−σ = L
1−σ . Then, we obtain the expected discounted profit function of the sell limit

order, given Sb(t1) = y, as follows:(
gs

∣∣Sb(t1) = y
)
(x)

= ert1(1− σ)

[
(x− L−σ )E

(
I{TC,B

x,1 <TC,B
0,1 }

e−rTC,B
x,1

)
− L−σ E

(
I{TC,B

0,1 <TC,B
x,1 }

e−rTC,B
0,1

)]
,

for x ≥ L−σ . Define TC,B
k,2 = inf

{
t
∣∣∣B(t) + b

a t = D(k)− D(y)
}

. Since
(

TC,B
x,1 , TC,B

0,1

)
and(

t1 + TC,B
x,2 , t1 + TC,B

0,2

)
have the same joint distribution, we can rewrite

(
gs

∣∣Sb(t1) = y
)
(x)

as: (
gs

∣∣Sb(t1) = y
)
(x)

= (1− σ)

[
(x− L−σ )E

(
I{TC,B

x,2 <TC,B
0,2 }

e−rTC,B
x,2

)
− L−σ E

(
I{TC,B

0,2 <TC,B
x,2 }

e−rTC,B
0,2

)]
.

By (5) and (6), we obtain the expected discounted profit function of the sell limit order,
given Sb(t1) = y, for x ≥ L−σ , as follows:(

gs|S b(t1) = y
)
(x)

= (1− σ)

[
(x−L−σ )eµD1(x,y)sinh(µr D1(y,0))−L−σ eµD1(0,y)sinh(µr D1(x,y))

sinh(µr D1(x,0))

]
,

where D1(k1, k2) = D(k1)− D(k2), µ = b
a and µr =

√
2r + µ2. In the following theorem,

we clarify the existence of the optimal limit price for a sell limit order, given Sb(t1) = y and
its proof is given in Appendix A.

Theorem 3. If r > |b|+ a2

2 , then
(
gs

∣∣Sb(t1) = y
)
(x) attains its absolute maximum value on

[L−σ , ∞]. In addition, there is a number δ > L such that:

max
x≥L−σ

(
gs

∣∣Sb(t1) = y
)
(x) = max

x∈[L−σ ,δ]

(
gs

∣∣Sb(t1) = y
)
(x).

Proof. See Appendix A. �

We proceed to derive the results for a buy limit order given Sb(t1) = y. The discounted
profit of the buy limit order that enters the short position at time t1, given Sb(t1) = y, is as
follows:

e−r((TC
x ∧TC

0 )−t1)
(

L− (1 + σ)
(

Sb

(
TC

x

)∣∣∣Sb(t1) = y
))

,

for L ≤ y and x ≥ 0. Note that L represents the income of the investor that enters a short
position of the stock at time t1. Since TC

x ≥ TC
0 , we have:

e−r((TC
x ∧TC

0 )−t1)
(

L− (1 + σ)
(

Sb

(
TC

x

)∣∣∣Sb(t1) = y
))

= (1 + σ)e−rTC
x
(

L+
σ − x

)
,

where L+
σ = L

1+σ . Since TC
x = TC,B

x,1 and TC,B
x,1 has the same distribution as t1 + TC,B

x,2 , we
obtain the expected discounted profit function as follows:

(gb|Sb(t1) = y)(x) = (1 + σ)(L+
σ − x)E

(
e−rTC

x

)
= (1 + σ)(L+

σ − x)
(

x+
√

x2+4c1c2

y+
√

y2+4c1c2

) 1
a (µ+
√

µ2+2r)
,

for L ≤ y and 0 ≤ x ≤ L+
σ . We provide the explicit expression for the optimal limit price

of a buy limit order, given Sb(t1) = y, in the following theorem. The proof is given in the
Appendix A.
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Theorem 4. Let x∗b,C =
L+

σ z2
1−
√

z2
1(L+

σ )
2
+4c1c2(z2

1−1)
z2

1−1
. We have the following conclusions:

(a) Assume z2
1 > 1. If 2

√
c1c2

z1
≤ L+

σ ≤ y, then max
x∈[0,L+

σ ]
(gb|Sb(t1) = y)(x) = (gb|Sb(t1) = y)

(x∗b,C). If 0 < L+
σ <

2
√

c1c2
z1

, then max
x∈[0,L+

σ ]
(gb|Sb(t1) = y)(x) = (gb|Sb(t1) = y)(0).

(b) Assume 0 < z2
1 < 1 and L+

σ > 2
√

c1c2

(
z−2

1 − 1
)

. If 2
√

c1c2
z1
≤ L+

σ ≤ y, then

max
x∈[0,L+

σ ]
(gb|Sb(t1) = y)(x) = (gb|Sb(t1) = y)(x∗b,C). If 0 < L+

σ <
2
√

c1c2
z1

, then

max
x∈[0,L+

σ ]
(gb|Sb(t1) = y)(x) = (gb|Sb(t1) = y)(0).

Proof. See Appendix B. �

5. Simulation Results

Geometric Brownian motion is a common and popular financial model. Its tractable
feature allows it to have wide applications in financial practice. However, its positive
trajectory prevents it modeling the occurrence of bankruptcy. This crucial risk factor should
be considered, especially in a severe economic situation such as that caused by the impacts
of COVID-19. Hence, in this section, we discuss the influence of omitting bankruptcy risk
when setting the operations of limit orders via sensitivity analysis.

To discuss the influence of bankruptcy risk via sensitive analysis, we set three models:
the higher bankruptcy risk model with c1 = 5.0 and c2 = 1.0, the lower bankruptcy risk
model with c1 = 4.001 and c2 = 0.001, and the no bankruptcy risk model with c1 = 4
and c2 = 0. Note that c2 is a crucial parameter in model (1) to illustrate bankruptcy
risk. If the value of c2 is higher, then model (1) has higher bankruptcy risk. The no
bankruptcy risk model with c2 = 0 is geometric Brownian motion. We set the parameters
a2 = 0.008 and b = 0.002 or −0.002 for a stock price with an upward or downward trend,
respectively. We set the total sum of taxes and trading fees as proportion to the stock price
with the constant rate σ = 0.4425%. We assume that an investor enters a position with
the stock price Sb(t1) = 4 and then the cost (or income) of her/his position is defined as
L = 4× (1 + σ) = 4.0177 (or L = 4× (1− σ) = 3.9823) for the long (or short) position. The
interest rate is set as r = 1%. We use the fmincon function in Matlab to compute the optimal
limit price of a sell limit order. The optimal limit price of a buy limit order is obtained
directly via Theorem 4. The results including the optimal limit prices and their optimal
expected discounted profits are listed in Tables 1 and 2 for the buy and sell limit orders,
respectively.

Table 1. The optimal limit prices and their optimal expected discounted profits of the sell limit orders
with a2 = 0.008, b = 0.002 or − 0.002, r = 0.01, and L = 4.0177.

Higher
Bankruptcy

Risk

Lower
Bankruptcy

Risk

No Bankruptcy
Risk

b = 0.002 Optimal limit price 16.1694 15.5430 15.5401
Optimal expected
discounted profit 1.3460 1.8217 1.8315

b = −0.002 Optimal limit price 7.2265 8.6966 8.7789
Optimal expected
discounted profit 0.2374 1.0420 1.1024
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Table 2. The optimal limit prices and their optimal expected discounted profits of the buy limit
orders with a2 = 0.008, b = 0.002 or − 0.002, r = 0.01, and L = 3.9823.

Higher
Bankruptcy

Risk

Lower
Bankruptcy

Risk

No Bankruptcy
Risk

b = 0.002 Optimal limit price 1.4282 2.5631 2.5740
Optimal expected
discounted profit 1.0277 0.6218 0.6178

b = −0.002 Optimal limit price 0.6221 2.2632 2.2782
Optimal expected
discounted profit 1.3654 0.7975 0.7919

Intuitively, omitting the occurrence of bankruptcy could result in a higher optimal
limit price. In Tables 1 and 2, all of the cases satisfy this expectation except the case of
the sell limit order with the stock price having an upward trend. It is attributed to the
structure of model (1) in which the effect of the first term is higher and the effect of the
second term is lower when the price is higher. In addition, for the sell limit order with a
stock price with an upward trend, the higher value of c1 could enhance the effect of the first
term in model (1) such that the optimal limit prices of the higher and lower bankruptcy
risk models are more than that of the no bankruptcy risk model. However, their optimal
expected discounted profits of sell limit orders are still less than that of the no bankruptcy
risk model regardless of whether the stock price is experiencing an upward or downward
trend.

We next discuss the results of the sell limit order with a stock price with an upward
trend. From Table 1, the optimal prices are close in the three models when the stock
price has an upward trend. This situation is attributed to the property that a higher
{Sb(t)} accompanies the lower effect of the minus term of {Sb(t)} and then causes lower
bankruptcy risk. Although the optimal limit price of the higher bankruptcy model with an
upward trend is more than that of the no bankruptcy risk model, and its optimal profits
are still less than those of the no bankruptcy risk model. Hence, the model that considers
the bankruptcy risk indeed results in lower optimal profits when trading using a sell limit
order. However, the results of the three models are close when the stock price has an
upward trend.

When the stock price has a downward tendency, omitting the occurrence of bankruptcy
results in a considerable difference between the higher bankruptcy risk model and the no
bankruptcy risk model for the sell limit order. From Table 1, the optimal price of the higher
bankruptcy risk model is 17.68% less than that of the no bankruptcy model and the optimal
expected discounted profits of the higher bankruptcy risk model are 78.46% less than those
of the no bankruptcy risk model. This table reveals that the omission of bankruptcy risk has
a considerable influence on a sell limit order when the stock price has a downward trend.
Owing to the lower optimal limit price of the higher bankruptcy risk model, setting the
optimal limit price considering bankruptcy risk can provide more conservative operations
for an investor with a long position when the stock price has a downward trend.

Next, we discuss the results of the buy limit orders. Since bankruptcy is considered
in our model, the behavior of {Sb(t)} should be lower than that of the no bankruptcy risk
model. Hence, for a buy limit order, we can anticipate that the optimal limit prices of the
higher and lower bankruptcy risk models should be less than that of the no bankruptcy risk
model. Table 2 truly reflects this situation. Regardless of whether the stock price experiences
an upward or downward trend, the optimal limit price of the higher bankruptcy risk model
is less than that of the no bankruptcy risk model, and the optimal expected discounted
profits of the higher bankruptcy risk models are over 65% more than those of the no
bankruptcy risk model. For the stock price with a downward trend, it is noted that the
optimal buy limit price of the higher bankruptcy risk model is 72.69% less than that of the
no bankruptcy risk model. Therefore, under a severe economic crisis such as that caused by
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the COVID-19 pandemic, an investor with a short position can adopt the model including
bankruptcy risk to set the limit price of a buy limit order in order to obtain better expected
returns, which corresponds to the actual conditions.

Summarizing the results in Tables 1 and 2, the optimal limit prices and optimal
expected discounted profits of the lower bankruptcy risk model are close to those of the no
bankruptcy risk model. Hence, setting the optimal limit price based on the no bankruptcy
model is indeed a good method to approximate the stock price with lower bankruptcy risk.
However, especially for the results of the stock price with a downward trend, there are
considerable gaps between the higher bankruptcy risk model and the no bankruptcy risk
model. Consequently, when a firm is exposed to higher bankruptcy risk such as that due
to the impacts of the COVID-19 pandemic and has a downward trend in its stock price,
bankruptcy risk should be integrated into the stock price model so that an investor sets a
reasonable optimal limit price for a limit order.

6. Conclusions

The omission of the bankruptcy risk in geometric Brownian motion could cause higher
estimations of stock prices and then greatly influence the setting of trading strategies. To
make geometric Brownian motion integrate bankruptcy risk, we consider an extended
model of geometric Brownian motion and study its optimal limit price problem. We
provide explicit expressions for the expected discounted profit functions and establish the
optimal limit prices based on the profit criterion. We verify the existence of the optimal sell
limit price and present the explicit form for the optimal buy limit price.

We conduct sensitivity analysis to assess the influence of the omission of bankruptcy
risk. The numerical results reveal that omitting bankruptcy in the model indeed results in
a higher optimal limit price except in the case of the sell limit order with the stock price
having an upward trend. This exception is attributed to the higher value of c1 enhancing
the effect of the first term in model (1) and the higher stock price reducing the effect of the
second term in model (1).

For the sell limit order with a stock price with an upward trend, both the optimal
limit price in the three models, the higher bankruptcy risk model, the lower bankruptcy
risk model and the no bankruptcy risk model, are similar since a higher value of model (1)
results in low bankruptcy risk, i.e., a lower effect of the minus term in model (1).

For the limit order with stock price having a downward trend, there are considerable
differences between the higher bankruptcy risk model and the no bankruptcy risk model
for the optimal limit price. Our model can provide more conscientious operations for the
sell limit order and achieve better expected discounted profits for the buy limit order when
the stock price has a downward trend. Hence, under a severe economic crisis such as that
caused by the impacts of the COVID-19 pandemic, integrating bankruptcy risk into the
underlying asset price model not only provides the investor with a long position a cautious
limit price setting for executing a sell limit order, but it also results in higher profits for an
investor with a short position to execute a buy limit order.

A possible direction of future research is to extend model (1) with fractional Brownian
motion. Recently, the fractional Brownian motion has fruitful applications in finance such
as financial modelling, option pricing, optimal portfolio selection and high frequency
trading, see Guasoni et al. [13], Guasoni et al. [14], Kříž and Szała [15] and Rostek and
Schöbel [16] for more details. Another interesting issue of future research is to explore
other real problems in finance market based on model (1) and test the efficiency of model
(1) via analyzing the real financial data.
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Appendix A. The Proof of Theorem 3

In this appendix, we verify Theorem 3. Let w = x +
√

x2 + 4c1c2 and x = 1
2 w −

2c1c2w−1. We can rewrite
(
gs

∣∣Sb(t1) = y
)
(x) as:

(
gs

∣∣Sb(t1) = y
)
(x) = (1− σ)

{
h1(w)K1,yw

µ
a +z − L−σ eµD1(0,y)h2(w)

K3w2z+1 − (K3)
−1w

}
,

where z = µr
a , h1(w) = w2 − 2L−σ w− 4c1c2, h2(w) = K2,yw2z+1 −

(
K2,y

)−1w,

K1,y =

(
y +

√
y2 + 4c1c2

)− µ
a
sinh(µrD1(y, 0)),

K2,y =
(

y +
√

y2 + 4c1c2

)−z
and K3 = (4c1c2)

− z
2 . Obviously, we have:

lim
x→∞

(
gs

∣∣Sb(t1) = y
)
(x) = −(1− σ)L−σ eµD1(0,y)

(
K2,y

K3

)
= −LeµD1(0,y)

( √
4c1c2

y +
√

y2 + 4c1c2

)z

.

Next, we will clarify that:

(
gs

∣∣Sb(t1) = y
)(

L−σ
)
= −LeµD1(0,y) sinh(µrD1(L−σ , y))

sinh
(
µrD1

(
L−σ , 0

)) > −LeµD1(0,y)
(

K2,y

K3

)
.

Note that sinh(µrD1(L, y)) > 0 and sinh(µrD1(L, 0)) > 0 based on D(L−σ )− D(0) >
D(L−σ )− D(y) ≥ 0. First, we claim that:

sinh(µrD1(L−σ , y))
sinh

(
µrD1

(
L−σ , 0

)) <
K2,y

K3
.

It is clear that

sinh(µrD1(L−σ , y))
sinh

(
µrD1

(
L−σ , 0

)) − K2,y

K3
=

 √
4c1c2

L−σ +
√(

L−σ
)2

+ 4c1c2

z
sinh(µrD1(0, y))

sinh
(
µrD1

(
L−σ , 0

)) .

Since D1(0, y) < 0 and D1(L−σ , 0) > 0, we obtain sinh(µrD1(0, y)) < 0 and
sinh(µrD1(L−σ , 0)) > 0. Then, we verify that:

sinh(µrD1(L−σ , y))
sinh

(
µrD1

(
L−σ , 0

)) <
K2,y

K3
.

Hence, we have:

(
gs

∣∣Sb(t1) = y
)(

L−σ
)
> −LeµD1(0,y)

(
K2,y

K3

)
.
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We choose a sufficiently small ε > 0 small such that:

(
gs

∣∣Sb(t1) = y
)(

L−σ
)
> ε− LeµD1(0,y)

(
K2,y

K3

)
.

Since lim
x→∞

(
gs

∣∣Sb(t1) = y
)
(x) = −LeµD1(0,y)

(
K2,y
K3

)
, there is a δ > 0 such that:

− ε− LeµD1(0,y)
(

K2,y

K3

)
<
(
gs

∣∣Sb(t1) = y
)
(x) < ε− LeµD1(0,y)

(
K2,y

K3

)
,

for x ∈ (δ, ∞). We obtain max
x∈[L−σ ,∞)

(
gs

∣∣Sb(t1) = y
)
(x) = max

x∈[L−σ ,δ]

(
gs

∣∣Sb(t1) = y
)
(x). Since(

gs

∣∣Sb(t1) = y
)
(x) is continuous on [L−σ , δ], we verify that

(
gs

∣∣Sb(t1) = y
)
(x) attains the

maximum value on [L−σ , ∞) via the extreme value theorem.

Appendix B. The Proof of Theorem 4

We provide the proof of Theorem 4 in this appendix. The derivative of (gb|Sb(t1) = y)(x)
follows:

(gb|Sb(t1) = y)′(x) = (1 + σ)

(
x +

√
x2 + 4c1c2

y +
√

y2 + 4c1c2

)z1
[

z1(L+
σ − x)−

√
x2 + 4c1c2√

x2 + 4c1c2

]
.

Based on the similar discussion in the proof of Theorem 2, we obtain that:

x∗b,C =
L+

σ z2
1 −

√
z2

1
(

L+
σ

)2
+ 4c1c2

(
z2

1 − 1
)

z2
1 − 1

is the only candidate for the critical number on [0, L+
σ ]. Based on the same discussion in the

proof of Theorem 2, we can prove (a). Assume z2
1 > 1. If 2

√
c1c2

z1
≤ L+

σ , then 0 ≤ x∗b,C ≤ L+
σ .

Since:

(gb|Sb(t1) = y)′(x)

 ≥ 0, if x ∈
[
0, x∗b,C

]
,

≤ 0, if x ∈
[

x∗b,C, L+
σ

]
,

we have max
x∈[0,L+

σ ]
(gb|Sb(t1) = y)(x) = (gb|Sb(t1) = y)(x∗b,C). If 0 < L+

σ <
2
√

c1c2
z1

, then

x∗b,C < 0 and max
x∈[0,L+

σ ]
(gb|Sb(t1) = y)(x) = (gb|Sb(t1) = y)(0). The similar arguments

applied in (a) can also give the conclusion in (b).

References
1. McDonald, R.; Siegel, D. The value of waiting time to invest. Q. J. Econ. 1986, 101, 707–727. [CrossRef]
2. Shiryaev, A.; Xu, Z.; Zhou, X.Y. Thou shalt buy and hold. Quant. Finan. 2008, 8, 765–776. [CrossRef]
3. Dai, M.; Yang, Z.; Zhong, Y. Optimal stock selling based on the global maximum. SIAM J. Control Optim. 2012, 50, 1804–1822.

[CrossRef]
4. Handa, P.; Schwartz, R.A. Limit order trading. J. Financ. 1996, 51, 1835–1861. [CrossRef]
5. Lo, A.W.; Mackinlay, A.C.; Zhang, J. Econometric models of limit-order executions. J. Financ. Econ. 2002, 65, 31–71. [CrossRef]
6. Agliardi, R. Modeling uncertainty in limit order execution. Commun. Nonlinear Sci. Numer. Simulat. 2016, 31, 143–150. [CrossRef]
7. Agliardi, R.; Gencay, R. Optimal trading strategies with limit orders. Int. J. Theor. Appl. Financ. 2017, 20, 1750005. [CrossRef]
8. Goodell, J.W. COVID-19 and finance: Agendas for future research. Financ. Res. Lett. 2020, 35, 101512. [CrossRef]
9. Baldwin, R.; Weder di Mauro, B. (Eds.) Economics in the Time of COVID-19; CEPR Press: London, UK, 2020.
10. Zhang, D.; Hua, M.; Ji, Q. Financial markets under the global pandemic of COVID-19. Financ. Res. Lett. 2020, 36, 101528.

[CrossRef] [PubMed]
11. Hsu, Y.S.; Wu, C.H. Extended Black and Scholes model under bankruptcy risk. J. Math. Anal. Appl. 2020, 482, 123564. [CrossRef]
12. Karatzas, I.; Shreve, S.E. Brownian Motion and Stochastic Calculus, 2nd ed.; Springer: New York, NY, USA, 1991.
13. Guasoni, P.; Mishura, Y.; Rásonyi, M. High-frequency trading with fractional Brownian motion. Financ. Stoch. 2020. [CrossRef]
14. Guasoni, P.; Nika, Z.; Rásonyi, M. Trading fractional Brownian motion. SIAM J. Financ. Math. 2019, 10, 769–789. [CrossRef]

http://dx.doi.org/10.2307/1884175
http://dx.doi.org/10.1080/14697680802563732
http://dx.doi.org/10.1137/110844179
http://dx.doi.org/10.1111/j.1540-6261.1996.tb05228.x
http://dx.doi.org/10.1016/S0304-405X(02)00134-4
http://dx.doi.org/10.1016/j.cnsns.2015.08.001
http://dx.doi.org/10.1142/S0219024917500054
http://dx.doi.org/10.1016/j.frl.2020.101512
http://dx.doi.org/10.1016/j.frl.2020.101528
http://www.ncbi.nlm.nih.gov/pubmed/32837360
http://dx.doi.org/10.1016/j.jmaa.2019.123564
http://dx.doi.org/10.1007/s00780-020-00439-y
http://dx.doi.org/10.1137/17M113592X


Mathematics 2021, 9, 54 13 of 13
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