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1. Introduction

One of the most important topics of research in the geometry of submanifolds in
Riemanian manifolds is to establish sharp relationships between extrinsic and intrinsic
invariants of a submanifold.

The most used intrinsic invariants are sectional curvature, scalar curvature and Ricci
curvature. The main extrinsic invariant is the squared mean curvature.

There are well-known relationships between the above extrinsic and intrinsic in-
variants for a submanifold in a Riemannian space form: (generalized) Euler inequality,
Chen–Ricci inequality, Wintgen inequality, etc.

In [1,2], B.-Y. Chen introduced a sequence of Riemannian invariants, which are known
as Chen invariants. They are different in nature from the classical Riemannian invariants.
B.-Y. Chen established optimal relationships between the squared mean curvature and
Chen invariants for submanifolds in Riemannian space forms, known as Chen inequalities
(see [2]). The proofs of these inequalities use an algebraic inequality, discovered by B.-Y.
Chen in [1].

In the present paper, we give simple proofs of some Chen inequalities by using a
different algebraic inequality.

Other Chen inequalities were proved in [3] by applying another inequality.

2. Preliminaries

The theory of Chen invariants and Chen inequalities was initiated by B.-Y. Chen [1,2].
Let (M, g) be an n-dimensional (n ≥ 2) Riemannian manifold, ∇ its Levi–Civita

connection and R the Riemannian curvature tensor field on M. The sectional curvature
K(π) of the plane section π ⊂ Tp M, p ∈ M, is defined by

K(π) = R(e1, e2, e1, e2) = g(R(e1, e2)e2, e1),

where {e1, e2} is an orthonormal basis of π.
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Let {e1, ..., en} be an orthonormal basis of Tp M. The scalar curvature τ at p is given by

τ(p) = ∑
1≤i<j≤n

K(ei ∧ ej),

where K(ei ∧ ej) is the sectional curvature of the plane section spanned by ei and ej.
If X is a unit vector tangential to M at p, consider the orthonormal basis {e1 =

X, e2, ..., en} of Tp M. The Ricci curvature is defined by

Ric (X) =
n

∑
j=2

K(X ∧ ej).

Let L be an r-dimensional subspace of Tp M and {e1, ..., er} an orthonormal basis of
L, 2 ≤ r ≤ n. The the scalar curvature τ(L) of L is given by τ(L) = ∑1≤α<β≤r K(eα ∧ eβ).

In particular, for r = 2, τ(L) is the sectional curvature of L and for r = n, τ(Tp M) =
τ(p) is the scalar curvature of M at p.

B.-Y. Chen introduced a sequence of Riemannian invariants δ(n1, ..., nl), known as
Chen invariants (see [2]).

The Chen first invariant is δM = τ − inf K, where

(inf K)(p) = inf{K(π)|π ⊂ Tp M plane section}.

Let l > 0 be an integer and n1, ..., nl ≥ 2 integers such that n1 < n and n1 + ...+ nl ≤ n.
The Chen invariant δ(n1, ..., nl) is defined by

δ(n1, ..., nl)(p) = τ(p)− inf{τ(L1) + ... + τ(Ll)},

where L1, ..., Ll are mutually orthogonal subspaces of Tp M with dim Lj = nj, j = 1, ..., l.
For l = 1 in particular, one has δ(2) = δM and δ(n− 1) = max Ric, with

max Ric(p) = max{Ric (X)|X ∈ Tp M, g(X, X) = 1}.

We shall consider the Chen invariant δ(k), which is given by

δ(k)(p) = τ(p)− inf τ(Lk),

where Lk is any k-dimensional subspace of Tp M.

3. An Algebraic Inequality

In this section, we give an algebraic inequality and study its equality case. As an
application, we get a simple proof of the Chen inequality for the invariant δ(k).

Lemma 1. Let k, n be nonzero natural numbers, 2 ≤ k ≤ n− 1, and a1, a2, ..., an ∈ R. Then

∑
1≤i<j≤n

aiaj − ∑
1≤α<β≤k

aαaβ ≤
n− k

2(n− k + 1)

(
n

∑
i=1

ai

)2

.

Moreover, the equality holds if and only if ∑k
α=1 aα = aj, for all j ∈ {k + 1, ..., n}.

Proof. We prove this Lemma by using the Cauchy–Schwarz inequality. We have(
n

∑
i=1

ai

)2

=

(
k

∑
α=1

aα + ak+1 + ... + an

)2

≤
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≤ (n− k + 1)

( k

∑
α=1

aα

)2

+ a2
k+1 + ... + a2

n

 =

= (n− k + 1)

(
n

∑
i=1

a2
i + 2 ∑

1≤α<β≤k
aαaβ

)
=

= (n− k + 1)

( n

∑
i=1

ai

)2

− 2 ∑
1≤i<j≤n

aiaj + 2 ∑
1≤α<β≤k

aαaβ

,

which implies the desired inequality.
The equality holds if and only if we have equality in the Cauchy–Schwarz inequality,

i.e., ∑k
α=1 aα = aj, for all j ∈ {k + 1, ..., n}.

4. Proof of the Chen Inequality for δ(K)

We apply Lemma 1 for obtaining a simple proof of the Chen inequality corresponding
to the Chen invariant δ(k) for submanifolds in Riemannian space forms.

Let M̃(c) be an m-dimensional Riemannian space form of constant sectional cur-
vature c. The Euclidean space Em, the sphere Sm and the hyperbolic space Hm are the
standard examples.

Consider M an n-dimensional submanifold of M̃(c) and denote by h the second
fundamental form of M in M̃(c). The mean curvature vector H(p) at p ∈ M is defined by

H(p) =
1
n

n

∑
i=1

h(ei, ei),

where {e1, ..., en} is an orthonormal basis of Tp M.
The submanifold M is called minimal if the mean curvature vector H(p) vanishes at

any p ∈ M.
We recall the Gauss equation (see [4]):

R(X, Y, Z, W) = c + g(h(X, Z), h(Y, W))− g(h(X, W), h(Y, Z)),

for all vector fields X, Y, Z, W tangential to M.

Theorem 1. Let M̃(c) be an m-dimensional Riemannian space form of constant sectional curvature
c and M an n-dimensional submanifold of M̃(c). Then, for any 2 ≤ k ≤ n− 1, one has the following
Chen inequality:

δ(k) ≤ n2(n− k)
2(n− k + 1)

||H||2 + 1
2
[n(n− 1)− k(k− 1)]c.

Moreover, the equality holds at a point p ∈ M if and only if there exist suitable orthonormal
bases {e1, ..., en} ⊂ Tp M and {en+1, ..., em} ⊂ T⊥p M such that the shape operators take the forms

Aen+1 =



a1 ... 0 0 ... 0
...

. . .
...

...
...

0 ... ak 0 ... 0
0 ... 0 µ ... 0
...

...
...

. . .
...

0 ... 0 0 ... µ


,

k

∑
α=1

aα = µ,

Aer =

(
Ar 0
0 On−k

)
, r = n + 2, ..., m,
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where Ar is a symmetric k × k matrix with trace Ar = 0 and On−k is the
(n− k)× (n− k) null matrix.

Proof. Let p ∈ M, L ⊂ Tp M be a k-dimensional subspace and {e1, ..., ek} be an orthonormal
basis of L. We take {e1, ..., ek, ek+1, ..., en} ⊂ Tp M and {en+1, ..., em} ⊂ T⊥p M as orthonormal
bases, respectively.

Denote as usual by hr
ij = g(h(ei, ej), er), i, j = 1, ..., n, r ∈ {n+ 1, ..., m}, the components

of the second fundamental form.
The Gauss equation implies

τ = ∑
1≤i<j≤n

K(ei ∧ ej) = ∑
1≤i<j≤n

R(ei, ej, ei, ej) =

=
n(n− 1)

2
c +

m

∑
r=n+1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2].

Additionally, by the Gauss equation one has

τ(L) =
k(k− 1)

2
c +

m

∑
r=n+1

∑
1≤α<β≤k

[hr
ααhr

ββ − (hr
αβ)

2].

Then we get

τ − τ(L) =
1
2
[n(n− 1)− k(k− 1)]c+

+
m

∑
r=n+1

(
∑

1≤i<j≤n
hr

iih
r
jj − ∑

1≤α<β≤k
hr

ααhr
ββ

)
−

m

∑
r=n+1

∑
1≤i<j≤n;(i,j)/∈{1,...,k}2

(hr
ij)

2.

By using the algebraic inequality from the previous section, we obtain

τ − τ(L) ≤ n− k
2(n− k + 1)

m

∑
r=n+1

(
n

∑
i=1

hr
ii

)2

+
1
2
[n(n− 1)− k(k− 1)]c =

=
n2(n− k)

2(n− k + 1)
||H||2 + 1

2
[n(n− 1)− k(k− 1)]c,

which implies the inequality to prove.
If the equality case holds at a point p ∈ M, then we have equalities in all the inequali-

ties in the proof, i.e., {
∑k

α=1 hr
αα = hr

jj, ∀j ∈ {k + 1, ..., n},
hr

ij = 0, ∀1 ≤ i < j ≤ n, (i, j) /∈ {1, ..., k}2,

for any r ∈ {n + 1, ..., m}.
If we choose en+1 parallel to H(p), then the shape operators take the above forms.

Corollary 1. Let M̃(c) be an m-dimensional Riemannian space form of constant sectional cur-
vature c and M an n-dimensional submanifold of M̃(c). If there exists a point p ∈ M such that
δ(k)(p) > 1

2 [n(n− 1)− k(k− 1)]c, then M is not minimal.

If k = 1, we derive Chen’s first inequality:
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Corollary 2. [1] Let M̃(c) be an m-dimensional Riemannian space form of constant sectional
curvature c and M an n-dimensional submanifold of M̃(c). Then one has

inf K ≥ τ − n− 2
2

[
n2

n− 1
||H||2 + (n + 1)c

]
.

Equality holds at a point p ∈ M if and only if, with respect to suitable orthonormal bases
{e1, ..., en} ⊂ Tp M and {en+1, ..., em} ⊂ T⊥p M, the shape operators take the following forms:

Aen+1 =


a 0 0 ... 0
0 µ− a 0 ... 0
0 0 µ ... 0
...

...
...

. . .
...

0 0 0 ... µ

,

Aer =


hr

11 hr
12 0 ... 0

hr
12 −hr

11 0 ... 0
0 0 0 ... 0
...

...
...

. . .
...

0 0 0 ... 0

, r = n + 2, ..., m.

Recall that δ(n − 1) = max Ric. Then, from Theorem 1 we deduce the
Chen–Ricci inequality:

Corollary 3. [5] Let M̃(c) be an m-dimensional Riemannian space form of constant sectional
curvature c and M an n-dimensional submanifold of M̃(c). Then, for any p ∈ M and any unit
vector X tangential to M, one has

Ric(X) ≤ n2

4
||H||2 + (n− 1)c.

We present the following examples:

Example 1. Let k, n be integers such that k ≥ 2 and n ≥ 2k − 1. Consider the hypercylinder
M = Sk ×En−k ⊂ En+1.

Clearly δ(k) = τ = 1
2 k(k− 1). Then the equality case of Theorem 1 holds identically if

and only n = 2k− 1, i.e., M = Sk ×Ek−1.
Moreover, max Ric = n2

4 ||H||2 if and only if k = 2 and n = 3, i.e., M = S2 ×E.

Example 2. The generalized Clifford torus.

Let T = Sk(
√

k
n )× Sn−k(

√
n−k

n ) ⊂ Sn+1 ⊂ En+2, n > k ≥ 1.

It is known that T is a minimal hypersurface of Sn+1, but a non-minimal submanifold
of En+2.

Obviously max Ric = max{(k− 1) n
k , (n− k− 1) n

n−k}.
Then T ⊂ Sn+1 does not satisfy the equality case of Theorem 1 for δ(n− 1), ∀n ≥ 2.
If we consider T ⊂ En+2, then it does not satisfy the equality case of Theorem 1 for

δ(n− 1), ∀n ≥ 2.
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5. A Chen Inequality for Statistical Submanifolds

A statistical manifold is an m-dimensional Riemannian manifold (M̃, g) endowed
with a pair of torsion-free affine connections ∇̃ and ∇̃∗, which satisfy

Zg(X, Y) = g(∇̃ZX, Y) + g(X, ∇̃∗ZY), (1)

for any X, Y, Z ∈ Γ(TM̃). The connections ∇̃ and ∇̃∗ are called dual connections (see [6,7]),
and it is easily seen that

(
∇̃∗
)∗

= ∇̃. The pairing (∇̃, g) is said to be a statistical structure.
If
(
∇̃, g

)
is a statistical structure on M̃m, then

(
∇̃∗, g

)
is a statistical structure too [6,8].

Any torsion-free affine connection ∇̃ on M̃ always has a dual connection given by

∇̃+ ∇̃∗ = 2∇̃0,

where ∇̃0 is the Levi–Civita connection on M̃.
The dual connections are called conjugate connections in affine differential geome-

try (see [9]).
Denote by R̃ and R̃∗ the curvature tensor fields of ∇̃ and ∇̃∗, respectively. They satisfy

g
(

R̃∗(X, Y)Z, W
)
= −g

(
Z, R̃(X, Y)W

)
. (2)

A statistical structure
(
∇̃, g

)
is said to be of constant curvature ε ∈ R if

R̃(X, Y)Z = ε{g(Y, Z)X− g(X, Z)Y}. (3)

A statistical structure (∇̃, g) of constant curvature 0 is called a Hessian structure.
The Equation (2) implies that if

(
∇̃, g

)
is a statistical structure of constant curvature

ε, then
(
∇̃∗, g

)
is also a statistical structure of constant curvature ε (obviously, if (∇̃, g) is

Hessian, (∇̃∗, g) is also Hessian).
The dual connections are not metric, then we cannot define a sectional curvature

in the standard way. A sectional curvature on a statistical manifold was defined by B.
Opozda [10].

More precisely, if one considers p ∈ M̃, π a plane section in Tp M̃ and an orthonormal
basis {X, Y} of π, then a sectional curvature is defined by

K̃(π) =
1
2
[g(R̃(X, Y)Y + R̃∗(X, Y)Y, X)],

which is independent of the choice of the orthonormal basis.
Next, we consider a statistical manifold (M̃, g) and a submanifold M of dimension n

of M̃. Then (M, g|M) is also a statistical manifold with the connection induced by ∇̃ and
induced metric g.

In Riemannian geometry, the fundamental equations are the Gauss and Weingarten
formulae and the equations of Gauss, Codazzi and Ricci.

As usual, we denote by Γ
(
T⊥M

)
the set of the sections of the bundle normal to M.

In our case, for any X, Y ∈ Γ(TM), according to [8], the corresponding
Gauss formulae are

∇̃XY = ∇XY + h(X, Y),

∇̃∗XY = ∇∗XY + h∗(X, Y),

where h, h∗ : Γ(TM)× Γ(TM) → Γ(T⊥M) are symmetric and bilinear, called the imbed-
ding curvature tensor (see [6,8]) of M in M̃ for ∇̃ and the imbedding curvature tensor of M
in M̃ for ∇̃∗, respectively.

In [8], it was also proven that (∇, g) and (∇∗, g) are dual statistical structures on M.
Since h and h∗ are bilinear, there are linear transformations Aξ and A∗ξ on TM defined by

g
(

Aξ X, Y
)
= g(h(X, Y), ξ),
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g
(

A∗ξ X, Y
)
= g(h∗(X, Y), ξ),

for any ξ ∈ Γ
(
T⊥M

)
and X, Y ∈ Γ(TM).

Further (see [8]), the corresponding Weingarten formulae are

∇̃Xξ = −A∗ξ X +∇⊥X ξ,

∇̃∗Xξ = −Aξ X +∇∗⊥X ξ,

for any ξ ∈ Γ
(
T⊥M

)
and X ∈ Γ(TM). The connections ∇⊥ and ∇∗⊥ are Riemannian dual

connections with respect to the induced metric on Γ
(
T⊥M

)
.

Let {e1, ..., en} and {en+1, ..., em} be orthonormal tangential and normal frames, respec-
tively, on M. Then the mean curvature vector fields are defined by

H =
1
n

n

∑
i=1

h(ei, ei) =
1
n

m

∑
α=n+1

(
n

∑
i=1

hα
ii

)
eα, hα

ij = g(h(ei, ej), eα),

and

H∗ =
1
n

n

∑
i=1

h∗(ei, ei) =
1
n

m

∑
α=n+1

(
n

∑
i=1

h∗αii

)
eα, h∗αij = g(h∗(ei, ej), eα),

for 1 ≤ i, j ≤ n and n + 1 ≤ α ≤ m.
The Gauss equations for the dual connections ∇̃ and ∇̃∗, respectively, are given by (see [8])

g(R̃(X, Y)Z, W) = g(R(X, Y)Z, W) + g(h(X, Z), h∗(Y, W))−

−g(h∗(X, W), h(Y, Z)),

g
(

R̃∗(X, Y)Z, W
)
= g(R∗(X, Y)Z, W) + g(h∗(X, Z), h(Y, W))−

−g(h(X, W), h∗(Y, Z)),

Geometric inequalities for statistical submanifolds in statistical manifolds with con-
stant curvature were obtained in [11].

In this section we prove the Chen inequality corresponding to the Chen invariant δ(k)
for statistical submanifolds in statistical manifolds of constant curvature.

We consider an m-dimensional statistical manifold M̃(ε) of constant curvature ε and an
n-dimensional statistical submanifold M. Let p ∈ M and L be a k-dimensional subspace of
Tp M. Denote by {e1, ..., ek} an orthonormal basis of L, {e1, ..., ek, ek+1, ..., en} an orthonormal
basis of Tp M and {en+1, ..., em} an orthonormal basis of T⊥p M, respectively.
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The Gauss equation implies

τ =
1
2 ∑

1≤i<j≤n
[g(R(ei, ej)ej, ei) + g(R∗(ei, ej)ej, ei)] =

=
n(n− 1)

2
ε +

1
2 ∑

1≤i<j≤n
[g(h∗(ei, ei), h(ej, ej)) + g(h(ei, ei), h∗(ej, ej))−

− 2g(h(ei, ej), h∗(ei, ej))] =

=
n(n− 1)

2
ε +

1
2

m

∑
r=n+1

∑
1≤i<j<n

(h∗rii hr
jj + hr

iih
∗r
jj − 2hr

ijh
∗r
ij ) =

=
n(n− 1)

2
ε +

1
2

m

∑
r=n+1

∑
1≤i<j≤n

[(hr
ii + h∗rii )(h

r
jj + h∗rjj )− hr

iih
r
jj − h∗rii h∗rjj −

− (hr
ij + h∗rij )

2 + (hr
ij)

2 + (h∗rij )
2] =

=
n(n− 1)

2
ε +

m

∑
r=n+1

∑
1≤i<j≤n

{
2[h0r

ii h0r
jj − (h0r

ij )
2]− 1

2
[hr

iih
r
jj − (hr

ij)
2]−

− 1
2
[h∗rii h∗rjj − (h∗rij )

2]
}

,

(4)

where h0 is the second fundamental form of the Riemannian submanifold M.
We denote by τ0 the scalar curvature with respect to the Levi–Civita connection and

by τ̃0 = ∑1≤i<j≤n K̃0(ei ∧ ej).
The Gauss equation with respect to the Levi–Civita connection gives

τ0 = τ̃0 +
m

∑
r=n+1

∑
1≤i<j≤n

[h0r
ii h0r

jj − (h0r
ij )

2]. (5)

By substituting Equation (5) into (4), we get

τ = 2(τ0 − τ̃0) +
n(n−1)

2 ε− 1
2 ∑m

r=n+1 ∑1≤i<j≤n[hr
iih

r
jj − (hr

ij)
2]−

− 1
2 ∑m

r=n+1 ∑1≤i<j≤n[h∗rii h∗rjj − (h∗rij )
2].

(6)



Mathematics 2021, 9, 1175 9 of 10

By using Gauss equation, we have

τ(L) =
1
2 ∑

1≤α<β≤k
[g(R(eα, eβ)eβ, eα) + g(R∗(eα, eβ)eβ, eα)] =

=
k(k− 1)

2
ε +

1
2 ∑

1≤α<β≤k
[g(h∗(eα, eα), h(eβ, eβ)) + g(h(eα, eα), h∗(eβ, eβ))−

− 2g(h(eα, eβ), h∗(eα, eβ))] =

=
k(k− 1)

2
ε +

1
2

m

∑
r=n+1

∑
1≤α<β≤k

(h∗rααhr
ββ + hr

ααh∗rββ − 2hr
αβh∗rαβ) =

=
k(k− 1)

2
ε +

1
2

m

∑
r=n+1

∑
1≤α<β≤k

[(hr
αα + h∗rαα)(h

r
ββ + h∗rββ)−

− hr
ααhr

ββ − h∗rααh∗rββ − (hr
αβ + h∗rαβ)

2 + (hr
αβ)

2 + (h∗rαβ)
2] =

=
k(k− 1)

2
ε +

m

∑
r=n+1

∑
1≤α<β≤k

{
2[h0r

ααh0r
ββ − (h0r

αβ)
2]− 1

2
[hr

ααhr
ββ − (hr

αβ)
2]−

− 1
2
[h∗rααh∗rββ − (h∗rαβ)

2]
}
=

= 2τ0(L)− 2τ̃0(L) +
k(k− 1)

2
ε−

− 1
2

m

∑
r=n+1

∑
1≤α<β≤k

{
[hr

ααhr
ββ − (hr

αβ)
2] + [h∗rααh∗rββ − (h∗rαβ)

2]
}

.

By subtracting the last equation from (4), we obtain

(τ − τ(L))− 2(τ0 − τ0(L)) ≥ 2(τ̃0(L)− τ̃0) +
1
2
[n(n− 1)− k(k− 1)]ε−

− 1
2

m

∑
r=n+1

(
∑

1≤i<j≤n
hr

iih
r
jj − ∑

1≤α<β≤k
hr

ααhr
ββ

)
−

− 1
2

m

∑
r=n+1

(
∑

1≤i<j≤n
h∗rii h∗rjj − ∑

1≤α<β≤k
h∗rααh∗rββ

)
.

We denote by max K̃0(p) the maximum of the Riemannian sectional curvature function
of M̃(ε) restricted to 2-plane sections of the tangent space Tp M, p ∈ M. Obviously

τ̃0 − τ̃0(L) ≤ 1
2
[n(n− 1)− k(k− 1)]max K̃0(p).

On the other hand, by using Lemma 1, one has

∑
1≤i<j≤n

hr
iih

r
jj − ∑

1≤α<β≤k
hr

ααhr
ββ ≤

n− k
2(n− k + 1)

(
n

∑
i=1

hr
ii

)2

,

∑
1≤i<j≤n

h∗rii h∗rjj − ∑
1≤α<β≤k

h∗rααh∗rββ ≤
n− k

2(n− k + 1)

(
n

∑
i=1

h∗rii

)2

.

It follows that

τ − τ(L) ≥ 2(τ0 − τ0(L)) +
1
2
[n(n− 1)− k(k− 1)](ε− 2 max K̃0(p))−
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− n2(n− k)
2(n− k + 1)

[||H||2 + ||H∗||2].

We state the following result.

Theorem 2. Let M be an n-dimensional statistical submanifold of an m-dimensional statis-
tical manifold M̃(ε) of constant curvature. Then, for any p ∈ M and any k-plane section
L of Tp M, we have:

τ0 − τ0(L) ≤ 1
2
(τ − τ(L)) +

n2(n− k)
4(n− k + 1)

[||H||2 + ||H∗||2]+

+
1
2
[n(n− 1)− k(k− 1)](max K̃0(p)− ε

2
).

Moreover, the equality holds at a point p ∈ M if and only if there exist orthonormal bases
{e1, ..., en} of Tp M and {en+1, ..., em} of T⊥p M such that

∑k
α=1 hr

αα = hr
jj, ∀j ∈ {k + 1, ..., n},

∑k
α=1 h∗rαα = h∗rjj , ∀j ∈ {k + 1, ..., n},

hr
ij = h∗rij = 0, ∀1 ≤ i < j ≤ n, (i, j) /∈ {1, ..., k}2,

for any r ∈ {n + 1, ..., m}.
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