. mathematics

Article

A New Algebraic Inequality and Some Applications in
Submanifold Theory

Ion Mihai ** and Radu-Ioan Mihai %t

check for

updates
Citation: Mihai, .; Mihai, R.-I. A
New Algebraic Inequality and Some
Applications in Submanifold Theory.
Mathematics 2021, 9, 1175. https://
doi.org/10.3390/math9111175

Academic Editor: Ana-Maria Acu

Received: 29 April 2021
Accepted: 19 May 2021
Published: 23 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Mathematics, University of Bucharest, 010014 Bucharest, Romania

Faculty of Mathematics and Computer Science, University of Bucharest, 010014 Bucharest, Romania;
radu.mihai4@s.unibuc.ro

Correspondence: imihai@fmi.unibuc.ro

1t These authors contributed equally to this work.

Abstract: We give a simple proof of the Chen inequality involving the Chen invariant §(k) of
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1. Introduction

One of the most important topics of research in the geometry of submanifolds in
Riemanian manifolds is to establish sharp relationships between extrinsic and intrinsic
invariants of a submanifold.

The most used intrinsic invariants are sectional curvature, scalar curvature and Ricci
curvature. The main extrinsic invariant is the squared mean curvature.

There are well-known relationships between the above extrinsic and intrinsic in-
variants for a submanifold in a Riemannian space form: (generalized) Euler inequality,
Chen-Ricci inequality, Wintgen inequality, etc.

In [1,2], B.-Y. Chen introduced a sequence of Riemannian invariants, which are known
as Chen invariants. They are different in nature from the classical Riemannian invariants.
B.-Y. Chen established optimal relationships between the squared mean curvature and
Chen invariants for submanifolds in Riemannian space forms, known as Chen inequalities
(see [2]). The proofs of these inequalities use an algebraic inequality, discovered by B.-Y.
Chen in [1].

In the present paper, we give simple proofs of some Chen inequalities by using a
different algebraic inequality.

Other Chen inequalities were proved in [3] by applying another inequality.

2. Preliminaries

The theory of Chen invariants and Chen inequalities was initiated by B.-Y. Chen [1,2].

Let (M, g) be an n-dimensional (n > 2) Riemannian manifold, V its Levi-Civita
connection and R the Riemannian curvature tensor field on M. The sectional curvature
K(7r) of the plane section 1 C TyM, p € M, is defined by

K(ﬂ') = R(ell e, 81162) = g(R(elreZ)eZIel)/

where {ej, e, } is an orthonormal basis of 7.
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Let {ey, ...,e; } be an orthonormal basis of T, M. The scalar curvature T at p is given by

t(p)= ), Kleineg),

1<i<j<n

where K(e; A ¢j) is the sectional curvature of the plane section spanned by ¢; and e;.
If X is a unit vector tangential to M at p, consider the orthonormal basis {e; =
X, ey, ....en} of Ty M. The Ricci curvature is defined by

Ric (X) = éK(XAej).
=

Let L be an r-dimensional subspace of T,M and {e1,...,er} an orthonormal basis of
L,2 <r < n. The the scalar curvature 7(L) of L is given by T(L) = ¥1<p<p<, K(ex A p).

In particular, for r = 2, (L) is the sectional curvature of L and for r = n, T(T,M) =
T(p) is the scalar curvature of M at p.

B.-Y. Chen introduced a sequence of Riemannian invariants é(ny, ..., n;), known as
Chen invariants (see [2]).

The Chen first invariant is 1 = T — inf K, where

(infK)(p) = inf{K(7r)|r C T,M plane section}.

Let! > Obe an integer and ny, ..., n; > 2 integers such thatn; < nand ny +... +n; < n.
The Chen invariant 6(ny, ..., n;) is defined by

5(nq,...,n))(p) = t(p) —inf{T(Ly) + ...+ T(L;) },

where Ly, ..., L are mutually orthogonal subspaces of T, M with dim Li=n;,j=1,.., l.
For | = 11in particular, one has 6(2) = dj; and 6(n — 1) = maxRic, with

max Ric(p) = max{Ric (X)|X € T,M, g(X, X) = 1}.
We shall consider the Chen invariant é(k), which is given by
5(K)(p) = T(p) — infr(Ly),
where Ly is any k-dimensional subspace of T, M.

3. An Algebraic Inequality

In this section, we give an algebraic inequality and study its equality case. As an
application, we get a simple proof of the Chen inequality for the invariant 6 (k).

Lemma 1. Let k, n be nonzero natural numbers,2 <k <n—1,and ay,ay, ...,a, € R. Then
n—k & ?
Z aiaj — Z Agap < (Zal) .
1<i<j<n 1<a<p<k 2(n—k+1)\ 5
Moreover, the equality holds if and only if YX_, a, = aj forallj € {k+1,..,n}.

Proof. We prove this Lemma by using the Cauchy-Schwarz inequality. We have

n 2 k 2
(Zai> :<Zaa+ak+1+...+an> <

i=1 a=1
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k 2
<(n—-k+1) (2%) +a§+1+...+a§] =
a=1
n
=m-k+1)[Ya?+2 Y auap)=
i=1 1<a<p<k

=n-k+1)
i=1 1<i<j<n 1<a<p<k

(iaZ)z—z Yo aai+2 ) aaaﬁ],

which implies the desired inequality.
The equality holds if and only if we have equality in the Cauchy-Schwarz inequality,
ie., thf‘:l ay = aj, forallje {k+1,.,n}. O

4. Proof of the Chen Inequality for J(K)

We apply Lemma 1 for obtaining a simple proof of the Chen inequality corresponding
to the Chen invariant é(k) for submanifolds in Riemannian space forms.

Let M(c) be an m-dimensional Riemannian space form of constant sectional cur-
vature c. The Euclidean space E™, the sphere S™ and the hyperbolic space H™ are the
standard examples.

Consider M an n-dimensional submanifold of M(c) and denote by & the second
fundamental form of M in M(c). The mean curvature vector H(p) at p € M is defined by

n

H(p) = 1) hei o)
nia
where {ey, ..., e, } is an orthonormal basis of T, M.
The submanifold M is called minimal if the mean curvature vector H(p) vanishes at
any p € M.
We recall the Gauss equation (see [4]):

R(X,Y,ZW)=c+gh(X,Z),h(Y,W)) —g(h(X,W),h(Y,Z)),
for all vector fields X, Y, Z, W tangential to M.

Theorem 1. Let M(c) be an m-dimensional Riemannian space form of constant sectional curvature
c and M an n-dimensional submanifold of M(c). Then, forany 2 < k < n — 1, one has the following
Chen inequality:

n?(n — k) 1
5(k) < 5

I 2

[n(n—1) —k(k—1)]c.

Moreover, the equality holds at a point p € M if and only if there exist suitable orthonormal
bases {e1,....en} C TyMand {e,11,....em} C TPLM such that the shape operators take the forms

a 0 O 0
) 0 a 0 0 koo
€n+1 0 0 ‘u O 7 lx;l Ay = ]’l/
0 0 0 U
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where A, is a symmetric k X k matrix with trace A, = 0 and O,_y is the
(n —k) x (n — k) null matrix.

Proof. Let p € M, L C T,M be a k-dimensional subspace and {ey, ..., ¢ } be an orthonormal
basis of L. We take {ey, ..., e, k41, .., en} C TyMand {ey41,...,.em} C T;-M as orthonormal
bases, respectively.

Denote as usual by hl’»j = g(h(e;, e]-), er),i,j=1,..,n,r € {n+1,..,m}, the components
of the second fundamental form.

The Gauss equation implies

T = Z K(el-/\e]-) = Z R(ei,ej,ei,ej) =

1<i<j<n 1<i<j<n

( c+ Z ) hflh;] )2]

r=n+11<i<j<n

Additionally, by the Gauss equation one has

=y 3 L[y = (47
r=n+11<a<p<
Then we get
r—(L) = %[n(n 1) — k(k = 1))+

R (ol S S o o

r=n+1 \1<i<j<n 1<a<B<k r=n+11<i<j<n;(i,j)£{1,....k}?

By using the algebraic inequality from the previous section, we obtain

TT(L)Sz(Ti_Icﬁ_l)r;rl<Zh> + 3 lnn—1) —k(k— D) =
_ n?(n—k) 1
—mHHHZ 5n(n—1) —k(k—1)lc,

which implies the inequality to prove.
If the equality case holds at a point p € M, then we have equalities in all the inequali-
ties in the proof, i.e.,

Yk =hy, Vj e {k+1,..,n},
n, = o, v1 <i<j<n (i) ¢A{1,..k}?%

foranyr € {n+1,..,m}.
If we choose ¢, 11 parallel to H(p), then the shape operators take the above forms. [J

Corollary 1. Let M(c) be an m-dimensional Riemannian space form of constant sectional cur-
vature ¢ and M an n-dimensional submanifold of M(c). If there exists a point p € M such that
5(k)(p) > L[n(n—1) — k(k — 1)]c, then M is not minimal.

If k = 1, we derive Chen’s first inequality:
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Corollary 2. [1] Let M(c) be an m-dimensional Riemannian space form of constant sectional
curvature ¢ and M an n-dimensional submanifold of M(c). Then one has

n—2[ n?

infK > 1 —
n—1

[[H||*> + (n+1)c|.

Equality holds at a point p € M if and only if, with respect to suitable orthonormal bases
{e1,...,en} C TyMand {e,41,...,em} C TPLM, the shape operators take the following forms:

a 0 0 .. 0
0O p—a 0 .. O

A€n+1 = 0 0 y 0 4
0 0 0 U

bl h{% 0 0

hi, —hy 0 .. 0

Ae, = 0 0 0 .. 0 , r=n—+2,..,m.
0 0 0 .. 0
Recall that 6(n — 1) = max Ric. Then, from Theorem 1 we deduce the

Chen-Ricci inequality:

Corollary 3. [5] Let M(c) be an m-dimensional Riemannian space form of constant sectional
curvature ¢ and M an n-dimensional submanifold of M(c). Then, for any p € M and any unit
vector X tangential to M, one has

2
Ric(X) < ”Z||H||2 +(n—1)e.

We present the following examples:

Example 1. Let k, n be integers such that k > 2 and n > 2k — 1. Consider the hypercylinder
M = Sk x Bk c EntL,

Clearly d(k) =7 = %k(k — 1). Then the equality case of Theorem 1 holds identically if
andonlyn =2k—1,ie, M = Sk x EF-1,
Moreover, max Ric = %z ||H||? if and only if k = 2and n = 3,i.e., M = S? x E.

Example 2. The generalized Clifford torus.

Let T = Sk(y/%) x §1K(\/58) € §"1 CE™2, 0 > k> 1.

It is known that T is a minimal hypersurface of S"*1, but a non-minimal submanifold
of E"+2,

Obviously max Ric = max{(k —1)%, (n —k — 1) % }.

Then T C S"*! does not satisfy the equality case of Theorem 1 for é(n — 1), Vn > 2.

If we consider T C E"*2, then it does not satisfy the equality case of Theorem 1 for
d(n—1),vn > 2.
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5. A Chen Inequality for Statistical Submanifolds

A statistical manifold is an m-dimensional Riemannian manifold (M, g) endowed
with a pair of torsion-free affine connections V and V*, which satisfy

Zg(X,Y) = g(VzX,Y) +g(X,V3Y), 1)

forany X,Y,Z € T(TM). The connections V and V* are called dual connections (see [6,7]),

and it is easily seen that (V*) " = V. The pairing (V, g) is said to be a statistical structure.

If (V,g) is a statistical structure on M™, then (V*,g) is a statistical structure too [6,8].
Any torsion-free affine connection V on M always has a dual connection given by

V4 V*=2V0,

where VY is the Levi-Civita connection on M.

The dual connections are called conjugate connections in affine differential geome-
try (see [9]).

Denote by R and R* the curvature tensor fields of V and V*, respectively. They satisfy

g(R*(X,Y)Z,W) = —¢(Z,R(X,Y)W). )
A statistical structure (V, g) is said to be of constant curvature ¢ € R if
R(X,Y)Z =¢{g(Y,Z)X — ¢(X,Z)Y}. (3)

A statistical structure (V, g) of constant curvature 0 is called a Hessian structure.

The Equation (2) implies that if (V, g) is a statistical structure of constant curvature
¢, then (V*,g) is also a statistical structure of constant curvature e (obviously, if (V, g) is
Hessian, (V*,g) is also Hessian).

The dual connections are not metric, then we cannot define a sectional curvature
in the standard way. A sectional curvature on a statistical manifold was defined by B.
Opozda [10].

More precisely, if one considers p € M, 7 a plane section in T, M and an orthonormal
basis {X, Y} of 7, then a sectional curvature is defined by

R(7) = 53RO Y)Y + R (X, V)Y, X)),
which is independent of the choice of the orthonormal basis.

Next, we consider a statistical manifold (M, g) and a submanifold M of dimension 1
of M. Then (M, g|p) is also a statistical manifold with the connection induced by V and
induced metric g.

In Riemannian geometry, the fundamental equations are the Gauss and Weingarten
formulae and the equations of Gauss, Codazzi and Ricci.

As usual, we denote by I' (TJ- M) the set of the sections of the bundle normal to M.

In our case, for any X,Y € TI(TM), according to [8], the corresponding
Gauss formulae are

VxY = VxY+h(X,Y),

ViY = ViY +1*(X,Y),
where h, h* : T(TM) x T(TM) — T(T+M) are symmetric and bilinear, called the imbed-
ding curvature tensor (see [6,8]) of M in M for V and the imbedding curvature tensor of M
in M for V*, respectively.

In [8], it was also proven that (V, g) and (V*, g) are dual statistical structures on M.

Since hand /i are bilinear, there are linear transformations Az and Az on TM defined by

8(A:X,Y) = g(h(X,Y),Q),
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g(Asx,Y) = g(r(x,7),0),

forany ¢ € I (T M) and X,Y € [(TM).
Further (see [8]), the corresponding Weingarten formulae are

Vg = —A; X+ VyE,

W}}C = —A§X+ V*XJ' ’

forany ¢ € I'(T+M) and X € I'(TM). The connections V+ and V** are Riemannian dual

connections with respect to the induced metric on T (T+M).
Let {ey,....en} and {e,1, ..., em } be orthonormal tangential and normal frames, respec-

tively, on M. Then the mean curvature vector fields are defined by

1 & 1 M
H = E Zl’l el/el = ; Z (Zh”>€m ij = g(h(ei,e]-),ea),

i=1 a=n+

and

:\»—\
3\»—\

m n
Z (ZhZO‘)ea/ h:(]“ = g(h*(elle_])IetX)/
a=n+

1

1
Z (ei e;)

forl1<i,j<mandn+1<a <m.
The Gauss equations for the dual connections V and V*, respectively, are given by (see [8])

g(R(X, Y)Z, W) =g(R(X,Y)Z,W)+g(h(X,Z),h*(Y,W))—
g (X, W), h(Y, 2),

(R (X,Y)Z, W) = g(R*(X,Y)Z, W) + g(h" (X, Z), h(Y, W)~
—g(h(X, W), H"(Y,2)),

Geometric inequalities for statistical submanifolds in statistical manifolds with con-

stant curvature were obtained in [11].

In this section we prove the Chen inequality corresponding to the Chen invariant & (k)
for statistical submanifolds in statistical manifolds of constant curvature.

We consider an m-dimensional statistical manifold M(e) of constant curvature e and an
n-dimensional statistical submanifold M. Let p € M and L be a k-dimensional subspace of
T, M. Denote by {ej, ..., e, } an orthonormal basis of L, {ey, ..., €, €1, ..., ¢x } an orthonormal
basis of T,M and {ey, 1, ..., e } an orthonormal basis of T;—M, respectively.
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The Gauss equation implies

1
=5 ). [8(Rleep)ejer) +g(R™(eie)ej en)] =
1<i<j<n
nin—1 1 * *
D e L o () ey ) + g(hlen ) (e )~
2 2,.=
<i<j<n
—2g(h (f?ilej) h*(eifej))} =
S LY (g — 2 =
r n+11<i<j<n (4)
}’l( * * 17, %
T2 + 2 Z D L0+ W) gy + W) = ihy — i =

r n+1 1<1<]<n

f(hf.+h>.k.") (hr,) (h;}r)ﬂ:

M N n (ol — () L (2
r=n+11<i<j<n

— ,[h:flrh]*]r (h?}r)z}},

where 1 is the second fundamental form of the Riemannian submanifold M.
We denote by Ty the scalar curvature with respect to the Levi—Civita connection and

by T = Zl§i<j§n Ko(el' A 6])
The Gauss equation with respect to the Levi-Civita connection gives

T =T+ Z Y, R — (1)), (5)
r=n+11<i<j<n
By substituting Equation (5) into (4), we get
T= Z(TO — T ) + )f - % =n-+1 21<l<]<1’l [h”h;] (hr]) ] (6)
L Tace el — ()R]
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By using Gauss equation, we have

W) =3 T [8(Rleaep)ep a) + (R (eaepep ea)] =

1<a<p<k

_ Kk 1)8—1-1 Y. [g(h*(easen) hi(ep,ep)) + g(h(en, ex), h* (ep, e5))—

2 1<a<p<k
*Zg( (ea,e,z) h*(ea,ep))] =

_ k(k 1 - W WOk — Zhr I
- 5 ; Z ( L7 /3,3+ an't BB «p aﬁ)
m

2 11<a<p<k

k(k +7 Yo X () (s )~

r n+11<a<p<k
= hi 2,3 hiﬁhﬁg (B + hip) + () + ( Z,@)Z]I

_k(k 0r 1,0 0 2
My L2 00— Ll — ()
r=n+11<a<p<k

— Sl — 0]} =
(

= 2m(L) ~ 270 + D)

—;rél Yt — ()2 + it — ()21}

1<a<p<k

£—

By subtracting the last equation from (4), we obtain

L= 1) — k(k = 1)]e—

(t—7(L)) =2(n0 — (L)) = 2(%(L) = %) + 5

m
;1< Y, M= ) B Bﬁ)

1<i<j<n 1<a<p<k

N \

( N S hzahﬁﬁ)

1<i<j<n 1<a<p<k

N\H
ﬁ
Ms

We denote by max Ky (p) the maximum of the Riemannian sectional curvature function
of M(e) restricted to 2-plane sections of the tangent space T,M, p € M. Obviously

[n(n —1) — k(k — 1)] max &o(p).

I\JM—‘

T — ”f()(L) <

On the other hand, by using Lemma 1, one has

2
Z hzrzh;] Z hgaxh%ﬁ = m (Zh ) ’

1<i<j<n 1<a<B<k

2

1<i<j<n 1<a<[3<k

It follows that

T 7(L) > 2( — (L)) + 5[n(n — 1) — k(k — D] ¢ ~ 2max Ko(p))~
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2(n —
st IR + (17 2

We state the following result.

Theorem 2. Let M be an n-dimensional statistical submanifold of an m-dimensional statis-
tical manifold M(g) of constant curvature. Then, for any p € M and any k-plane section

L of Ty, M, we have:
20y _
= (L) < 30— T(L) + gy IHIE + P+
43 [n(n —1) — k(k — )] (maxKo(p) — 5).

Moreover, the equality holds at a point p € M if and only if there exist orthonormal bases
{er,...en} of TyMand {e, 11, ...,em} of T;—M such that

Yt Moo = 1, Vj € {k+1,.m),
Yhot hie = 137, Vi € {k+1,..,n},
Wp=hi =0,Y1<i<j<n(ij)¢{l,.. k7>

foranyr e {n+1,.. m}.
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