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Abstract: In this article we give theoretical results for different stochastic orders of a log-scale-location
family which uses Tsallis statistics functions. These results describe the inequalities of moments
or Gini index according to parameters. We also compute the mean in the case of q-Weibull and
q-Gaussian distributions. The paper is aimed at analyzing the order between survival functions,
Lorenz curves and (as consequences) the moments together with the Gini index (respectively a
generalized Gini index). A real data application is presented in the last section. This application
uses only the survival function because the stochastic order implies the order of moments. Given
some supplementary conditions, we prove that the stochastic order implies the Lorenz order in the
log-scale-location model and this implies the order between Gini coefficients. The application uses
the estimated parameters of a Pareto distribution computed from a real data set in a log-scale-location
model, by specifying the Kolmogorov–Smirnov p-value. The examples presented in this application
highlight the stochastic order between four models in several cases using survival functions. As
direct consequences, we highlight the inequalities between the moments and the generalized Gini
coefficients by using the stochastic order and the Lorenz order.

Keywords: Gini index; Tsallis statistics; stochastic orders

1. Introduction

The main purpose of this article is to introduce a family of lifetime distributions,
called the Tsallis log-scale-location family. For this family of distributions, we analyze
different stochastic orders and also the order between some characteristics of distributions,
for example, between the Gini index or the moments. Given the specificity of our research,
we will briefly present in the sequel some important topics and we also give some classical
and recent references for the main ingredients of our work: (i) survival analysis; (ii) the
Gini index and corresponding applications in economy, demography and social sciences in
general; (iii) Tsallis statistics and related concepts, like Tsallis exponential and logarithm
functions, q-exponential family, maximum entropy principle, etc. (iv) stochastic orders and
related properties. Since our work is at the crossroads of these different research directions,
we think that it is useful to provide a short overview of some important problems in these
fields that are related to our work.

In risk theory, life expectancy is a significant measure. Due to the high average
standard of living of some countries lately, there is an interest in studying the extent to
which this standard of living is equally accessible to all people. That is why lately many
people are studying the measures of variability in terms of lifespan (Anand et al. [1]). The
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changes that characterize the changing stage of mortality are measured by variables such
as age-specific death rates, life expectancy at birth, probabilities of death and survival
function. Survival analysis is used in medicine, biology, social sciences such as economics,
engineering (reliability and failure time analysis) and many other sciences. Survival
analysis methods depend on the distribution of survival and on the hazard function.
Parametric models are in practice easy to adapt and process because they are defined
by a small and fixed number of unknown parameters. This allows one to use standard
statistical methods in order to carry out statistical inference. These techniques depend
on the adequacy of the specific parametric model used. For example, in biomedical
applications, nonparametric (e.g., estimator of the survival curve) and semi-parametric
(e.g., Cox proportional risk model) models are most important because they have the
flexibility to adapt to a wide range of forms of hazard functions. Even so, parametric
models are used in biomedical research and may be appropriate when the set of survival
data indicates approximately a parametric form.

Another important subject for our work is the Gini coefficient or index. The Gini coef-
ficient is the most common statistical index of diversity or inequality in social sciences (see,
e.g., Gini [2,3], Nygard and Sandröm [4], Kakwani [5], Kendall et al. [6], Allison [7]). It is
used in econometrics as a standard measure of inter-individual or inter-household inequal-
ity in income and wealth (Atkinson [8,9], Sen [10], Anand [11]). Illsey and Le Grand [12],
who justified the use of Gini coefficient for the analysis of inequality in health in the 1980s,
stressed that the individual-based measurement of inequality in health is a way to a uni-
versal comparability of degrees of inequality over time and across countries. They also
computed Gini coefficient from distributions of deaths by age in real populations. Other
researchers linked the Gini coefficient and other measures of inter-individual inequality
in age at death with the life table (Hanada [13], Silber [14], Wilmoth and Horiuchi [15]).
Hicks proposed to use the Gini coefficient to adjust average life expectancy for variability in
order to construct the inequality-adjusted human development index (Hicks [16]). Recent
interesting articles were proposed by Kim and Kim [17], Bonetti et al. [18], Ostasiewicz
and Mazurek [19]. Among the recent works related to the Gini index and statistical exten-
sions and applications, we can mention the Gini regressions and the principal component
analysis based on the Gini correlation matrix developed in Charpentier et al. [20,21] and
linear discriminant analysis based on generalized Gini correlation indexes proposed in
Condevaux et al. [22]. It is worth noting that the Gini index can be expressed in terms
of the Lorenz curve L(p) as the area between the first diagonal (equality) and the Lorenz
curve, divided by the whole area below the diagonal. If we compute the GIni index on a
finite sample of observations, it is equal to zero if all individuals die at the same age and it
is equal to one if all the individuals except one of them die at birth and this remaining one
dies at a positive age.

An important concept in demography is the concept of longevity that denotes the
long duration of life and is used ss a synonym for high life expectancy. It is well known
that a significant increase in longevity has been observed during the past several centuries:
in particular, bestpractice life expectancy at birth has risen by 2.5 years per decade since the
1840 (Oeppen and Vaupel [23]). Such increase in life expectancy is one of the consequences
of changes in the survival distribution of the population over different cohorts. Evidence
suggests that higher life expectancy at birth is associated with a lower concentration of
survival times, both cross-country and over time. An empirical analysis of approximately
45 countries for the years 1960–1990 reveals a tight negative association between life
expectancy at birth and the Gini coefficient (Shkolnikov et al. [24]). Specifically, during the
first three quarters of the 20th century the inter-individual inequality in length of life has
been declining.

Several distributions have been proposed to model real lifetime data. The Weibull
distribution is one of the most commonly used distributions for this purpose. In practice,
it has been shown to be very flexible in modeling various types of lifetime data with
monotone failure rates but it is not useful for modeling the bathtub shaped and the
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unimodal failure rates, which are common in reliability and biological studies. It is of
utmost interest because of its great number of special features and its ability to fit data
from various fields, ranging from life data to observations made in economics and business
administration, meteorology, hydrology, quality control, acceptance sampling, statistical
process control, inventory control, physics, chemistry, geology, geography, astronomy,
medicine, psychology, material science, engineering, biology. Iriarte et al. [25] introduced a
new probability distribution class (Lambert-F Distributions Class) and they analyzed the
hazard rate function. Al-Mofleh et al. [26] proposed a new two-parameter generalized
Ramos–Louzada distribution and analyzed the hazard rate function. Gigliarano et al. [27]
worked with the log-scale-location model. They analyzed the Gini index and the first
moment of this model. Important analyzes on the population were made by Haberman
and Renshaw [28], Finkelstein [29], Debon et al. [30], Canudas-Romo [31], Brown et al. [32],
Booth and Tickle [33]. Hazra et al. [34] considered the location-scale family of distributions
and derived conditions under which the largest order statistic of a set of random variables
with different/the same location as well as different/the same scale parameters dominates
that of another set of random variables with respect to various stochastic orders.

Recently, the notion of the exponential family has been generalized by Naudts [35–40].
The same definition of generalized exponential family has been introduced in the mathe-
matical literature by Naudts [36,40], Grunwald and Dawid [41], Eguchi [42], Briggs and
Beck [43]. This class of models was also derived using the maximum entropy principle in
Abe [44], Hanel and Thurner [45] and in the context of game theory by Topsoe [46,47]. The
notion of q-exponential family is connected with Amari’s family (see Amari [48]), studied
in the context of information geometry. The geometric approach is very appealing also in
the context of statistical physics (see, for instance, [49,50]). The q-deformed exponential
and logarithmic functions were first introduced in Tsallis’ statistics in 1994 [51].

The last important concept for our work is the one of stochastic order. It is clear that
stochastic orders provide methods of comparing random variables and vectors which are
now used in many areas such as statistics, operations research, biomathematics, actuarial
sciences, economic theory, queuing theory, risk management and other related fields. For
a comprehensive review of the properties and characterizations of stochastic orderings,
including a variety of applications, the reader is referred to the monographs of Shaked
and Shantikumar [52], Levy [53], Denuit et al. [54], Balakrishnan et al. [55]. Many of these
orders have characterizations as so-called integral stochastic orders which is obtained by
comparing expectations of functions in a certain class. Lando and Bertoli-Barsotti [56]
obtained a method for deriving second-order stochastic dominance between multipara-
metric families which can be decomposed into a functional composition of two cumulative
distributions and a quantile function. The method is applied to stochastic comparisons of
order statistics. Recently, Sarabia et al. [57] introduced a general class of multivariate GB2
distributions based on a generalization of the order statistics distribution, its construction re-
sulting in a multivariate GB2 distribution with support above the diagonal. Aijaz et al. [58]
introduced a new Hamza two parameter distribution and studied its properties, including
the moments, stochastic orderings, Bonferroni and Lorenz curves, Rényi entropy, order
statistics, hazard rate function and mean residual function. Analytic representations of the
multivariate Lorenz surface for a relevant type of models based on the class of distributions
with given marginals described by Sarmanov and Lee have been obtained recently by
Sarabia and Jorda [59]. Das and Kayal [60] obtained ordering results for the largest and
the smallest order statistics arising from dependent heterogeneous exponentiated location-
scale random observations, for the case that the sets of observations follow a common
or different Archimedean copulas. Moreover, sufficient conditions for which the usual
stochastic order and the reversed hazard rate order between the extreme order statistics
hold have been derived. Aijaz et al. [61] proposed the inverse analogue of Ailamujia
distribution. The relevant statistical properties of the new distribution investigated include
moments, moment generating function, order statistics, survival measures, Shanon entropy,
mode and median. Recently, Castaño-Martínez et al. [62] extended the results related to
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the increasing convex order of relative spacings for two distributions from consecutive
spacings to the case of general spacings. Panja et al. [63] considered stochastic comparisons
of lifetimes of series and parallel systems with dependent and heterogeneous components
with lifetimes following the proportional odds model and component lifetimes joint distri-
bution modeled by Archimedean survival copula. By comparisons of heterogeneous series
systems with location-scale family distributed components, Kundu and Chowdhury [64]
proved that the systems with dependent series components modeled by Archimedean
copula with more dispersion in the location or scale parameters perform better in the sense
of the usual stochastic order.

Taking into account all these bibliographic references ans associated discussions that
we have presented up to this moment, we can state now that the main objective of our
work is to introduce a generalized log-scale-location family of distributions that extends
existing classes from the literature. Thus we obtain a more flexible model, interesting for
lifetime applications in various fields. Then, for this family of distributions, we show that
some types of stochastic orders are preserved, under certain conditions. To illustrate our
findings, we consider the data from a simpler model existing in the literature and, applying
our generalized log-scale-location model, we illustrate graphically that certain stochastic
orders are preserved, which is coherent with some of our theoretical results obtained in
the article.

The paper is organized as follows. Section 2 introduces some preliminary notions and
results. In Section 3 we define the generalized (X0, q, b, u, x)-log-scale-location model and
we analyze the moments of these models in Section 4. Necessary or sufficient conditions
for usual stochastic order are derived in Section 5, while necessary conditions for the
Lorenz order, order for Gini index and generalized Gini index are obtained in Section 6.
The hazard rate order is analyzed in Section 7, while in Section 8 the excess wealth order
and convex order are studied. A real data application is presented in Section 9 and some
general conclusions of the article are given in the last section.

2. Preliminaries

In this section we introduce some notation and basic definitions that will be used
along the article. Except some classical notions and notations, we will give here the
definitions of Lorenz curve and Gini index of a random variable, the notions of q-deformed
Tsallis exponential function and q-deformed Tsallis logarithm function, the associated q-
Weibull and q-Normal distributions, some notions of stochastic ordering and relationships
between them.

Let (Ω,F , P) be a probability space and X : Ω → R a random variable. We denote
by FX(x) the corresponding distribution function, FX(x) = P(X ≤ x), and by FX(x) the
corresponding survival function, FX(x) = 1− FX(x), x ∈ R. We set R+ = {x ∈ R : x > 0}.

For a function g : R → R, g(x)+ = max(g(x), 0) and g(x)− = min(g(x), 0). We say
that a function f : R→ R is:

(i) non-decreasing (or increasing) if f (x) ≤ f (y) for all x, y ∈ R with x ≤ y;
(ii) non-increasing (or decreasing) if f (x) ≥ f (y) for all x, y ∈ R with x ≤ y.
If X is absolutely continuous with respect to the Lebesgue measure, then we denote

fX(x) = (FX(x))′ its density function. We also denote QX(p) = inf{x ∈ R : p ≤ FX(x)}
the inferior quantile function of X. We will also use the notation F−1

X (p) = QX(p).
If FX is differentiable, we define the hazard rate function rX : Supp(FX) → R, rX =(

− ln FX
)′

= fX
FX

, where for a function g : R→ R, Supp(g) = {x ∈ R : g(x) 6= 0}.
For a positive random variable X with EX 6= 0, we introduce the Lorenz curve of X

defined by

LX(p) =

∫ p
0 QX(u)du

EX
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and also the Gini index of X (see Arnold [65,66]) defined

GX = 1− 2
∫ 1

0
LX(p)dp

Other formulas for computing the Gini index of X can also be derived (see,
e.g., Gigliarano et al. [27]) are the following:

GX = 1−
∫ ∞

0 F2
X(x)dx∫ ∞

0 FX(x)dx

and

GX =

∫ ∞
0

∫ ∞
0 |t1 − t2|dFX(t1)dFX(t2)

2EX
.

For a ≥ 1, one can define the so-called generalized a-Gini index by

GX;a = 1−
∫ ∞

0

(
FX
)a
(x)dx∫ ∞

0 FX(x)dt
.

We notice that GX;2 = GX and a simple calculation shows that

GX;a = 1− a(a− 1)
∫ 1

0
(1− p)a−2LX(p)dp.

Let us now recall the definitions of the q-deformed Tsallis logarithm function and
of the q-deformed Tsallis exponential function introduced by Tsallis [51] and also give
some properties.

Definition 1. For a real number q ≤ 1, the q-deformed Tsallis logarithm function is ltq : (0, ∞)→
R with

ltq(x) = x1−q−1
1−q , if q < 1

and

ltq(x) = ln x, if q = 1.

All along this article we will use the notations ltq(x) or ltqx for the q-deformed Tsallis
logarithm function computed in a point x, x > 0.

Remark 1. The function ltq has the following properties:
(i) ltq(1) = 0.
(ii) x 7→ ltq(x) is strictly non-decreasing function on (0, ∞) because ∂

∂x ltq(x) = x−q > 0
for all x > 0.

Definition 2. For a real number q ≤ 1, the q-deformed Tsallis exponential function is etsq : R→
[0, ∞) with

etsq(x) = [1 + (1− q)x]
1

1−q
+ , if q < 1

and

etsq(x) = ex, if q = 1.

All along this article we will use the notations etsq(x) or etsqx for the q-deformed
Tsallis exponential function computed in a point x ∈ R.
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Remark 2. The function etsq has the following properties:
(i) etsq(0) = 1.

(ii) ∂
∂x etsq(x) = (1− q) ·

(
etsq(x)

)q
> 0 for all x ∈

(
− 1

1−q , ∞
)

and ∂
∂x etsq(x) = 0 for all

x ∈
(
−∞,− 1

1−q

)
.

(iii) x 7→ etsq(x) is non-decreasing function on R.
(iv) For x > 0, we have etsq

(
ltq(x)

)
= x.

(v) For x ∈
(
− 1

1−q , ∞
)

, we have ltq
(
etsq(x)

)
= x.

These functions are equally studied in Naudts [67], that provides also the notion of
q-exponential family.

The q-deformed Tsallis exponential function and q-deformed Tsallis logarithm function
allow one to introduce new random variables, by analogy with the ones defined using
classical exponential and logarithm functions. We will introduce now the notions of
q-Weibull distribution and q-Normal distribution.

Definition 3. We say that X is q -Weibull distributed with k, λ > 0, q ≤ 1, and denote it by
X ∼ q−Weibull(k, λ), if

fX(x) = (2− q)
k
λ

( x
λ

)k−1
etsq

(
−
( x

λ

)k
)
· 1[0,∞)(x).

In this case:

FX(x) = etsq′
(
−
( x

λ′
)k
)

, if x ≥ 0 and

FX(x) = 1, if x < 0, where
q′ = 1

2−q , λ′ = λ

(2−q)
1
k

.

For the general form of this distribution and further investigations, one can see
Picoli et al. [68].

Definition 4. We say that X is q-Normal distributed with parameters β > 0, q ≤ 1, and denote it
by X ∼ q− N(β, Cq), if

fX(x) =
√

β

Cq
etsq

(
−βx2), where

Cq =
2
√

πΓ
(

1
1−q

)
(3−q)
√

1−qΓ
(

3−q
2(1−q)

) , if q < 1,

Cq =
√

π, if q = 1.

For further investigations on this distribution and related topics, like q-Central Limit
Theorem, one can see Umarov et al. [69].

Let us now recall some definitions of stochastic orders and also some properties of these
orders. All these definitions and results can be founded in Shaked and Shantikumar [52].

Definition 5 (cf. [52]). Let X, Y : Ω→ R be two random variables. X is said to be smaller than
Y in the

(i) stochastic order (written as X ≺st Y) if FX(x) ≤ FY(x) ∀x ∈ R;
(ii) hazard rate order (written as X ≺hr Y) if rX(x) ≥ rY(x) ∀x ∈ Supp(FX) ∩ Supp(FY);
(iii) Lorenz order (written as X ≺Lorenz Y) if LX(p) ≥ LY(p) ∀p ∈ [0; 1];
(iv) dispersive order (written as X ≺disp Y) if F−1

X (β) − F−1
X (α) ≤ F−1

Y (β) − F−1
Y (α) ∀

0 < α ≤ β < 1;
(v) excess wealth order (written as X ≺ew Y) if

∫ ∞
F−1

X (p) FX(x)dx ≤
∫ ∞

F−1
Y (p) FY(x)dx

∀p ∈ (0, 1).
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Another equivalent definition for stochastic order is given in the next definition.

Definition 6. [cf. [52]] Let X, Y : Ω→ R be two random variables. X is said to be smaller than
Y in the stochastic order (written as X ≺st Y) if Eu(X) ≤ Eu(Y), for all non-decreasing functions
u : R→ R, provided that the means exists.

Definition 7 (cf. [52]). Let X, Y : Ω → R be two random random variables. X is said to be
smaller than Y in the convex order (written as X ≺cx Y) if Eu(X) ≤ Eu(Y), for all convex
functions u : R→ R, provided that the means exists.

The following two results concern some properties of the stochastic order and of the
dispersive order, respectively.

Theorem 1. [cf. [52]] Let X : Ω → R random variable and the functions ϕ1, ϕ2 : R → R. If
ϕ1(x) ≤ ϕ2(x) ∀x ∈ R then ϕ1(X) ≺st ϕ2(X).

Theorem 2. [cf. [52], Theorem 3.B.10, p. 152] Let X, Y : Ω→ R be two random variables such
that X ≺st Y.

(i) If X ≺disp Y, then ϕ(X) ≺disp ϕ(Y) for all non-decreasing convex or non-increasing
concave functions ϕ : R→ R.

(ii) If X ≺disp Y, then ϕ(Y) ≺disp ϕ(X) for all non-increasing convex or non-decreasing
concave functions ϕ : R→ R.

Let us now state some well known properties between these stochastic orders.

Proposition 1 (cf. [52], Theorem 1.B.1, p. 18). X ≺hr Y ⇒ X ≺st Y.

Proposition 2. [cf. [52]] X ≺Lorenz Y ⇒ GX ≤ GY.

Proposition 3 (cf. [52]). X ≺disp Y ⇒ X ≺Lorenz Y.

Proposition 4. [cf. [52], 2007, p. 166] If EX = EY is finite then X ≺ew Y ⇒ X ≺cx Y. In
particular, if Var(Y) is finite, then X ≺ew Y ⇒ Var(X) ≤ Var(Y).

Proposition 5 (cf. [52], 3.C.9, p. 166). X ≺disp Y ⇒ X ≺ew Y.

3. Generalized (X0, q, b, u, x)-Log-Scale-Location Model

In this section we propose a new log-scale-location class of lifetime distributions
that extend existing classes presented in [27]. We compute several characteristics of these
distributions, like the hazard rate, the Gini index and the generalized a-Gini index.

Definition 8. For a real random variable X0, functions u : R→ R, b : R→ (0, ∞) and x ∈ R,
q ∈ [0, 1], we say that the positive random variable T follows the (X0, q, b, u, x)-log-scale-location
model if

FT(t) = FX0

(
ltq(t)− u(x)

b(x)

)
, if t > 0

and
FT(t) = 1, if t ≤ 0.

In this definition of the (X0, q, b, u, x)-log-scale-location model, the real number x
stands for any continuous covariate on which the distribution of the lifetime T depends on.
One possible generalization of this model would be the introduction of several covariates.

For q = 1 we obtain the model (5) from Gigliarano et al. [27].
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If the random variable X0 is absolutely continuous with respect to the Lebesgue
measure, with density fX0 , then we can immediately obtain several characteristics of the
random variable T, namely the density fT(t), the hazard rate rT , the Gini index GT and the
generalized a-Gini index GT;a :

fT(t) = fX0

(
ltq(t)− u(x)

b(x)

)
· t−q

b(x)
· 1(0,∞)(t), where t ∈ R,

rT(t) =
t−q

b(x)
rX0

(
ltq(t)− u(x)

b(x)

)
, where t > 0,

GT = 1−
∫ ∞

0 F2
T(t)dt∫ ∞

0 FT(t)dt
= 1−

∫ ∞
0 F2

X0

(
ltq(t)−u(x)

b(x)

)
dt∫ ∞

0 FX0

(
ltq(t)−u(x)

b(x)

)
dt

,

and

GT;a = 1−

∫ ∞
0 Fa

X0

(
ltq(t)−u(x)

b(x)

)
dt∫ ∞

0 FX0

(
ltq(t)−u(x)

b(x)

)
dt

= 1−

∫ ∞
0 Fa

X0

(
ltq(t)−u(x)

b(x)

)
dt

ET
.

We also have the alternative expression of the generalized a-Gini index in terms of the
Lorenz curve of T, LT :

GT;a = 1− a(a− 1)
∫ 1

0
(1− p)a−2LT(p)dp.

4. The Moments of T

In this section we analyze the stochastic order and, as a consequence, the inequalities
between the moments of two log-scale-location models. Next theorem provides a formula
for computing the mean of T.

Theorem 3. Let a random variable X0 and the positive random variable T follows the (X0, q, b, u, x)-

log-scale-location model, with q < 1. If there exists limr→∞

[
r

1
1−q FX0(r)

]
∈ R then

E(T) = [(1− q)b(x)]
1

1−q lim
r→∞

[
r

1
1−q FX0(r)

]
+
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr.

Proof. E(T) =
∫ ∞

0 FX0

(
ltq(t)−u(x)

b(x)

)
dt.

We make the change of variable r = ltq(t)−u(x)
b(x) and we obtain

∫ ∞

0
FX0

(
ltq(t)− u(x)

b(x)

)
dt =

∫ ∞

−
1

1−q +u(x)

b(x)

FX0(r) ·
∂

∂r
etsq(b(x) · r + u(x))dr

= FX0(r) · etsq(b(x) · r + u(x))

∣∣∣∣∣∣∞− 1
1−q +u(x)

b(x)

−
∫ ∞

−
1

1−q +u(x)

b(x)

− fX0(r) · etsq(b(x) · r + u(x))dr

= lim
r→∞

FX0(r) · [1 + (1− q)(b(x) · r + u(x))]
1

1−q
+

−FX0

(
−

1
1−q + u(x)

b(x)

)
etsq

(
b(x) ·

(
−

1
1−q + u(x)

b(x)

)
u(x)

)

+
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr
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= lim
r→∞

FX0(r) · [1 + (1− q)(b(x) · r + u(x))]
1

1−q
+

+
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr

= lim
r→∞

FX0(r) · [1 + (1− q)(b(x) · r + u(x))]
1

1−q

+
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr

= lim
r→∞

r
1

1−q · FX0(r) ·
[

1
r
+ (1− q)

(
b(x) +

u(x)
r

)] 1
1−q

+
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr

= [(1− q)b(x)]
1

1−q · lim
r→∞

[
r

1
1−q FX0(r)

]
+
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr.

In particular, for FX0(r) = e−er
, we have

lim
r→∞

[
r

1
1−q FX0(r)

]
= lim

r→∞

[
r

1
1−q · e−er

]
= lim

r→∞
e

1
1−q ln r−er

= 0

and, for q→ 1, q < 1, it results that

E(T) =
∫ ∞

−∞
fX0(r) · e

Ts
1 (b(x) · r + u(x))dr =

∫ ∞

−∞
fX0(r) · e

b(x)·r+u(x)dr =

eu(x) ·
∫ ∞

−∞
fX0(r) · e

b(x)·rdr = eu(x) · b(x) ·
∫ ∞

−∞

eb(x)·r

b(x)
· fX0(r)dr = eu(x) · E

(
eb(x)·R

)
,

where R is a random variable with survival function FX0(r) = e−er
. It is worth noticing

that we have thus obtained the Proposition 2 from Gigliarano et al. [27].
In the next results we investigate several particular cases, namely the cases where

the baseline distribution of X0 is a q-Weibull distribution, a q-Normal distribution or a
bounded distribution.

Corollary 1. Let X0 ∼ q1 −Weibull(k, λ) and T following the (X0, q, b, u, x)-log-scale-location
model, q < 1, q1 ≤ 1, with q′1 = 1

2−q1
, λ′ = λ

(2−q1)
1
k

. Then

E(T) =
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr.

Proof. We have

lim
r→∞

r
1

1−q FX0(r) = lim
r→∞

r
1

1−q

[
1−

(
1− q′1

)( r
λ′

)k
] 1

1−q′1

+
.

q1 ≤ 1⇒ q′1 ≤ 1; if q1 < 1 then q′1 < 1. In this case we have limr→∞ 1−
(
1− q′1

)( r
λ′
)k

=

−∞. Thus there exists r0 > 0 such that 1−
(
1− q′1

)( r
λ′
)k

< 0 ∀r ≥ r0. It results

lim
r→∞

r
1

1−q

[
1−

(
1− q′1

)( r
λ′

)k
] 1

1−q1

+
= lim

r→∞

(
r

1
1−q · 0

)
= lim

r→∞
0 = 0.

Thus
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E(T) =
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr.

If q1 = 1 then q′1 = 1. In this, case we have

FX0(r) = eTs
1

(
−
( x

λ′

)k
)
= e−(

r
λ′ )

k

.

It is obvious that limr→∞ r
1

1−q FX0(r) = limr→∞ r
1

1−q e−(
r

λ′ )
k

= 0, thus

E(T) =
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr.

Corollary 2. Let X0 ∼ q1 − N(β, Cq1) and T following the (X0, q, b, u, x)-log-scale-location
model, q < 1, q1 ≤ 1. Then

E(T) =
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr.

Proof. We have

lim
r→∞

r
1

1−q FX0(r) = lim
r→∞

r
1

1−q

∫ ∞

r

√
β

Cq
etsq

(
−βx2

)
dx

=

√
β

Cq
lim
r→∞

r
1

1−q

∫ ∞

r

[
1− β(1− q1)x2

] 1
1−q1

+
dx.

If q1 < 1, then limx→∞
[
1− β(1− q1)x2] = −∞; thus there exists an x0 > 0 such that

1− β(1− q1)x2 < 0 ∀x ≥ x0. It results

lim
r→∞

r
1

1−q

∫ ∞

r

[
1− β(1− q1)x2

] 1
1−q1

+
dx = lim

r→∞
r

1
1−q

∫ ∞

r
0dx = lim

r→∞
(r · 0) = lim

r→∞
0 = 0

and then limr→∞ r
1

1−q FX0(r) = 0. Thus

E(T) =
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr.

If q1 = 1, then fX0(x) =
√

β
π e−βx2

.

lim
r→∞

r
1

1−q

∫ ∞

r

√
β

Cq
eTs

1

(
−βx2

)
dx =

√
β

π
lim
r→∞

r
1

1−q

∫ ∞

r
e−βx2

dx = lim
r→∞

∫ ∞
r e−βx2

dx

r−
1

1−q
=

lim
r→∞

(∫ ∞
r e−βx2

dx
)′

(
r−

1
1−q

)′ = lim
r→∞

r
−2+q
1−q e−βr2

= lim
r→∞

1

r
2−q
1−q eβr2

= 0.

It results that limr→∞ r
1

1−q FX0(r) = 0. Thus

E(T) =
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr.
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Corollary 3. Let X0 be a real random variable with the property that there exists M ∈ R such that
X0 ≤ M a.s. Then:

(i) For q < 1, there exists

E(T) =
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr.

(ii) For q = 1, there exists

E(T) = eu(x) · E
(

eb(x)·R
)

.

Proof. Since X0 ≤ M a.s., then FX0(r) = 0 for all r > M and we obtain that

⇒ limr→∞

[
r

1
1−q FX0(r)

]
= 0.

Then E(T) =
∫ ∞

−
1

1−q +u(x)

b(x)

fX0(r) · etsq(b(x) · r + u(x))dr.

Applying Theorem 3 we obtain the desired result.

5. Stochastic Order of These Models

If we want give an order between the moments of a random variable, it is complicated
to compute all the moments and then establish an order. For this reason, we give a theorem
which characterizes the stochastic order of these models.

Theorem 4. Let X0 be a random variable, let T1 be a positive random variable that follows the
(X0, q, b, u, x1)-log-scale-location model and let T2 be a positive random variable that follows the
(X0, q, b, u, x2)-log-scale-location model. Then T1 ≺st T2 if and only if

u(x1)

b(x1)
≤ u(x2)

b(x2)
,

b(x1) ≤ b(x2)

and
1

1− q

(
1

b(x1)
− 1

b(x2)

)
≥ u(x1)

b(x1)
− u(x2)

b(x2)
.

Proof. Let us consider T1 ≺st T2. We have:

FT1(t) ≤ FT2(t) ∀t > 0⇔

FX0

(
ltq(t)− u(x1)

b(x1)

)
≤ FX0

(
ltq(t)− u(x2)

b(x2)

)
∀t > 0⇔

ltq(t)− u(x1)

b(x1)
≥

ltq(t)− u(x2)

b(x2)
∀t > 0⇔

(
1

b(x1)
− 1

b(x2)

)
· ltq(t) ≥

u(x1)

b(x1)
− u(x2)

b(x2)
∀t > 0.

For t = 1 we have u(x1)
b(x1)

≤ u(x2)
b(x2)

.

We have limt→∞ ltq(t) = ∞ and limt→0
t>0

ltq(t) = − 1
1−q . Then:

lim
t→∞

[(
1

b(x1)
− 1

b(x2)

)
· ltq(t)

]
≥ u(x1)

b(x1)
− u(x2)

b(x2)

and
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lim
t→0
t>0

[(
1

b(x1)
− 1

b(x2)

)
· ltq(t)

]
≥ u(x1)

b(x1)
− u(x2)

b(x2)
.

Then b(x1) ≤ b(x2) and 1
q−1

(
1

b(x1)
− 1

b(x2)

)
≥ u(x1)

b(x1)
− u(x2)

b(x2)
.

Now, let us prove the converse. For t > 0, we have(
1

b(x1)
− 1

b(x2)

)
· ltq(t) ≥

(
1

b(x1)
− 1

b(x2)

)
· lim

t→0
t>0

ltq(t) =

1
1− q

(
1

b(x1)
− 1

b(x2)

)
≥ u(x1)

b(x1)
− u(x2)

b(x2)
.

Thus FT1(t) ≤ FT2(t).

The next proposition is a particular case where we examine the behavior of the survival
distribution.

Proposition 6. If u is constant and b is a non-decreasing (non-increasing) function, then:

(i) for t > etsq(u), x 7→ FX0

(
ltq(t)−u(x)

b(x)

)
is a non-decreasing (non-increasing) function;

(ii) for t < etsq(u), x 7→ FX0

(
ltq(t)−u(x)

b(x)

)
is a non-increasing (non-decreasing) function;

and
(iii) for t = etsq(u), x 7→ FX0

(
ltq(t)−u(x)

b(x)

)
is a constant function.

Proof. We consider only the case where b is a non-decreasing function (the non-increasing
case can be proved similarly). Then:

(i) If t > etsq(u), i.e., ltq(t) > u, and is we assume that x1 < x2, then

FX0

(
ltq(t)− u

b(x1)

)
≤ FX0

(
ltq(t)− u

b(x2)

)
;

(ii) If t < etsq(u), i.e., ltq(t) < u, and if we assume that x1 < x2, then

FX0

(
ltq(t)− u

b(x1)

)
≥ FX0

(
ltq(t)− u

b(x2)

)
;

(iii) If t = etsq(u), i.e., ltq(t) = u, and if we assume that x1 < x2, then

FX0

(
ltq(t)− u

b(x1)

)
= FX0(0) = FX0

(
ltq(t)− u

b(x2)

)
.

This proposition generalizes Corollary 1 from Gigliarano et al. [27] when q→ 1, q < 1.

The next two results are consequences of Theorem 4.

Corollary 4. Let is consider a random variable X0 and a random variable T1 following the
(X0, q, b, u, x1)-log-scale-location model, a random variable T2 following the (X0, q, b, u, x2)-log-
scale-location model. If

u(x1)

b(x1)
≤ u(x2)

b(x2)
,

b(x1) ≤ b(x2)

and
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1
1− q

(
1

b(x1)
− 1

b(x2)

)
≥ u(x1)

b(x1)
− u(x2)

b(x2)
,

then

E
(

Tk
1

)
≤ E

(
Tk

2

)
for all k ∈ N, k ≥ 1.

Proof. This is a consequence of Theorem 5 and Definition 6.

Proposition 7. Let T1 be a random variable following the (X1, q, b, u, x1)-log-scale-location model
and let T2 be a random variable following the (X2, q, b, u, x2)-log-scale-location model, with X1 ∼
q0 −Weibull(k1, λ1), X2 ∼ q0 −Weibull(k2, λ2).

Then T1 ≺st T2 if and only if

(2− q0)
1

k1 u(x1)

λ1b(x1)
≤ (2− q0)

1
k2 u(x2)

λ2b(x2)
,

λ1b(x1)

(2− q0)
1

k1

≤ λ2b(x2)

(2− q0)
1

k2

,

and
1

1− q

 (2− q0)
1

k1

λ1b(x1)
− (2− q0)

1
k2

λ2b(x2)

 ≥ (2− q0)
1

k1 u(x1)

λ1b(x1)
− (2− q0)

1
k2 u(x2)

λ2b(x2)
.

Proof. Let us consider T1 ≺st T2. We have:

FT1(t) ≤ FT2(t) ∀t > 0⇔

FX0

(
ltq(t)− u(x1)

b(x1)

)
≤ FX0

(
ltq(t)− u(x2)

b(x2)

)
∀t > 0⇔

eTs
q′0

−
 ltq(t)−u(x1)

b(x1)

λ′1

k1
 ≤ eTs

q′0

−
 ltq(t)−u(x2)

b(x2)

λ′2

k2
∀t > 0⇔

ltq(t)− u(x1)

b(x1)
≥

ltq(t)− u(x2)

b(x2)
∀t > 0⇔

(
1

b(x1)
− 1

b(x2)

)
· ltq(t) ≥

u(x1)

b(x1)
− u(x2)

b(x2)
∀t > 0.

For t = 1 we have u(x1)
b(x1)

≤ u(x2)
b(x2)

.

We have limt→∞ ltq(t) = ∞ and limt→0
t>0

ltq(t) = − 1
1−q . Then:

lim
t→∞

[(
1

b(x1)
− 1

b(x2)

)
· ltq(t)

]
≥ u(x1)

b(x1)
− u(x2)

b(x2)

and

lim
t→0
t>0

[(
1

b(x1)
− 1

b(x2)

)
· ltq(t)

]
≥ u(x1)

b(x1)
− u(x2)

b(x2)
.

Then b(x1) ≤ b(x2) and − 1
1−q

(
1

b(x1)
− 1

b(x2)

)
≥ u(x1)

b(x1)
− u(x2)

b(x2)
.
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Now, let us prove the converse. For t > 0, we have(
1

b(x1)
− 1

b(x2)

)
· ltq(t) ≥

(
1

b(x1)
− 1

b(x2)

)
· lim

t→0
t>0

ltq(t) =

1
1− q

(
1

b(x1)
− 1

b(x2)

)
≥ u(x1)

b(x1)
− u(x2)

b(x2)
.

Thus FT1(t) ≤ FT2(t).

6. Lorenz Order and Gini Index

In this section we give some results on stochastic orderings according to Lorenz curve
and Gini index. We also give some results related to the generalized Gini index.

The next theorem characterizes the dispersive order.

Theorem 5. If b is a non-decreasing (non-increasing) function and T1 is a positive random variable
following the (X0, q, b, u, x1)-log-scale-location model, T2 is a positive random variable following
the (X0, q, b, u, x2)-log-scale-location model, q ∈ (0; 1), then

ltqT1 ≺disp ltqT2

(
ltqT2 ≺disp ltqT1

)
.

Proof. We consider only the case where b is a non-decreasing function (the non-increasing
case can be proved similarly). Let us consider 0 < α ≤ β < 1 and b1 = b(x1), b2 = b(x2),
u1 = u(x1), u2 = u(x2), with x1 < x2. It results that b1 = b(x1) ≤ b(x2) = b2. Let
Y1 = ltqT1, Y2 = ltqT2, β = FY1(yβ) = 1− FX0

( yβ−u1
b1

)
, α = FY1(yα) = 1− FX0

(
yα−u1

b1

)
.

Then F−1
Y1

(β) = u1 + b1 · F
−1
X0

(1− β) and F−1
Y1

(α) = u1 + b1 · F
−1
X0

(1− α). It results

F−1
Y1

(β)− F−1
Y1

(α) = b1 ·
(

F−1
X0

(1− β)− F−1
X0

(1− α)
)

.

Similarly, we have

F−1
Y2

(β)− F−1
Y2

(α) = b2 ·
(

F−1
X0

(1− β)− F−1
X0

(1− α)
)

.

Then
F−1

Y1
(β)− F−1

Y1
(α) ≤ F−1

Y2
(β)− F−1

Y2
(α)⇔

b1 ·
(

F−1
X0

(1− β)− F−1
X0

(1− α)
)
≤ b2 ·

(
F−1

X0
(1− β)− F−1

X0
(1− α)

)
.

But F−1
X0

(1− β) ≥ F−1
X0

(1− α). Then

b1 ·
(

F−1
X0

(1− β)− F−1
X0

(1− α)
)
≤ b2 ·

(
F−1

X0
(1− β)− F−1

X0
(1− α)

)
⇔ b1 ≤ b2.

Therefore Y1 ≺disp Y2 ⇔ b1 ≤ b2. Thus ltqT1 ≺disp ltqT2.

The next theorem characterizes the Lorenz order.

Theorem 6. If b is a non-decreasing (non-increasing) function and T1 is a positive random variable
following the (X0, q, b, u, x1)-log-scale-location model, T2 is a positive random variable following
the (X0, q, b, u, x2)-log-scale-location model, q ∈ (0; 1), with T1 ≺st T2 (T2 ≺st T1) then

T1 ≺Lorenz T2 (T2 ≺Lorenz T1 ).
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Proof. As previously, we consider only the case where b is a non-decreasing function (the
non-increasing case can be proved similarly). From Theorem 6 we have ltqT1 ≺disp ltqT2.
Notice that T1 ≺st T2 and the function

ϕ : R → (0, ∞), ϕ(x) = etsq(x) is increasing and convex. Then etsq
(
ltqT1

)
≺disp

etsq
(
ltqT2

)
. It results T1 ≺disp T2. Thus T1 ≺Lorenz T2.

Let us now state a consequence of this result.

Corollary 5. If b is a non-decreasing (non-increasing) function and T is a positive random variable
following the (X0, q, b, u, x)-log-scale-location model, q ∈ (0; 1), then the function

x 7→ 1−

∫ ∞
0 F2

X0

(
ltq(t)−u(x)

b(x)

)
dt∫ ∞

0 FX0

(
ltq(t)−u(x)

b(x)

)
dt

is non-decreasing (non-increasing).

Proof. This is a direct consequence of Theorem 7.

This result shows that, under the class of (X0, q, b, u, x) -log-scale-location model, the
Gini index is non-decreasing (non-increasing) as x increases, if the shape parameter b(x) is
non-decreasing (non-increasing).

Theorem 7 and Corollary 5 generalize Theorem 1 from Gigliarano et al. [27] when
q→ 1, q < 1.

Let us now focus on the generalized a-Gini index. The following two results character-
ize the generalized a-Gini index.

Proposition 8. Let X, Y be two random variables. If X ≺Lorenz Y, then GX;a ≤ GY;a.

Proof. X ≺Lorenz Y ⇒ LX(p) ≥ LY(p) ∀p ∈ [0; 1]⇒ GX;a ≤ GY;a.

The next result generalizes Theorem 7 and Corollary 5.

Corollary 6. If b is a non-decreasing (non-increasing) function and T follows the (X0, q, b, u, x)-
log-scale-location model, q ∈ (0; 1), then:

(i) The function x 7→ 1−
∫ ∞

0 Fa
X0

(
ltq(t)−u(x)

b(x)

)
dt∫ ∞

0 FX0

(
ltq(t)−u(x)

b(x)

)
dt

is non-decreasing (non-increasing), for a ∈

(−∞; 0] ∪ [1; ∞);

(ii) The function x 7→ 1 −
∫ ∞

0 Fa
X0

(
ltq(t)−u(x)

b(x)

)
dt∫ ∞

0 FX0

(
ltq(t)−u(x)

b(x)

)
dt

is non-increasing (non-decreasing), for

a ∈ (0; 1).

Proof. This is a consequence of Proposition 8.

This result shows that, under the class of (X0, q, b, u, x)-log-scale-location model, the
a-Gini index is non-decreasing (non-increasing) as x increases, if the shape parameter b(x)
is non-decreasing (non-increasing).

7. The Hazard Rate Order

In this section we give results for the hazard rate order and hazard rate functions.

Theorem 7. If b, u, rX0 are non-decreasing (non-increasing) functions and T1 is a positive real
random variable following the (X0, q, b, u, x1)-log-scale-location model, T2 is a positive real random
variable following the (X0, q, b, u, x2)-log-scale-location model, then T1 ≺hr T2 (T2 ≺hr T1).
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Proof. The proof will be done for non-decreasing b, u, rX0 (the non-increasing case can be
proved similarly). For x1 ≤ x2 and t > 0, we have

t−q

b(x1)
≥ t−q

b(x2)
,

ltq(t)− u(x1)

b(x1)
≥

ltq(t)− u(x2)

b(x2)
.

Then

rT1(t) =
t−q

b(x1)
rX0

(
ltq(t)− u(x1)

b(x1)

)
≥ t−q

b(x2)
rX0

(
ltq(t)− u(x2)

b(x2)

)
= rT2(t).

Proposition 9. If X0 ∼ q1−Weibull(k, λ) and T is a positive real random variable that follows the

(X0, q, b, u, x)-log-scale-location model, with b, u non-decreasing, then x 7→ t−q

b(x) rX0

(
ltq(t)−u(x)

b(x)

)
is non-increasing.

Proof. It is clear that rX0(x) = k
λ′ ·

xk−1

1−(1−q′1)(
x

λ′ )
k is a non-decreasing function of x. This

implies that x 7→ t−q

b(x) rX0

(
ltq(t)−u(x)

b(x)

)
is non-increasing.

Proposition 10. If X0 ∼ µ, where µ can be (1− p)δ0 + pδ1 (p ∈ (0, 1)), Geometric(p),
Binomial(n, p), Poisson(λ), Negbin(n, p), Uni f (a, b), Gamma(ν, a), N(µ, σ), Beta(m+ 1, n+
1), κ2(n) and T follows the (X0, q, b, u, x1)-log-scale-location model, with b, u non-increasing (non-

decreasing), then x 7→ t−q

b(x) rX0

(
ltq(t)−u(x)

b(x)

)
is non-increasing (non-decreasing).

Proof. We have that rX0 is non-decreasing.

8. The Excess Wealth and Convex Order

In this section we analyze the excess wealth and convex orders. Theorem 9 gives a
sufficient condition for excess wealth order of two (X0, q, b, u, x)-log-scale-location models,
while Theorem 10 gives sufficient conditions for convex order of these models.

Theorem 8. Let us consider some positive real random variables T1 and T2. If b is non-decreasing
(non-increasing) and T1 follows the (X0, q, b, u, x1)-log-scale-location model, while T2 follows the
(X0, q, b, u, x2)-log-scale-location model, q ∈ (0; 1), with T1 ≺st T2 (T2 ≺st T1,) then

T1 ≺ew T2 (T2 ≺ew T1 ).

Proof. Without loss of generality we take b to be non-decreasing.
From Theorem 6 we have ltqT1 ≺disp ltqT2. We have T1 ≺st T2 and the function

ϕ : R→ (0, ∞), ϕ(x) = etsq(x) is increasing convex. Then etsq
(
ltqT1

)
≺disp etsq

(
ltqT2

)
.

It results that T1 ≺disp T2. Thus T1 ≺ew T2.

Theorem 9. If b is a non-decreasing (non-increasing) function, T1 is a positive random variable
that follows the (X0, q, b, u, x1)-log-scale-location model, T2 is a positive random variable that
follows the (X0, q, b, u, x2)-log-scale-location model, q ∈ (0; 1), with ET1 = ET2 and T1 ≺ew T2
(T2 ≺ew T1) then

T1 ≺cx T2 (T2 ≺cx T1 ).

Proof. It results from Theorem 9 and Proposition 4.

The next result is a consequence of Theorem 9 and Proposition 4.
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Corollary 7. If b is a non-decreasing (non-increasing) function, T1 is a positive random variable
that follows the (X0, q, b, u, x1)-log-scale-location model, T2 is a positive random variable that
follows the (X0, q, b, u, x2)-log-scale-location model, q ∈ (0; 1), with Var(T2) finite (Var(T1)
finite) and T1 ≺ew T2 (T2 ≺ew T1) then

Var(T1) ≤ Var(T2) (Var(T2) ≤ Var(T1)).

Proof. It results from Theorem 9 and Proposition 4.

9. Real Data Application

In this section we illustrate the theoretical results obtained in the paper. We use the
data and the estimated parameters of a Pareto distribution from Nadarajah et al. [70]. The
data represents automobile insurance claims from a large midwestern US property. As we
already mentioned, the Pareto distribution Pa(b, c) is used in [70] for this application.

Let X0 ∼ Pa(b, c), u, b : [0, 20)→ R, u(x) = −4, b(x) = 0.2− x
100 . Let also T1, T2, T3, T4

be random variables that follow the (X0, q, b, u, 0)-log-scale-location,
(X0, q, b, u, 5)-log-scale-location, (X0, q, b, u, 10)-log-scale-location, (X0, q, b, u, 15)-log-scale-
location models, respectively.

In each plots we will represent y = FT(t) = FX0

(
ltq(t)−u(x)

b(x)

)
when x takes the values

0, 5, 10 and 15 for two Pareto distribution with parameters estimated α̂ and β̂ and different
values of q. The survival functions are very important because their ordering implies
the ordering between the moments of Gini coefficients (when the means are equal). The
estimated values of the parameters are given in Table 1.

Table 1. The estimated parameters α̂, β̂ for different values of q and the p-values based on one-sample
Kolmogorov–Smirnov test.

α̂ β̂ q K-S p-Value

0.2897983 25 0.1 0.143
0.2897983 25 0.5 0.143
0.2897983 25 1 0.143
0.2949511 35 0.1 0.290
0.2949511 35 0.5 0.290
0.2949511 35 1 0.290

For each of the following graphs, the black line corresponds to the case x = 0, the red
line corresponds to the case x = 5, the green line corresponds to the case x = 10 and the
yellow one corresponds to the case x = 15.

Figure 1 displays the plot of y for α̂ = 0.2897983, β̂ = 25, q = 0.1, u(x) = −4, b(x) =
0.2− x

100 .

Figure 1. The plot of y for
(

α̂ = 0.2897983, β̂ = 25, q = 0.1, u(x) = −4, b(x) = 0.2− x
100

)
.
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Figure 2 displays the plot of y for α̂ = 0.2897983, β̂ = 25, q = 0.5, u(x) = −4, b(x) =
0.2− x

100 .

Figure 2. The plot of y for
(

α̂ = 0.2897983, β̂ = 25, q = 0.5, u(x) = −4, b(x) = 0.2− x
100

)
.

Figure 3 displays the plot of y for α̂ = 0.2897983, β̂ = 25, q = 1, u(x) = −4, b(x) =
0.2− x

100 .

Figure 3. The plot of y for
(

α̂ = 0.2897983, β̂ = 25, q = 1, u(x) = −4, b(x) = 0.2− x
100

)
.

Figure 4 displays the plot of y for α̂ = 0.2949511, β̂ = 35, q = 0.1, u(x) = −4, b(x) =
0.2− x

100 .

Figure 4. The plot of y for
(

α̂ = 0.2949511, β̂ = 35, q = 0.1, u(x) = −4, b(x) = 0.2− x
100

)
.
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Figure 5 displays the plot of y for α̂ = 0.2949511, β̂ = 35, q = 0.5, u(x) = −4, b(x) =
0.2− x

100 .

Figure 5. The plot of y for
(

α̂ = 0.2949511, β̂ = 35, q = 0.5, u(x) = −4, b(x) = 0.2− x
100

)
.

Figure 6 displays the plot of y for α̂ = 0.2949511, β̂ = 35, q = 1, u(x) = −4, b(x) =
0.2− x

100 .

Figure 6. The plot of y for
(

α̂ = 0.2949511, β̂ = 35, q = 1, u(x) = −4, b(x) = 0.2− x
100

)
.

From these six graphs we observe that, for q = 1, the functions are convex and, for
q ∈ {0.1, 0.5}, the functions are concave. We observe also that, for q = 0.5, the graphs
of these four functions are closer than in the other cases. Another conclusion is that the
function x 7→ FX0

(
ltq(t)−u(x)

b(x)

)
is increasing on {0, 5, 10, 15}. This implies that

T1 ≺st T2 ≺st T3 ≺st T4.

It yields that

E(Tk
1 ) ≤ E(Tk

2 ) ≤ E(Tk
3 ) ≤ E(Tk

4 ), k ∈ N, k ≥ 1.

Moreover, from Theorem 7 we have

T1 ≺Lorenz T2 ≺Lorenz T3 ≺Lorenz T4.

Then
GT1;a ≤ GT2;a ≤ GT3;a ≤ GT4;a.
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10. Conclusions

In this article we propose a new generalized log-scale-location family of distributions
and we gave results on different stochastic orders for this generalized log-scale-location
family that uses the Tsallis statistics. For this family of lifetime distributions, we have stud-
ied different stochastic orders, the moments and Gini indexes according to the parameters.
On the one hand, the interest in the research work that we proposed in this article comes
from the fact that we have developed new classes of lifetimes that extend existing classes
from the literature. Thus we obtain a modeling tool that is more flexible, from a certain
point of view, than the ones existing in the literature. On the other hand, for the models that
we define in this work, we show that some types of stochastic orders are preserved, under
certain conditions. Having in mind various potential fields of applications for this family
of lifetime distributions (e.g., risk theory, reliability, survival analysis, epidemiology, insur-
ance, demography), these stochastic orderings are extremely important. Last but not least,
our research is a contribution to the growing literature of Tsallis statistical applications.

As for the future work, it would be interesting to study this topic for other values of
the Tsallis parameter and also to carry out some extended simulations and detailed real
data applications of the type of models and techniques developed in the present article.
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