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Abstract: Face recognition and identification are very important applications in machine learning.
Due to the increasing amount of available data, traditional approaches based on matricization and
matrix PCA methods can be difficult to implement. Moreover, the tensorial approaches are a natural
choice, due to the mere structure of the databases, for example in the case of color images. Never-
theless, even though various authors proposed factorization strategies for tensors, the size of the
considered tensors can pose some serious issues. Indeed, the most demanding part of the computa-
tional effort in recognition or identification problems resides in the training process. When only a few
features are needed to construct the projection space, there is no need to compute a SVD on the whole
data. Two versions of the tensor Golub–Kahan algorithm are considered in this manuscript, as an
alternative to the classical use of the tensor SVD which is based on truncated strategies. In this paper,
we consider the Tensor Tubal Golub–Kahan Principal Component Analysis method which purpose it
to extract the main features of images using the tensor singular value decomposition (SVD) based
on the tensor cosine product that uses the discrete cosine transform. This approach is applied for
classification and face recognition and numerical tests show its effectiveness.

Keywords: cosine product; Golub–Kahan algorithm; Krylov subspaces; PCA; SVD; tensors

1. Introduction

An important challenge in the last few years was the extraction of the main informa-
tion in large datasets, measurements, observations that appear in signal and hyperspectral
image processing, data mining, machine learning. Due to the increasing volume of data
required by these applications, approximative low-rank matrix and tensor factorizations
play a fundamental role in extracting latent components. The idea is to replace the initial
large and maybe noisy and ill conditioned large scale original data by a lower dimen-
sional approximate representation obtained via a matrix or multi-way array factorization or
decomposition. Principal Components Analysis is a widely used technique for image recog-
nition or identification. In the matrix case, it involves the computation of eigenvalues or
singular decompositions. In the tensor case, even though various factorization techniques
have been developed over the last decades (high-order SVD (HOSVD), Candecomp–Parafac
(CP) and Tucker decomposition), the recent tensor SVDs (t-SVD and c-SVD), based on the
use of the tensor t-product or c-products offer a matrix-like framework for third-order
tensors, see [1–15] for more details on recent work related to tensors and applications. In the
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present work, we consider third order tensors that could be defined as three dimensional
arrays of data. As our study is based on the cosine transform product, we limit this work
to three-order tensors.

For a given 3-mode tensor X ∈ Rn1×n2×n3 , we denote by xi1,i2,i3 the element (i1, i2, i3)
of the tensor X . A fiber is defined by fixing all the indexes except one. An element
c ∈ R1×1×n is called a tubal-scalar or simply tube of length n. For more details refer to [1,2].

2. Definitions and Notations
2.1. Discrete Cosine Transformation

In this subsection we recall some definitions and properties of the discrete cosine
transformation and the c-product of tensors. During recent years, many advances were
made in order to establish a rigorous framework enabling the treatment of problems for
which the data is stored in three-way tensors without having to resort to matricization [1,8].
One of the most important feature of such a framework is the definition of a tensor-tensor
product as the t-product, based on the Fast Fourier Transform . For applications as image
treatment, the tensor-tensor product based on the Discrete Cosine Transformation (DCT)
has shown to be an interesting alternative to FFT. We now give some basic facts on the DCT
and its associated tensor-tensor product. The DCT of a vector v ∈ Rn is defined by

ṽ = Cnvs. ∈ Rn, (1)

where Cn is the n× n discrete cosine transform matrix with entries

(Cn)ij =

√
2− δi1

n
cos
(
(i− 1)(2j− 1)π

2n

)
1 ≤ i, j ≤ n

with δij is the Kronecker delta; see p. 150 in [16] for more details. It is known that the
matrix Cn is orthogonal, i.e., CT

n Cn = CnCT
n = In; see [17]. Furthermore, for any vector

v ∈ Rn, the matrix vector multiplication Cnv can be computed in O(nlog(n)) operations.
Moreover, Reference [17] have shown that a certain class of Toeplitz-plus-Hankel matrices
can be diagonalized by Cn. More precisely, we have

Cn th(v)C−1
n = Diag(ṽ), (2)

where

th(v) =


v1 v2 . . . vn
v2 v1 . . . v3
...

... . . .
...

vn vn−1 . . . v1


︸ ︷︷ ︸

Toeplitz

+


v2 . . . vn 0
...

... ... vn

vn 0 . . .
...

0 vn . . . v2


︸ ︷︷ ︸

Hankel

and Diag(ṽ) is the diagonal matrix whose i-th diagonal element is (ṽ)i.

2.2. Definitions and Properties of the Cosine Product

In this subsection, we briefly review some concepts and notations, which play a cen-
tral role for the elaboration of the tensor global iterative methods based on the c-product;
see [18] for more details on the c-product.
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Let A ∈ Rn1×n2×n3 be a real valued third-order tensor, then the operations mat and its
inverse ten are defined by

mat(A) =


A1 A2 . . . An
A2 A1 . . . A3
...

... . . .
...

An An−1 . . . A1


︸ ︷︷ ︸

Block Toeplitz

+


A2 . . . An 0
...

... ... An

An 0 . . .
...

0 An . . . A2


︸ ︷︷ ︸

Block Hankel

∈ Rn1n3×n2n3

and the inverse operation denoted by ten is simply defined by

ten(mat(A)) = A.

Let us denote Ã the tensor obtained by applying the DCT on all the tubes of the tensor
A. This operation and its inverse are implemented in the Matlab by the commands dct
and idct as

Ã = dct(A, [ ], 3), and idct(Ã, [ ], 3) = A,

where idct denotes the Inverse Discrete Cosine Transform.

Remark 1. Notice that the tensor Ã can be computed by using the 3-mode product defined in [2]
as follows:

Ã = A×3 M

where M is the n3 × n3 invertible matrix given by

M = W−1Cn3(I + Z)

where Cn3 denote de n3 × n3 Discrete Cosine Transform DCT matrix, W = diag(Cn3(:, 1)) is the
diagonal matrix made of the first column of the DCT matrix, Z is n3 × n3 circulant upshift matrix
which can be computed in MATLAB using W = diag(ones(n3 − 1, 1), 1) and I the n3 × n3
identity matrix; see [18] for more details.

Let A be the matrix

A =


A(1)

A(2)

. . .
A(n3)

 ∈ Rn3n1×n3n2 (3)

where the matrices A(i)’s are the frontal slices of the tensor Ã. The block matrix mat(A)
can also be block diagonalized by using the DCT matrix as follows

(Cn3 ⊗ In1) mat(A) (C
T
n3
⊗ In2) = A (4)

Definition 1. The c-product of two tensorsA ∈ Rn1×n2×n3 and B ∈ Rn2×m×n3 is the n1 ×m× n3
tensor defined by:

A ?c B = ten(mat(A)mat(B)).

Notice that from Equation (3), we can show that the product C = A ?c B is equivalent
to C = A B. Algorithm 1 allows us to compute, in an efficient way, the c-product of the
tensors A and B, see [18].
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Algorithm 1 Computing the c-product.

Inputs: A ∈ Rn1×n2×n3 and B ∈ Rn2×m×n3

Output: C = A ?c B ∈ Rn1×m×n3

1. Compute Ã = dct(A, [ ], 3) and B̃ = dct(B, [ ], 3).
2. Compute each frontal slices of C̃ by

C(i) = A(i)B(i)

3. Compute C = idct(C̃, [ ], 3) .

Next, give some definitions and remarks on the c-product and related topics.

Definition 2. The identity tensor In1n1n3 is the tensor such that each frontal slice of Ĩn1n1n3 is the
identity matrix In1n1 .

An n1× n1× n3 tensorA is said to be invertible if there exists a tensor B of order n1× n1× n3
such that

A ?c B = In1n1n3 and B ?c A = In1n1n3 .

In that case, we denote B = A−1. It is clear that A is invertible if and only if mat(A) is invertible.
The inner scalar product is defined by

〈A,B〉 =
n1

∑
i1=1

n2

∑
i2=1

n3

∑
i3=1

ai1i2i3 bi1i2i3

and its corresponding norm is given by ‖A‖F =
√
〈A,A〉.

An n1 × n1 × n3 tensor Q is said to be orthogonal if QT ?c Q = Q ?c QT = In1n1n3 .

Definition 3 ([1]). A tensor is called f-diagonal if its frontal slices are diagonal matrices. It is
called upper triangular if all its frontal slices are upper triangular.

Next we recall the Tensor Singular Value Decomposition of a tensor (Algorithm 2);
more details can be found in [19].

Theorem 1. Let A be an n1 × n2 × n3 real-valued tensor. Then A can be factored as follows

A = U ?c S ?c VT , (5)

where U and V are orthogonal tensors of order (n1, n1, n3) and (n2, n2, n3), respectively, and S is
an f-diagonal tensor of order (n1 × n2 × n3). This factorization is called Tensor Singular Value
Decomposition (c-SVD) of the tensor A.

Algorithm 2 The Tensor SVD (c-SVD).
Input: A ∈ Rn1×n2×n3 Output: U , V and S .

1. Compute Ã = dct(A, [], 3).
2. Compute each frontal slices of Ũ , Ṽ and S̃ from Ã as follows

(a) for i = 1, . . . , n3

[Ũ (i), S̃ (i), Ṽ (i)] = svd(Ã(i))

(b) End for

3. Compute U = idct(Ũ , [ ], 3), S = idct(S̃ , [ ], 3) and V = idct(Ṽ , [ ], 3).
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Remark 2. As for the t-product [19], we can show that if A = U ?c S ?c VT is a c-SVD of the
tensor A, then we have

n3

∑
k=1

Ak =

(
n3

∑
k=1

Uk

)(
n3

∑
k=1

Sk

)(
n3

∑
k=1

VT
k

)
, (6)

where Ak, Uk, Sk and Vk are the frontal slices of the tensors A, U , S and V , respectively, and

A =
min(n1,n2)

∑
i=1

U (:, i, :) ?c S(i, i, :) ?c V(:, i, :)T . (7)

Theorem 2. Let A = U ?c S ?c VT given by (5), and define for k ≤ min(n1, n2) the tensor

Ak =
k

∑
i=1
U (:, i, :) ?c S(i, i, :) ?c V(:, i, :)T . (8)

Then
Ak = arg min

X∈M
‖Ak −A‖F, (9)

whereM = {X ?c Y ; X ∈ Rn1×k×n3 , Y ∈ Rk×n2×n3}.

Note that when n3 = 1 this theorem reduces to the well known Eckart–Young theorem
for matrices [20].

Definition 4 (The tensor tubal-rank). Let A be an n1 × n2 × n3 be a tensor and consider its
c-SVD A = U ?c S ?c VT . The tensor tubal rank of A, denoted as rankt(A) is defined to be the
number of non-zero tubes of the f-diagonal tensor S , i.e.,

rankt(A) = #{i,S(i, i, :) 6= 0}.

Definition 5. The multi-rank of the tensor A is a vector p ∈ Rn3 with the i-th element equal to
the rank of the i-th frontal slice of Ã = fft(A, [], 3), i.e.,

p(i) = rank(A(i)), i = 1, . . . , n3.

The well known QR matrix decomposition can also be extended to the tensor case;
see [19].

Theorem 3. LetA be a real-valued tensor of order n1× n2× n3. ThenA can be factored as follows

A = Q ?c R, (10)

where Q is an n1 × n1 × n3 orthogonal tensor andR is an n1 × n1 × n3 f-upper triangular tensor.

3. Tensor Principal Component Analysis for Face Recognition

Principle Component Analysis (PCA) is a widely used technique in image classification
and face recognition. Many approaches involve a conversion of color images to grayscale in
order to reduce the training cost. Nevertheless, for some applications, color an is important
feature and tensor based approaches offer the possibility to take it into account. Moreover,
especially in the case of facial recognition, it allows the treatment of enriched databases
including for instance additional biometric information. However, one has to bear in mind
that the computational cost is an important issue as the volume of data can be very large.
We first recall some background facts on the matrix based approach.
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3.1. The Matrix Case

One of the simplest and most effective PCA approaches used in face recognition
systems is the so-called eigenface approach. This approach transforms faces into a small
set of essential characteristics, eigenfaces, which are the main components of the initial
set of learning images (training set). Recognition is done by projecting a test image in
the eigenface subspace, after which the person is classified by comparing its position in
eigenface space with the position of known individuals. The advantage of this approach
over other face recognition strategies resides in its simplicity, speed and insensitivity to
small or gradual changes on the face.

The process is defined as follows: Consider a set of training faces I1, I2, . . ., Ip. All the
face images have the same size: n×m. Each face Ii is transformed into a vector xi using
the operation vec: xi = vec(Ii). These vectors are columns of the nm× p matrix

X = [x1, . . . , xp].

We compute the average image µ =
1
p

p

∑
i=1

xi. Set x̄i = xi− µ and consider the new matrices

X̄ = [x̄1, . . . , x̄p], and C = X̄X̄T .

Notice that the nm× nm covariance matrix C = X̄X̄T can be very large. Therefore, the
computation of the nm eigenvalues and the corresponding eigenvectors (eigenfaces) can
be very difficult. To circumvent this issue, we instead consider the smaller p× p matrix
L = X̄TX̄.

Let vi be an eigenvector of L then Lvi = X̄TX̄vi = λivi and

X̄Lvi = X̄X̄TX̄vi = λiX̄vi,

which shows that X̄vi is an eigenvector of the covariance matrix C = X̄X̄T .
The p eigenvectors of L = X̄TX̄ are then used to find the p eigenvectors ui = X̄vi of C

that form the eigenface space. We keep only k eigenvectors corresponding to the largest k
eigenvalues (eigenfaces corresponding to small eigenvalues can be omitted, as they explain
only a small part of characteristic features of the faces.)

The next step consists of projecting each image of the training sample onto the eigen-
face space spanned by the orthogonal vectors u1, . . . , uk:

Uk = span{u1, . . . , uk}, with Uk = [u1, . . . , uk]

The matrix UkUT
k is an orthogonal projector onto the subspace Uk. A face image can

be projected onto this face space as yi = UT
k (xi − µ).

We now give the steps of an image classification process based on this approach:
Let x = vec(I) be a test vector-image and project it onto the face space to get

y = UT
k (x− µ). Notice that the reconstructed image is given by

xr = Ũky + µ.

Compute the Euclidean distance

εi = ‖y− yi‖, i = 1, . . . , k.

A face is classified as belonging to the class l when the minimum l is below some
chosen threshold θ Set

θ =
1
2

max
i,j
‖yi − yj‖, i, j = 1, . . . , k,
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and let ε be the distance between the original test image x and its reconstructed image xr:
ε = ‖x− xr‖. Then

• If ε ≥ θ, then the input image is not even a face image and not recognized.
• If ε < θ and εi ≥ θ for all i then the input image is a face image but it is an unknown

image face.
• If ε < θ and εi < θ for all i then the input images are the individual face images

associated with the class vector xi.

We now give some basic facts on the relation between the singular value decomposi-
tion (SVD) and PCA in this context:

Consider the Singular Value Decomposition of the matrix A as

X̄ = UΣVT =
p

∑
i=1

σiuivT
i

where U and V are orthonormal matrices of sizes nm and p, respectively. The singular
values σi are the square roots of the eigenvalues of the matrix L = X̄TX̄, the ui’s are the left
vectors and the v′is are the right vectors. We have

L = X̄TX̄ = V∆VT ; ∆ = diag(σ2
1 , . . . , σ2

p)

which is is the eigendecomposition of the matrix L and

C = X̄X̄T = UDUT ; D = diag(σ2
1 , . . . , σ2

p , 0, . . . , 0).

In the PCA method, the projected eigenface space is then generated by the first
u1, . . . , uk columns of the unitary matrix U derived from the SVD decomposition of the
matrix X̄.

As only a small number k of the largest singular values are needed in PCA, we can
use the well known Golub–Kahan algorithm to compute these wanted singular values and
the corresponding singular vectors to define the projected subspace.

In the next section, we explain how the SVD based PCA can be extended to tensors
and propose an algorithm for facial recognition in this context.

4. The Tensor Golub–Kahan Method

As explained in the previous section, it is important to take into account the potentially
large size of datasets, especially for the training process. The idea of extending the matrix
Golub–Kahan bidiagonalization algorithm to the tensor context has been explored in the
recent years for large and sparse tensors [21]. In [1], the authors established the foundations
of a remarkable theoretical framework for tensor decompositions in association with the
tensor-tensor t- or c-products, allowing to generalize the main notions of linear algebra
to tensors.

4.1. The Tensor C-Global Golub–Kahan Algorithm

Let A ∈ Rn1×n2×n3 be a tensor ans s ≥ 1 an integer. The Tensor c-global Golub–Kahan
bidiagonalization algorithm (associated to the c-product) is described in Algorithm 3.



Mathematics 2021, 9, 1249 8 of 17

Algorithm 3 The Tensor Global Golub–Kahan algorithm (TGGKA).

1. Choose a tensor V1 ∈ Rn2×s×n3 such that‖V1‖F = 1 and set β0 = 0.
2. For i = 1, 2, . . . , k

(a) Ui = A ?c Vi − βi−1Ui−1,
(b) αi = ‖Ui‖F,
(c) Ui = Ui/αi,
(d) Vi+1 = AT ?c Ui − αiVi,
(e) βi = ‖Vi+1‖F.
(f) Vi+1 = Vi+1/βi.
End

Let Ck be the k× k upper bidiagonal matrix defined by

Ck =


α1 β1

α2 β2
. . . . . .

αk−1 βk−1
αk

. (11)

Let Vk and A ?c Vk be the (n2 × (sk)× p) and (n1 × (sk)× n3) tensors with frontal
slices V1, . . . ,Vk andA ?c V1, . . . ,A ?c Vk, respectively, and let Uk andAT ?c Uk be the (n1×
(sk)× n3) and (n2× (sk)× n3) tensors with frontal slices U1, . . . ,Uk andAT ?c U1, . . . ,AT ?c
Uk, respectively. We set

Vk : = [V1, . . . ,Vk], and A ?c Vk := [A ?c V1, . . . ,A ?c Vk], (12)

Uk : = [U1, . . . ,Uk], and AT ?c Uk := [AT ?c U1, . . . ,AT ?c Uk], (13)

with

C̃T
k =

[
CT

k
βkeT

k

]
∈ R(k+1)×k, eT

k = (0, 0, . . . , 0, 1)T .

Then, we have the following results [13].

Proposition 1. The tensors produced by the tensor c-global Golub–Kahan algorithm satisfy the
following relations

A ?c Vk = Uk ~ Ck, (14)

AT ?c Uk = Vk+1 ~ C̃T
k (15)

= Vk ~ CT
k + βk

[
On×s×p, . . . ,On1×s×n3 ,Vk+1

]
, (16)

where the product ~ is defined by:

Uk ~ y =
k

∑
j=1

yjVj, y = (y1, . . . , ym)
T ∈ Rk.

We set the following notation:

Uk ~ Ck =
[
Uk ~ C1

k , . . . ,Uk ~ Ck
k

]
,

where Ci
k is the i-th column of the matrix Ck.

We note that since the matrix Ck is bidiagonal, Tk = CT
k Ck is symmetric and tridiagonal

and then Algorithm computes the same information as tensor global Lanczos algorithm
applied to the symmetric matrix A∗ ?c A.
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4.2. Tensor Tubal Golub–Kahan Bidiagonalisation Algorithm

First, we introduce some new products that will be useful in this section.

Definition 6 ([13]). Let a ∈ R1×1×n3 and B ∈ Rn1×n2×n3 , the tube fiber tensor product (a > B)
is an (n1 × n2 × n3) tensor defined by

a > B =

 a ?c b(1, 1, :) . . . a ?c b(1, n2, :)
...

. . .
...

a ?c b(n1, 1, :) . . . a ?c b(n1, n2, :)


Definition 7 ([13]). LetA ∈ Rn1×m1×n3 , B ∈ Rn1×m2×n3 , C ∈ Rn2×m1×n3 andD ∈ Rn2×m2×n3

be tensors. The block tensor [
A B
C D

]
∈ R(n1+n2)×(m1+m2)×n3

is defined by compositing the frontal slices of the four tensors.

Definition 8. Let A = [A1, . . . ,An2 ] ∈ Rn1×n2×n3 where Ai ∈ Rn1×1×n3 , we denoted by
TVect( A ) the tensor vectorization operator: Rn1×n2×n3 7→ Rn1n2×1×n3 obtained by superpos-
ing the laterals slicesAi ofA, for i = 1, . . . , n2. In others words, for a tensorA = [A1, . . . ,An2 ] ∈
Rn1×n2×n3 where Ai ∈ Rn1×1×n3 , we have :

TVect(A) =


A1
A2

...
An2

 ∈ Rn1n2×1×n3

Remark 3. The TVect operator transform a given tensor on lateral slice. Its easy to see that when
we take p = 1, the TVect operator coincides with the operation vec which transform the matrix
on vector.

Proposition 2. Let A be a tensor of size Rn1×n2×n3 , we have

‖A‖F = ‖TVec(A)‖F

Definition 9. Let A = [A1, . . . ,An2 ] ∈ Rn1×n2×n3 where Ai ∈ Rn1×1×n3 . We define the range
space of A denoted by Range(A) as the c-linear span of the lateral slices of A

Range(A) =
{
A1 ?c a(1, 1, :) + · · ·+An2 ?c a(n2, n2, :)|a(i, i, :) ∈ R1×1×n3

}
(17)

Definition 10 ([14]). Let A ∈ Rn1×n2×n3 and B ∈ Rm1×m2×n3 , the c-Kronecker product
A�B ofA and B is the n1m1× n2m2× n3 tensor in which the i-th frontal slice of their transformed

tensor ˜(A�B) is given by:

˜(A�B)i = (A(i) ⊗ B(i)), i = 1, ..., n3

where A(i) and B(i) are the i-th frontal slices of the tensors Ã = dct(A, [ ], 3) and B̃ = dct(B, [], 3),
respectively.

We introduce now a normalization algorithm allowing us to decompose the non-zero
tensor C ∈ Rn1×n2×n3 , such that:

C = a >Q, with 〈Q,Q〉 = e,
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where a is an invertible tube fiber of size a ∈ R1×1×n3 and Q ∈ Rn1×n2×n3 and e is the tube
fiber e ∈ R1×1×n3 defined by unfold(e) = (1, 0, 0 . . . , 0)T .

This procedure is described in Algorithm 4.

Algorithm 4 Normalization algorithm (Normalize).

1. Input. A ∈ Rn1×n2×n3 and a tolerance tol > 0.
2. Output. The tensor Q and the tube fiber a.
3. Set Q̃ = dct(A, [], 3)

(a) For j = 1, . . . , n3

i. aj = ||Q̃(j)||F

ii. if aj > tol, Q̃(j) =
Q̃(j)

aj

iii. else Q̃j = rand(n1, n2); aj = ||Q̃(j)||F

Q̃(j) =
Q̃(j)

aj
; aj = 0,

(b) End

4. Q = idct(Q̃, [], 3), a = idct(a, [], 3)
5. End

Next, we give the Tensor Tube Global Golub–Kahan (TTGGKA) algorithm, seeElIchi1.
Let A ∈ Rn1×n2×n3 be a tensor and let s ≥ 1 be an integer. The Tensor Tube Global
Golub–Kahan bidiagonalization process is described in Algorithm 5.

Algorithm 5 The Tensor Tube Global Golub–Kahan algorithm (TTGGKA).

1. Choose a tensor V1 ∈ Rn2×s×n3 such that 〈V1, V1〉 = e and set b0 = 0.
2. For i = 1, 2, . . . , k

(a) Ui = A ?c Vi − bi−1 > Ui−1,
(b) [Ui, ai] = Normalize(Ui).
(c) Vi+1 = AT ?c Ui − ai > Vi,
(d) [Vi+1, bi] = Normalize(Vi+1).
End

Let Ck be the k× k× n3 upper bidiagonal tensor (each frontal slice of Ck is a bidiagonal
matrix) and C̃k the k× (k + 1)× n3 defined by

Ck =


a1 b1

a2 b2
. . . . . .

ak−1 bk−1
ak

, and C̃k =


a1 b1

a2 b2
. . . . . .

ak−1 bk−1
ak bk

. (18)

Let Vk and A ?c Vk be the (n2 × (sk)× n3) and (n1 × (sk)× n3) tensors with frontal
slices V1, . . . ,Vk andA ?c V1, . . . ,A ?c Vk, respectively, and let Uk andAT ?c Uk be the (n1×
(sk)× n3) and (n2× (sk)× n3) tensors with frontal slices U1, . . . ,Uk andAT ?c U1, . . . ,AT ?c
Uk, respectively. We set

Vk : = [V1, . . . ,Vk], and A ?c Vk := [A ?c V1, . . . ,A ?c Vk], (19)

Uk : = [U1, . . . ,Uk], and AT ?c Uk := [AT ?c U1, . . . ,AT ?c Uk], (20)
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Then, we have the following results.

Proposition 3. The tensors produced by the tensor TTGGKA algorithm satisfy the following relations

A ?c Vk = Uk ?c (Ck � Issn3), (21)

AT ?c Uk = Vk+1 ?c (C̃T
k � Issn3) (22)

= Vk ?c (CT
k � Issp) + Vk+1 ?c ((bk ?c e1,k,:)� Issn3), (23)

where e1,k,: ∈ R1×k×n3 with 1 in the (1, k, 1) position and zeros in the other positions, Issn3 ∈
Rs×s×n3 the identity tensor and bk is the fiber tube in the (k, k + 1, :) position of the tensor C̃k.

5. The Tensor Tubal PCA Method

In this section, we describe a tensor-SVD based PCA method for order 3 tensors which
naturally arise in problems involving images such as facial recognition. As for the matrix
case, we consider a set of N training images, each of one being encoded as n1 × n2 × n3
real tensors Ii, 1 ≤ i ≤ N. In the case of RGB images, each frontal slice would contain the
encoding for each color layer (n3 = 3) but in order to be able to store additional features,
the case n3 > 3 could be contemplated.

Let us consider one training image Ii0 . Each one of the n3 frontal slices I(j)
i0

of Ii0 is

resized into a column vector vec(I(j)
i0
) of length L = n1× n2 and we form a L× 1× n3 tensor

Xi0 defined by Xi0(:, :, j) = vec(I(j)
i0
). Applying this procedure to each training image, we

obtain N tensors Xi of size L× 1× n3. The average image tensor is defined as X̄ =
1
N

N

∑
i=1
Xi

and we define the L× N × n3 training tensor X = [X̄1, . . . , X̄N ], where X̄i = Xi − X̄ .
Let us now consider the c-SVD decomposition X = U ∗c S ∗c VT of X , where U and V

are orthogonal tensors of size L× L× n3 and N×N× n3, respectively, and S is a f-diagonal
tensor of size L× N × n3.

In the matrix context, it is known that just a few singular values suffice to capture
the main features of an image, therefore, applying this idea to each one of the three color
layers, an RGB image can be approximated by a low tubal rank tensor. Let us consider an
image tensor S ∈ Rn1×n2×n3 and its c-SVD decomposition S = U ?c S ?c VT . Choosing an
integer r such as r ≤ min(n1, n2), we can approximate S by the r tubal rank tensor

Sr ≈
r

∑
i=1
U (:, i, :) ∗c S(i, i, :) ∗c V(:, i, :)T .

In Figure 1, we represented a 512 × 512 RGB image and the images obtained for
various truncation indices. On the left part, we plotted the singular values of one color
layer of the RGB tensor (the exact same behaviour is observed on the two other layers).
The rapid decrease of the singular values explain the good quality of compressed images
even for small truncation indices.

Applying this idea to our problem, we want to be able to obtain truncated tensor SVDs
of the training tensor X , without needing to compute the whole c-SVD. After k iterations
of the TTGGKA algorithm (for the case s = 1), we obtain three tensors Uk ∈ Rn1×k×n3 ,
Vk+1 ∈ Rn2×(k+1)×n3 and C̃k ∈ R(k×(k+1)×n3 as defined in Equation (21) such as

AT ?c Uk = Vk+1 ?c C̃T
k .

Let C̃k = Φ ?c Σ ?c Ψ the c-SVD of C̃k, noticing that C̃k ∈ Rk×(k+1)×n3 is much smaller
than X̄ . Then first tubal singular values and the left tubal singular tensors of X̄ are given
by Σ(i, i, :) and Uk ?c Φ(:, i, :), respectively, for i ≤ k, see [1] for more details.
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Figure 1. Image compression.

In order to illustrate the ability to approximate the first singular elements of a tensor
using the TTGGKA algorithm, we considered a 900× 900× 3 real tensor A which frontal
slices were matrices generated by a finite difference discretization method of differential
operators. On Figure 2, we displayed the error on the first diagonal coefficient of the first
frontal S(1, 1, 1) in function of the number of iteration of the Tensor Tube Golub–Kahan
algorithm, where A = U ?c S ?c VT is the c-SVD of A.

10 20 30 40 50 60 70 80 90
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10
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Figure 2. ‖Σ(1, 1, 1)− S(1, 1, 1)‖ vs. number of TTGGKA iteration k.

In Table 1, we reported on the errors on the tensor Frobenius norms of the singular
tubes in function of the number k of the Tensor Tube Golub–Kahan algorithm.

Table 1. ‖S(i, i, :)− Σ(i, i, :)‖F vs k.

k = 10 k = 30 k = 50 k = 70

S(1, 1, :) 3.6× 10−4 1.3× 10−5 5.1× 10−11 4.8× 10−17

S(2, 2, :) 2.0× 10−3 1.6× 10−6 5.2× 10−7 3.1× 10−8

S(3, 3, :) 4.9× 10−3 5.9× 10−4 2.3× 10−4 5.6× 10−8

S(4, 4, :) 8.4× 10−3 8.8× 10−4 1.5× 10−4 1.0× 10−8

S(5, 5, :) 1.4× 10−2 1.3× 10−3 2.7× 10−4 1.1× 10−8

The same behaviour was observed on all the other frontal slices. This example
illustrate the ability of the TTGKA algorithm for approximating the largest singular tubes.
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The projection space is generated by the lateral slices of the tensor P = Uk?c
Φ(:, 1 : k, :) ∈ Rn1×i×n3 derived from the TTGGKA algorithm and the c-SVD decompo-
sition of the bidiagonal tensor C̃k, i.e., the c-linear span of first k lateral slices of P , see [1,19]
for more details.

The steps of the Tensor Tubal PCA algorithm for face recognition which finds the
closest image in the training database for a given image I0 are summarized in Algorithm 6:

Algorithm 6 The Tensor Tubal PCA algorithm (TTPCA).

1. Inputs Training Image tensor X (N images), mean image tensor X̄ ,Test image I0,
index of truncation r, k=number of iterations of the TTGGKA algorithm (k ≥ r).

2. Output Closest image in the Training database.
3. Run k iterations of the TTGGKA algorithm to obtain tensors Uk and Ĉk

4. Compute [Φ, Σ, Ψ] =c-SVD(C̃k)
5. Compute the projection tensor Pr = [Pr(:, 1, :), . . . , Pr(:, r, :)],

where Pr(:, i, :) = Uk ?c Φ(:, i, :) ∈ Rn1×1×n3

6. Compute the projected Training tensor X̂r = PT
r ?c X and projected centred test

image Îr = PT
r ?c (I − X̄ )

7. Find i = arg mini=1,..,N ‖Îr − X̂r(:, i, :)|F

In the next section, we consider image identification problems on various databases.

6. Numerical Tests

In this section, we consider three examples of image identification. In the case of
grayscale images, the global version of Golub–Kahan was used to compute the dominant
singular values in order to perform a PCA on the data. For the two other situations, we
used the Tensor Tubal PCA (TTPCA) method based on the Tube Global Golub–Kahan
(TTGGKA) algorithm in order to perform facial recognition on RGB images. The tests
were performed with Matlab 2019a, on an Intel i5 laptop with 16 Go of memory. We
considered various truncation indices r for which the recognition rates were computed. We
also reported the CPU time for the training process.

6.1. Example 1

In this example, we considered the MNIST database of handwritten digits [22].
The database contains two subsets of 28× 28 grayscale images (60,000 training images and
10,000 test images). A sample is shown in Figure 3. Each image was vectorized as a vector
of length 28× 28 = 784 and, following the process described in Section 3.1, we formed the
training and the test matrices of sizes 784 × 60,000 and 784 × 10,000, respectively.

Figure 3. First 16 images of MNIST training subset.

Both matrices were centred by substracting the mean training image and the Golub–
Kahan algorithm was used to generate an approximation of r dominant singular values si
and left singular vectors ui, i = 1, . . . , r.

Let us denote Ur the subspace spanned by the columns of Ur = [u1, . . . , ur]. Let t be a
test image and t̂r = UT

r t its projection onto Ur. The closest image in the training dataset is
determined by computing

i = arg min
i=1,..,60,000

‖t̂r − X̂r(:, i)‖,
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where X̂r = UT
r X.

For various truncation indices r, we tested each image of the test subset and computed
the recognition rate (i.e., a test is successful if the digit is correctly identified). The results
are plotted on Figure 4 and show that a good level of accuracy is obtained with only a few
approximate singular values. Due to the large size of the training matrix, it validates the
interest of computing only a few singular values with the Golub–Kahan algorithm.
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Figure 4. Identification rates for different truncation indices r.

6.2. Example 2

In this example, we used the Georgia Tech database GTDB_ crop [23], which con-
tains 750 face images of 50 persons in different illumination conditions, facial expres-
sion and face orientation, as shown in Figure 5. The RGB JPEG images were resized to
100 × 100 × 3 tensors.

Figure 5. Fifteen pictures of one individual in the database.

Each image file is coded as a 100× 100× 3 tensor and transformed into a 10,000 ×
1 × 3 tensor as explained in the previous section. We built the training and test tensors
as follows: from 15 pictures of each person in the database, five pictures were randomly
chosen and stored in the test folder and the 10 remaining pictures were used for the train
tensor. Hence, the database was partitioned into two subsets containing 250 and 500 items,
respectively, at each iteration of the simulation.

We applied the TTGGKA based Algoritm 6 for various truncation indices. In Figure 6,
we represented a test image (top left position), the closest image in the database (top right),
the mean image of the training database (bottom left) and the eigenface associated to the
test image (bottom right).
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Figure 6. Test image, closest image, mean image and eigenface.

In order compute the rate of recognition, we ran 100 simulations, obtained the number
of successes (i.e., a test is successful if the person is correctly identified) and reported the
best identification rates, in function of the truncation index r in Figure 7.
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Figure 7. Identification rates for different truncation indices r.

The results match the performances observed in the literature [24] for this database
and it confirms that the use of a Golub–Kahan strategy is interesting especially because, in
terms of training, the Tube Tensor PCA algorithm required only 5 s instead of 25 s when
using a c-SVD.

6.3. Example 3

In the second example, we used the larger AR face database (cropped version) (Face
crops) [9], which contains 2600 bitmap pictures of human faces (50 males and 50 females,
26 pictures per person), with different expressions, lightning conditions, facial expressions
and face orientation. The bitmap pictures were resized to 100 × 100 Jpeg images. The same
protocol as for Example 1 was followed: we partitioned the set of images in two subsets.
Out of 26 pictures, 6 pictures were randomly chosen as test images and the remaining 20
were put into the training folder. The training process took 24 s while it would have taken
81.5 s if using a c-SVD. An example of test image, the closest match in the dataset, the
mean image and its associated eigenface are shown in Figure 8.
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Figure 8. Test image, closest image, mean image and eigenface.

We applied our approach (TTPCA) to the 10,000 × 2000 × 3 training tensor X and
plotted the recognition rate as a function of the truncation index in Figure 9.
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Figure 9. Identification rates for different truncation indices r.

For all examples, it is worth noticing that, as expected in face identification problems,
only a few of the first largest singular elements suffice to capture the main features of an
image. Therefore, the Golub–Kahan based strategies such as the TTPCA method are an
interesting choice.

7. Conclusions

In this manuscript, we focused on two types of Golub–Kahan factorizations. We used
the recent advances in the field of tensor factorization and showed that this approach is
efficient for image identification. The main feature of this approach resides in the ability
of the Global Golub–Kahan algorithms to approximate the dominant singular elements
of a training matrix or tensor without needing to compute the SVD. This is particularly
important as the matrices and tensors involved in this type of application can be very large.
Moreover, in the case for which color has to be taken into account, this approach do not
involve a conversion to grayscale, which can be very important for some applications.
In a future work, we would like to study the feasability of implementing the promising
randomized PCA approaches in the Golub–Kahan tensor algorithm in order to improve
the training process computational cost in the case of very large datasets.
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