Nonlinear Mixed Convective Flow over a Moving Yawed Cylinder Driven by Buoyancy
Abstract
:1. Introduction
- −
- Convective flow over a moving yawed cylinder driven by buoyancy.
- −
- Influence of liquid hydrogen diffusion.
- −
- Effects of yawed angle.
- −
- Flow characteristics in chordwise and spanwise directions.
2. Mathematical Simulation
3. Solution Technique
4. Results and Discussion
4.1. Impacts of Combined Convection Parameter and Velocity Ratio Parameter
4.2. Impacts of Nonlinear Convection Parameter and Yaw Angle
4.3. Impacts of Yaw Angle and Schmidt Number
4.4. Impact of Yaw Angle and Combined Convection Characteristics
5. Conclusions
- −
- Velocity profiles can be enhanced, while the coefficients of friction at the surface diminish, for increasing values of velocity ratio parameters in spanwise and chordwise directions.
- −
- For enhancing magnitudes of nonlinear convection coefficient, the velocity profile and the skin friction parameter in spanwise direction are increased.
- −
- Concentration profile diminishes, while the Sherwood number enhances, for increasing values of Schmidt number and yaw angle.
- −
- Velocity profiles in spanwise and chordwise directions and skin friction coefficient at the border in chordwise and spanwise directions are enhanced with growing values of yaw angle.
- −
- Increasing magnitude of combined convection characteristics, enhancing the velocity profiles and surface drag coefficient in spanwise and chordwise directions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
C | Species Concentration: |
Cs | species concentration at the surface |
C∞ | ambient species concentration |
DB | Brownian diffusion coefficient (m2 s−1) |
F | dimensionless stream function |
G | nondimensional temperature |
Gr | Grashof number |
G | acceleration due to gravity (m s−2) |
H | nondimensional concentration |
Nc | buoyancy ratio |
Nu | Nusselt number |
Pr | Prandtl number |
R | radius of the cylinder (m) |
Ri | mixed convection parameter |
Sc | Schmidt number |
Sh | Sherwood number |
T | temperature (K) |
Ts | temperature at the surface (K); |
T∞ | ambient temperature (K) |
U | x-velocity (m s−1) |
u∞ | free stream velocity (m s−1) |
V | y-velocity (m s−1) |
w | z-velocity (m s−1) |
x, y and z | curvilinear coordinates (m) |
Greek symbols | |
β1, β2 | linear and nonlinear thermal expansion parameters (K−1) |
β3, β4 | linear and nonlinear thermal expansion parameters of liquid hydrogen |
βC | nonlinear concentration convection coefficient for liquid hydrogen |
βT | nonlinear temperature convection coefficient |
step size for and η coordinates | |
ε1 | velocity ratio parameter along chordwise direction |
ε2 | velocity ratio parameter along spanwise direction |
transformed variables | |
θ | yaw angle |
ν | kinematic viscosity (m2 s−1) |
ψ | dimensionless stream function |
Subscripts | |
denote the partial derivatives with respect to these variables | |
e | indicates the condition at the boundary layer edge |
w | indicates the condition at the wall |
∞ | indicates the condition at the mainstream. |
References
- Saha, S.; Hasan, M.N.; Khan, I.A. Double diffusive mixed convection heat transfer inside a vented square cavity. Chem. Eng. Res. Bull. 2009, 13, 17–24. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Aly, A.M.; Raizah, Z.A.S. Double diffusion MHD free convective flow along a sphere in the presence of a homogeneous chemical reaction and Soret and Dufour effects. Appl. Comput. Math. 2017, 6, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Patil, P.M.; Doddagoudar, S.H.; Hiremath, P.S. Impacts of surface roughness on mixed convection nanoliquid flow with liquid hydrogen/nitrogen diffusion. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 2146–2174. [Google Scholar] [CrossRef]
- Reddy, L.R.; Raju, M.C.; Raju, G.S.S. Unsteady MHD free convection flow characteristics of a viscoelastic fluid past a vertical porous plate. Int. J. Appl. Sci. Eng. 2016, 14, 69–85. [Google Scholar]
- Pail, P.M.; Pop, I. Effects of surface mass transfer on unsteady mixed convection flow over a vertical cone with chemical reaction. Heat Mass Transf. 2011, 47, 1453–1464. [Google Scholar]
- Patil, P.M.; Kulkarni, M.; Hiremath, P.S. Effects of surface roughness on mixed convective nanofluid flow past an exponentially stretching permeable surface. Chin. J. Phys. 2020, 64, 203–218. [Google Scholar] [CrossRef]
- Prasad, K.V.; Vajravelu, K.; Vaidya, H.; Datti, P.S. Axisymmetric flow over a vertical slender cylinder in the presence of chemically reactive species. Int. J. Appl. Comput. Math. 2017, 3, 663–678. [Google Scholar] [CrossRef]
- Vajravelu, K.; Sastri, K.S. Fully developed laminar free convection flow between two parallel vertical walls. Int. J. Heat Mass Transf. 1977, 20, 655–660. [Google Scholar] [CrossRef]
- Bhargava, R.; Agarwal, R.S. Fully developed free convection flow in a circular pipe. Indian J. Pure Appl. Math. 1979, 10, 357–365. [Google Scholar]
- Motsa, S.S.; Awad, F.G.; Khumalo, M. Nonlinear nanofluid flow overheated vertical surface with sinusoidal wall temperature variations. Abstr. Appl. Anal. 2014, 2014, 408230. [Google Scholar] [CrossRef] [Green Version]
- Muthukumaran, C.; Bathrinathan, K. Mathematical modeling of mixed convection boundary layer flows over a stretching sheet with viscous dissipation in presence of suction and injection. Symmetry 2020, 12, 1754. [Google Scholar] [CrossRef]
- Halim, N.A.; Noor, N.F.M. Mixed convection flow of Powell–Eyring nanofluid near a stagnation point along a vertical stretching sheet. Mathematics 2021, 9, 364. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Ghalambaz, M.; Armaghani, T.; Chamkha, A.; Hashim, I.; Pour, M.S. Role of rotating cylinder toward mixed convection inside a wavy heated cavity via Two-Phase nanofluid concept. Nanomaterials 2020, 10, 1138. [Google Scholar] [CrossRef]
- Khashiie, N.S.; Md Arifin, N.; Pop, I. Mixed convective stagnation point flow towards a vertical Riga plate in hybrid Cu-Al2O3/water nanofluid. Mathematics 2020, 8, 912. [Google Scholar] [CrossRef]
- Liang, H.; Duan, R. Effects of lateral end plates on flow crossing a yawed circular cylinder. Appl. Sci. 2019, 9, 1590. [Google Scholar] [CrossRef] [Green Version]
- King, R. Vortex excited oscillations of yawed circular cylinders. J. Fluids Eng. 1977, 99, 495–501. [Google Scholar] [CrossRef]
- Revathi, G.; Saikrishnan, P.; Chamkha, A.J. Non-similar solutions for unsteady flow over a yawed cylinder with non-uniform mass transfer through a slot. Ain Shams Eng. J. 2014, 5, 1199–1206. [Google Scholar] [CrossRef] [Green Version]
- Najafi, L.; Firat, E.; Akilli, H. Time-averaged near-wake of a yawed cylinder. Ocean. Eng. 2016, 113, 335–349. [Google Scholar] [CrossRef]
- Snarski, S.R. Flow over yawed circular cylinders: Wall pressure spectra and flow regimes. Phys. Fluids 2004, 16, 344–359. [Google Scholar] [CrossRef]
- Sears, W.R. The boundary layer of yawed cylinders. J. Aeronaut. Sci. 1948, 15, 49–52. [Google Scholar] [CrossRef]
- Thapa, J.; Zhao, M.; Zhou, T.; Cheng, L. Three-dimensional simulation of vortex shedding flow in the wake of a yawed circular near a plane boundary at a Reynolds number of 500. Ocean. Eng. 2014, 87, 25–39. [Google Scholar] [CrossRef]
- Gupta, T.R.; Sarma, G.N. Effect of cross flow in unsteady flow past a yawed infinite cylinder. Indian J. Pure Appl. Math. 1975, 6, 1047–1065. [Google Scholar]
- Bucker, D.; Lueptow, R.M. The boundary layer on a slightly yawed cylinder. Exp. Fluids 1998, 25, 487–490. [Google Scholar] [CrossRef]
- Subhashini, S.V.; Takhar, H.S.; Nath, G. Non-uniform multiple slot injection (suction) or wall enthalpy into a compressible flow over a yawed cylinder. Int. J. Therm. Sci. 2003, 42, 749–757. [Google Scholar] [CrossRef]
- Roy, S. Non uniform mass transfer wall enthalpy into a compressible flow over yawed cylinder. Int. J. Heat Mass Transf. 2001, 44, 3017–3024. [Google Scholar] [CrossRef]
- Roy, S.; Saikrishnan, P. Non-uniform slot injection (suction) into water boundary layer flow past yawed cylinder. Int. J. Eng. Sci. 2004, 42, 2147–2157. [Google Scholar] [CrossRef]
- Saikrishnan, P. Boundary layer flow over a yawed cylinder with variable viscosity role of non-uniform double slot suction (injection). Int. J. Numer. Methods Heat Fluid Flow 2012, 22, 342–356. [Google Scholar]
- Marshall, J.S. Wake dynamics of a yawed cylinder. J. Fluid Eng. 2003, 125, 97–103. [Google Scholar] [CrossRef]
- Vakil, A.; Green, S.I. Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds numbers. Comput. Fluids 2009, 38, 1771–1781. [Google Scholar] [CrossRef]
- Patil, P.M.; Roy, S. Corrigendum of “Mixed convection flow past a yawed cylinder” [ICHMT 114 (2020) 104582]. Int. Commun. Heat Mass Transf. 2021, 124, 105246. [Google Scholar] [CrossRef]
- Chiu, W.S.; Lienhard, J.H. On real fluid flow over yawed circular cylinders. J. Fluid Eng. 1967, 89, 851–857. [Google Scholar] [CrossRef] [Green Version]
- Patil, P.M.; Shankar, H.F.; Hiremath, P.S.; Momoniat, E. Nonlinear mixed convective nanofluid flow about a rough sphere with the diffusion of liquid hydrogen. Alex. Eng. J. 2021, 60, 1043–1053. [Google Scholar] [CrossRef]
- Patil, P.M.; Ramane, H.S.; Hindasageri, V.; Momoniat, E. Influence of mixed convection in an exponentially decreasing external flow velocity. Int. J. Heat Mass Transf. 2017, 104, 392–399. [Google Scholar] [CrossRef]
- Patil, P.M.; Shashikant, A.; Hiremath, P.S. Diffusion of liquid hydrogen and oxygen in nonlinear mixed convection nanofluid flow over vertical cone. Int. J. Hydrog. Energy 2019, 44, 17061–17071. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary Layer Theory; Springer: New York, NY, USA, 2000. [Google Scholar]
- Patil, P.M.; Shashikant, A.; Roy, S.; Hiremath, P.S. Mixed convection flow past a yawed cylinder. Int. Commun. Heat Mass Transf. 2020, 114, 104582. [Google Scholar] [CrossRef]
- Inouye, K.; Tate, A. Finite difference version Quasilinearization applied to boundary layer equations. AIAA J. 1974, 12, 558–560. [Google Scholar] [CrossRef]
- Singh, P.J.; Roy, S. Unsteady mixed convection from a rotating vertical slender cylinder in an axial flow. Int. J. Heat Mass Transf. 2008, 51, 1423–1430. [Google Scholar] [CrossRef]
- Varga, R.S. Matrix Iterative Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 2000. [Google Scholar]
- Eswara, E.T.; Nath, G. Unsteady nonsimilar two-dimensional and axisymmetric water boundary layers with viscosity and Prandtl number. Int. J. Eng. Sci. 1994, 32, 267–279. [Google Scholar] [CrossRef]
Yaw Angle (θ) | |||
---|---|---|---|
0 | 0 | 0.94430 | 4.41621 |
π/12 | 0.12140 | 0.94281 | 4.42190 |
π/6 | 0.68785 | 0.95536 | 4.43383 |
π/3 | 3.10383 | 0.96857 | 4.45684 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, P.M.; Shankar, H.F.; Sheremet, M.A. Nonlinear Mixed Convective Flow over a Moving Yawed Cylinder Driven by Buoyancy. Mathematics 2021, 9, 1275. https://doi.org/10.3390/math9111275
Patil PM, Shankar HF, Sheremet MA. Nonlinear Mixed Convective Flow over a Moving Yawed Cylinder Driven by Buoyancy. Mathematics. 2021; 9(11):1275. https://doi.org/10.3390/math9111275
Chicago/Turabian StylePatil, Prabhugouda M., Hadapad F. Shankar, and Mikhail A. Sheremet. 2021. "Nonlinear Mixed Convective Flow over a Moving Yawed Cylinder Driven by Buoyancy" Mathematics 9, no. 11: 1275. https://doi.org/10.3390/math9111275
APA StylePatil, P. M., Shankar, H. F., & Sheremet, M. A. (2021). Nonlinear Mixed Convective Flow over a Moving Yawed Cylinder Driven by Buoyancy. Mathematics, 9(11), 1275. https://doi.org/10.3390/math9111275