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Abstract: In this paper, we define and study the Perov fuzzy metric space and the topology induced
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1. Introduction and preliminaries

Perov [1] introduced the notion of vector-valued metric spaces by replacing real
numbers with Rn and proved some fixed point theorems for contractive mappings between
these spaces. After the paper [1], series of articles about vector-valued metric spaces started
to appear, see e.g., [2–6].

The concept of fuzzy sets was initially investigated by an Iranian mathematician
Lofti Zadeh [7] as a new way to represent vagueness in every life. Subsequently, it was
developed extensively by many authors and used in various applications in diverse areas
and references cited therein. To use this concept in topology, Kramosil and Michálek in [8]
introduced the class of fuzzy metric spaces. Later on, George and Veeramani in [9] gave
a stronger form of metric fuzziness. This notion has an evident appeal due to its close
relationship with probabilistic metric spaces. In particular, they observed that the class
of fuzzy metric spaces in their sense, is “equivalent“ to the class of Menger spaces with a
continuous t-norm.

In this paper, we introduce the notion of Perov fuzzy metric space that generalize the
corresponding notions of fuzzy metric space due to Kramosil and Michálek. Additionally,
we give the topology induced by this space. Finally we give a Banach contraction theorem.
With the help of these results one can derive some results of multidimensional common
fixed point as a coupled/tripled common fixed point results for Perov fuzzy metric spaces
and Kramosil and Michálek’ ones.

One of the main ingredients of a fuzzy metric space is the notion of triangular norm. In
this connection let us denote I = [0, 1] and let X be a nonempty set.

Definition 1 (Schweizer and Sklar [10]). A triangular norm (also called a t-norm) is a map
∗ : I2 −→ I that is associative, commutative, nondecreasing in both arguments and has 1 as
identity. A t-norm is continuous if it is continuous in I2 as mapping. If a1, a2, . . . , am ∈ I, then

m∗
i=1

ai = a1 ∗ a2 ∗ . . . ∗ am.

For each a ∈ I, the sequence {∗ma}∞
m=1 is defined inductively by ∗1a = a and ∗m+1a =

(∗ma) ∗ a for all m ≥ 1.
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It is usual to consider continuous t-norms, mainly because fuzzy metric spaces involve
a continuous t-norm. However, there is a wide range of non-continuous t-norms (see [10]).

Remark 1. If m, n ∈ N, then ∗m(∗na) = ∗m+na for all a ∈ I.

Definition 2 (Hadžić and Pap [11]). A t-norm ∗ is said to be of H-type if the sequence {∗ma}∞
m=1

is equicontinuos at a = 1, i.e., for all ε ∈ (0, 1), there exists η ∈ (0, 1) such that if a ∈ (1− η, 1],
then ∗ma > 1− ε for all m ∈ N.

The most important and well known continuous t-norm of H-type is ∗ = min. Other
examples can be found in [11,12].

There exist different notions of fuzzy metric space (see [13]). For our purposes, we will
use the following one.

Definition 3 (Kramosil and Michálek [8], Grabiec [14]). A triple (X, M, ∗) is called a fuzzy
metric space (briefly, a FMS) if X is an arbitrary non-empty set, ∗ is a continuous t-norm and
M : X × X × [0, ∞) → I is a fuzzy set satisfying the following conditions, for each x, y, z ∈ X,
and t, s ≥ 0:

(KM-1) M(x, y, 0) = 0;

(KM-2) M(x, y, t) = 1 for all t > 0 if, and only if, x = y;

(KM-3) M(x, y, t) = M(y, x, t);

(KM-4) M(x, y, ·) : [0, ∞)→ I is left-continuous;

(KM-5) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s).

In this case, we also say that (X, M) is a FMS under ∗.

Let denote Rn
+ = [0,+∞)n. Recall the concept of generalized metric in Perov’s sense:

Definition 4. By a vector-valued metric on X we mean a mapping d : X× X → Rn
+ such that

(i)
−−−→
d(u, v) ≥ −→0 for all u, v ∈ X and if

−−−→
d(u, v) =

−→
0 then u = v;

(ii)
−−−→
d(u, v) =

−−−→
d(v, u) for all u, v ∈ X;

(iii)
−−−→
d(u, v) ≤

−−−−→
d(u, w) +

−−−−→
d(w, v) for all u, v, w ∈ X.

Here, if −→x ,−→y ∈ Rn, −→x = (x1, x2, . . . , xn),
−→y = (y1, y2, . . . , yn), by −→x ≤ −→y we mean

xi ≤ yi for i = 1, 2, . . . , n. In this sense, −→x ≥ −→0 means xi ≥ 0 for i = 1, 2, . . . , n. (Similarly,
−→x >

−→
0 means xi > 0 for i = 1, 2, . . . , n). We call the pair (X, d) a Perov metric space. For

such a space convergence and completeness are similar to those in usual metric spaces.

Throughout this paper we denote by Mn,n(R+) the set of all n × n matrices with
nonnegative elements, by Θ the zero n× n matrix and by I the identity n× n matrix.

Definition 5. A square matrix K with nonnegative elements is said to be convergent to zero if

Kp → Θ as p→ ∞.

The property of being convergent to zero is equivalent to each of the following
conditions from the characterisation lemma below (see [15,16]):

Lemma 1. Let K be a square matrix of nonnegative numbers. The following statements are
equivalent:
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(i) K is a matrix convergent to zero;
(ii) I − K is nonsingular and (I − K)−1 = I + K + K2 + . . . ;
(iii) the eigenvalues of K are located inside the unit disc of the complex plane;
(iv) I − K is nonsingular and (I − K)−1 has nonnegative elements.

Please note that according to the equivalence of the statements (i) and (iv), a matrix K
is convergent to zero if and only if the matrix I − K is inverse-positive.

The following lemma is a consequence of the previous characterisations.

Lemma 2. Let K be a matrix that is convergent to zero. Then for each matrix P of the same order
whose elements are nonnegative and sufficiently small, the matrix K + P is also convergent to zero.

The matrices convergent to zero were used by A. I. Perov to generalize the contraction
principle in the case of metric spaces with a vector-valued distance.

Definition 6. Let (X, d) be a Perov metric space. An operator f : X → X is said to be contractive
(with respect to the vector-valued metric d on X) if there exists a convergent to zero (Lipschitz)
matrix K such that −−−−−→

d( f u, f v) ≤ K
−−−→
d(u, v) for all u, v ∈ X.

Theorem 1. Refs. [1,4] Let (X, d) be a complete Perov metric space and f : X → X a contractive
operator with Lipschitz matrix K. Then f has a unique fixed point u∗ and for each u0 ∈ X we have

−−−−−−−→
d( f pu0, u∗) ≤ Kp(I − K)−1−−−−−−→d(u0, f u0) for all k ∈ N.

2. Perov Fuzzy Metric Space

We will introduce now the concept of Perov fuzzy metric space and the topology
induced by this space. Then we give some properties.

Definition 7. We will call the triple (X, M, ∗) Perov fuzzy metric space (briefly, a PFMS) if X
is an arbitrary non-empty set, ∗ is a continuous t-norm and M is a fuzzy set on X × X × Rn

+

satisfying the following conditions, for each x, y, z ∈ X, and t, s ≥ 0, where
−→
t ,−→s ∈ Rn

+,

(GM-1) M(x, y,
−→
0 ) = 0;

(GM-2) M(x, y,
−→
t ) = 1 for all

−→
t >

−→
0 if, and only if, x = y;

(GM-3) M(x, y,
−→
t ) = M(y, x,

−→
t );

(GM-4) M(x, y, ·) : Rn
+ → I is continuous;

(GM-5) M(x, y,
−→
t ) ∗M(y, z,−→s ) ≤ M(x, z,

−−→
t + s).

In this case, we also say that (X, M) is a PFMS under ∗.

We will restrict to the case that lim−→
t →−→∞

M(x, y,
−→
t ) = 1 for all x, y ∈ X, where −→∞ =

(∞, ∞, . . . , ∞).

Example 1. Let X = R, a ∗ b = ab and M : R2 ×Rn
+ → I defined by

M(x, y,
−→
t ) = e

− |x−y|
‖−→t ‖ ,

if x 6= y and
−→
t >

−→
0 ; M(x, y,

−→
0 ) = 0 and finally M(x, x,

−→
t ) = 1. Then (X, M, ∗) is a PFMS.
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Example 2. Let X = N = {1, 2, . . . }, a ∗ b = ab and M : N2 ×Rn
+ → I defined by

M(x, y,
−→
t ) =

{
x/y if x ≤ y
y/x if x ≥ y

.

Then (X, M, ∗) is a PFMS.

Lemma 3. If (X, M) is a PFMS under some t-norm and x, y ∈ X, then M(x, y, ·) is a non-
decreasing function on Rn

+.

Proof. Assume that M(x, y,
−→
t ) > M(x, y,−→s ) for −→s >

−→
t >

−→
0 . Then by (GM-2) and

(GM-5),

M(x, y,
−→
t ) ∗ 1 = M(x, y,

−→
t ) ∗M(y, y,

−−→
s− t) ≤ M(x, y,−→s ) < M(x, y,

−→
t ).

This is a contradiction.

To construct a suitable topology on a PFMS (X, M, ∗), we consider the natural balls:

Definition 8. Let (X, M, ∗) be a PFMS. For
−→
t ∈ Rn

+,
−→
t >

−→
0 , the open ball B(x, r,

−→
t ) with

center x ∈ X, radius
−→
t and fuzziness parameter r ∈ (0, 1) is defined by

B(x, r,
−→
t ) = {y ∈ X : M(x, y,

−→
t ) > 1− r}.

As with the proof of Results 3.2, 3.3 and Theorem 3.11 of [9], one can show the
following results.

Theorem 2. Let (X, M, ∗) be a PFMS. Define

τ = {A ⊂ X : x ∈ A iff there exist r ∈ (0, 1),
−→
t ∈ Rn

+,
−→
t >

−→
0 , s.t. B(x, r,

−→
t ) ⊂ A}.

Then τ is a topology on X.

In this topology, we may consider the following notions.

• A sequence {xm}m≥0 ⊂ X is Cauchy if for any ε > 0 and
−→
t ∈ Rn

+,
−→
t >

−→
0 , there

exists m0 ∈ N such that M(xm, xm+p,
−→
t ) > 1− ε for all m ≥ m0 and all p ≥ 1.

• A sequence {xm}m≥0 ⊂ X is convergent (or M-convergent) to x ∈ X, denoted by

limm→∞ xm = x or {xm}
M−→ x, if for any ε > 0 and

−→
t ∈ Rn

+,
−→
t >

−→
0 , there exists

m0 ∈ N such that M(xm, x,
−→
t ) > 1− ε, for all m ≥ m0.

• A PFMS in which every Cauchy sequence is convergent is called complete.

The limit of a convergent sequence in a PFMS is unique.
Given any t-norm ∗, it is easy to prove that ∗ ≤ min. Therefore, if (X, M) is a PFMS

under min, then (X, M) is a PFMS under any (continuous or not) t-norm.

Proposition 1. Let (X, M, ∗) be a PFMS. Then M is a continuous function on X× X×Rn
+.

Proof. Let x, y ∈ X and
−→
t ∈ Rn

+,
−→
t >

−→
0 and let {(xm, ym,

−→
tm )} be a sequence in

X× X×Rn
+ that converges to (x, y,

−→
t ). Since {M(xm, ym,

−→
tm )} is a sequence in (0, 1] and

hence {M(xm, ym,
−→
tm )} converges to some point of [0, 1] up to a subsequence.

Consider a subsequence (xmk , ymk ,
−→
tmk ) of (xm, ym,

−→
tm ) such that

lim
k→∞

M(xmk , ymk ,
−→
tmk ) = lim inf

m→∞
M(xm, ym,

−→
tm )
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(that always exists by definition of limit inferior).
Fix
−→
δ ∈ Rn

+,
−→
δ >

−→
0 such that 2‖−→δ ‖ < ‖−→t ‖. Then there is m0 ∈ N such that

‖−→tmk −
−→
t ‖ < ‖−→δ ‖ for all mk ≥ m0. Hence,

M(xmk , ymk ,
−→
tmk ) ≥ M(xmk , x,

−→
δ/2) ∗M(x, y,

−−−→
t− 2δ) ∗M(y, ymk ,

−→
δ/2)

and
M(x, y,

−−→
t + δ) ≥ M(x, xmk ,

−→
δ/2) ∗M(xmk , ymk ,

−→
tmk ) ∗M(y, ymk ,

−→
δ/2),

for all mk ≥ m0. By taking limits when k→ ∞, we obtain

lim inf
m→∞

M(xm, ym,
−→
tm ) = lim

k
M(xmk , ymk ,

−→
tmk ) ≥ 1 ∗M(x, y,

−−−→
t− 2δ) ∗ 1 = M(x, y,

−−−→
t− 2δ).

Now, consider another subsequence (xmk , ymk ,
−→
tmk ) of (xm, ym,

−→
tm ), this time such that

lim
k→∞

M(xmk , ymk ,
−→
tmk ) = lim sup

m→∞
M(xm, ym,

−→
tm ).

Then

M(x, y,
−−→
t + δ) ≥ 1 ∗ lim

k
M(xmk , ymk ,

−→
tmk ) ∗ 1 = lim

k
M(xmk , ymk ,

−→
tmk ).

Sending
−→
δ → 0 one concludes the proof.

Now we are going to introduce fuzzy balls:

Definition 9. Let (X, M, ∗) be a PFMS. The fuzzy open ball B(x,
−→
t ) : X → I with center x ∈ X

and radius
−→
t ∈ Rn

+ is a fuzzy set defined by

B(x,
−→
t )(y) = 1−M(x, y,

−→
t ).

Proposition 2.

• B(x,
−→
t )(y) = B(y,

−→
t )(x)

• B(x,
−→
t )r = B(x, 1− r,

−→
t ), for every r ∈ (0, 1), where

Ar := {y ∈ X : A(y) ≥ r}, A(y) = 1− A(y),

for every fuzzy set A : X → I.
• Fuzzy open balls reduce in the crisp case to open balls.

To begin with, we consider the standard intersection ∩i∈N Ai of fuzzy sets Ai on X, i ∈
N with N a finite set. It is defined by the membership function (∩i∈N Ai)(x) = min

i∈N
Ai(x),

x ∈ X,
The operations of fuzzy sets A1 and A2 are listed as follows:

(A1 ∩ A2)(x) := min{A1(x), A2(x)},

(A1 ∪ A2)(x) := max{A1(x), A2(x)}

Proposition 3. Let {tm}m∈Y, {sm}m∈Z, t, s ∈ Rn
+, s.t

sup tm = t, inf sm = s > 0

• B(x, t) =
⋃

m∈Y B(x, tm)
• B(x, s) ⊂ ⋂m∈Z B(x, sm) and equality holds when Z is finite.
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3. Main Results

We start this section with an auxiliary result.

Lemma 4. Let (X, M, ∗) be a PFMS such that ∗ is a t-norm of H-type, let K ∈ Mn,n(R+),
K → Θ, and {xm}m≥0 be a sequence of X such that for all m ≥ 1 and all

−→
t ∈ Rn

+,
−→
t >

−→
0 ,

M(xm, xm+1, K
−→
t ) ≥ M(xm−1, xm,

−→
t ). (1)

Then {xm}m≥0 is a Cauchy sequence.

Proof. For all m, p ≥ 0 and all
−→
t ∈ Rn

+,
−→
t >

−→
0 , define

βm,p(
−→
t ) = M(xm, xm+p,

−→
t ).

Since ∗ is non-decreasing on each argument and each M(x, y, ·) is non-decreasing,
whatever x, y ∈ X, then every βm,p is a non-decreasing function on Rn

+. Repeating (1), for
all m, p ≥ 1 and all

−→
t ∈ Rn

+,
−→
t >

−→
0

M(xm+p, xm+p+1, Km+p−→t ) ≥ M
(

xm+p−1, xm+p, Km+p−1−→t
)
≥ . . . ≥ M

(
xm, xm+1, Kp−→t

)
≥ . . . ≥ M

(
x0, x1,

−→
t
)

,

which means that

βm+p,1(Km+p−→t ) ≥ βm+p−1,1

(
Km+p−1−→t

)
≥ . . . ≥ βm,1

(
Km−→t

)
≥ β0,1

(−→
t
)

. (2)

For a fixed
−→
t we can assume that (I − K)

−→
t admits positive componets. In other case,

there exists a power Kp such that (I − Kp)
−→
t admits positive componets and then arguing

with that power in place of just K.
Since K is a matrix convergent to zero, I − K is non-singular and

(I − K)−1 =
∞

∑
q=0

Kq,

then, for all
−→
t ∈ Rn

+,
−→
t >

−→
0 and all p ≥ 1,

−→
t = (I − K)−1(I − K)

−→
t =

(
∞

∑
q=0

Kq

)
(I − K)

−→
t >

(
I + K + .... + Kp−1

)
(I − K)

−→
t .

Hence

βm,p(
−→
t ) = M(xm, xm+p,

−→
t ) ≥ M

(
xm, xm+p,

(
I + K + .... + Kp−1

)
(I − K)

−→
t
)

≥ M(xm, xm+1, (I − K)
−→
t ) ∗ . . . ∗M(xm+p−1, xm+p, Kp−1(I − K)

−→
t )

=
p−1
∗

r=0
M(xm+r, xm+r+1, Kr(I − K)

−→
t ) =

p−1
∗

r=0
βm+r,1(Kr(I − K)

−→
t ).

Applying (1)

M(xm+r, xm+r+1, Kr(I − K)
−→
t ) ≥ M(xm+r−1, xm+r, Kr−1(I − K)

−→
t ) ≥ . . .

≥ M(xm, xm+1, (I − K)
−→
t ) = βm,1((I − K)

−→
t )
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for all r ∈ {0, 1, . . . , p− 1} and all
−→
t ∈ Rn

+,
−→
t >

−→
0 . Joining the previous inequalities

βm,p(
−→
t ) ≥

p−1
∗

r=0
M(xm, xm+1, (I − K)

−→
t ) ≥

p−1
∗

r=0

(
βm,1((I − K)

−→
t )
)
= ∗pβm,1((I − K)

−→
t ).

Therefore, by (2),

βm,p(Km(I − K)−1−→t ) ≥ ∗p βm,1(Km−→t ) ≥ ∗pβ0,1

(−→
t
)

.

Fix
−→
t >

−→
0 and ε > 0. Since ∗ is of H-type, there exists δ > 0 such that for all

s ∈ (1− δ, 1], one has ∗ms > 1− ε for all m ∈ N. Since sup−→t >
−→
0 β0,1(

−→
t ) = 1, there exists

−→
t0 >

−→
0 such that β0,1(

−→
t0 ) > 1− δ. Thus ∗pβ0,1

(−→
t
)
> 1− ε for all p ∈ N. Since K is a

matrix convergent to zero, there exists −→s >
−→
t0 , −→s ∈ [0, ∞)n, such that lim

m→∞
Km−→s =

−→
0 .

Thus, there exists m0 ∈ N such that Kn(I − K)−→s <
−→
t for all m > m0. Then we have

βm,p(
−→
t ) ≥ βm,p(Km(I − K)−1−→t ) ≥ ∗pβ0,1

(−→
t
)
> 1− ε,

for all m > m0.
Hence we can conclude that

lim
m→∞

βm,p(
−→
t ) = 1 for all

−→
t ∈ Rn

+,
−→
t >

−→
0 and all p ≥ 1.

We are going to prove that {xm} is Cauchy. Indeed, let ε > 0 and
−→
t >

−→
0 arbitrary.

Since ∗ is of H-type, there exists η ∈ (0, 1) such that if a ∈ (1− η, 1], then ∗ma > 1− ε for
all m ∈ N. Since limm→∞ βm,1((I − K)

−→
t ) = 1, there exists m0 ∈ N such that if m ≥ m0,

then βm,1((I − K)
−→
t ) > 1− η. Therefore, if m ≥ m0 and p ≥ 1

βm,1((I − K)
−→
t ) > 1− η ⇒ ∗pβm,1((I − K)

−→
t ) > 1− ε.

It follows that

M(xm, xm+p,
−→
t ) ≥ βm,p(

−→
t ) ≥ ∗pβm,1((I − K)

−→
t ) > 1− ε.

for all m ≥ m0 and all p ∈ N. This means that the sequence {xm} is Cauchy.

To avoid the commutativity condition between f and g, we introduce the concept of
compatible mappings in PFMS

Definition 10. Let (X, M, ∗) be a PFMS. Two mappings f : X → X and g : X → X are said to be
compatible if, for any sequence {xm}m≥0 such that there exists limm→∞ f xm = limm→∞ gxm ∈ X,
we have that

lim
m→∞

M(g f xm, f gxm,
−→
t ) = 1 for all

−→
t ∈ Rn

+,
−→
t >

−→
0 .

Obviously, if f and g are commuting, then they are compatible, but the converse does
not hold. We state and prove some fixed point results for compatible mappings.

Theorem 3. Let (X, M, ∗) be a complete PFMS such that ∗ is a t-norm of H-type. Let f : X → X
and g : X → X be two mappings such that f (X) ⊆ g(X) and g is continuous and compatible with
f . Assume that there exists a matrix K ∈ Mn,n(R+), K → Θ, such that

M( f x, f y, K
−→
t ) ≥ M(gx, gy,

−→
t ) (3)
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for all
−→
t ∈ Rn

+,
−→
t >

−→
0 and all x, y ∈ X. Then f and g have a coincidence fixed point (that is,

there is a unique z ∈ X such that f z = gz).

Proof. Let x0 ∈ X. There exists a sequence {xm}m≥0 such that gxm+1 = f xm for all m. For
all
−→
t ∈ Rn

+ and all m,

M(gxm+1, gxm+2, K
−→
t ) = M( f xm, f xm+1, K

−→
t ) ≥ M(gxm, gxm+1,

−→
t ).

Lemma 4 guarantees that {gxm}m≥0 is a Cauchy sequence. Since (X, M, ∗) is complete,
there exists x ∈ X such that x = limm→∞ gxm = limm→∞ f xm.

As g is continuous,

lim
m→∞

g f xm = lim
m→∞

ggxm+1 = gx. (4)

Since f and g are compatible, we have that

lim
m→∞

M(ggxm+1, f gxm,
−→
t ) = lim

m→∞
M(g f xm, f gxm,

−→
t ) = 1. (5)

Hence,

M( f x, gx, t) ≥ M( f x, ggxm, K
−→
t ) ∗M(ggxm, gx, (I − K)

−→
t ).

Taking m→ ∞ on the both side of the above inequality and using Proposition 1,

M( f x, gx,
−→
t ) ≥ lim

m→∞
M( f x, ggxm, K

−→
t ) ∗M(ggxm, gx, (I − K)

−→
t )

= M( f x, lim
m→∞

f gxm, K
−→
t ) ∗M( lim

m→∞
ggxm, gx, (I − K)

−→
t )

≥ lim
m→∞

M( f x, f gxm, K
−→
t ) ∗M(gx, gx, (I − K)

−→
t )

≥ lim
m→∞

M( f x, f gxm, K
−→
t ),

for all
−→
t ∈ Rn

+,
−→
t >

−→
0 . From the above, using (3), for all

−→
t ∈ Rn

+,
−→
t >

−→
0 , we have

M( f x, gx,
−→
t ) ≥ lim

m→∞
M( f x, f gxm, K

−→
t ) ≥ lim

m→∞
M(gx, ggxm,

−→
t ) ≥ M(gx, gx,

−→
t ) = 1.

Therefore, gx = f x, i.e., f and g have a coincidence point.

Corollary 1. Under the hypothesis of Theorem 3, if x is a coincidence fixed point of f and g, then
z = gx is also a coincidence point of f and g.

Proof. Call {um} = {gxm} and z = f x = gx. First { f um}m = { f gxm}m → f x = z by (5)
and g is continuous

lim
m→∞

g f um = lim
m→∞

ggum+1 = gz

Since, {gum}m = {ggxm}m → gx = z and f and g are compatible

lim
m→∞

M(ggum, f gum,
−→
t ) = lim

m→∞
M(g f um, f gum,

−→
t ) = 1.

Then,

M( f z, gz,
−→
t ) ≥ M( f z, ggum, K

−→
t ) ∗M(ggum, gz, (I − K)

−→
t ).

Taking m→ ∞ on the both side of the above inequality and using Proposition 1,
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M( f z, gz,
−→
t ) ≥ lim

m→∞
M( f z, ggum, K

−→
t ) ∗M(ggum, gz, (I − K)

−→
t )

= M( f z, lim
m→∞

f gum, K
−→
t ) ∗M( lim

m→∞
ggum, gz, (I − K)

−→
t )

≥ lim
m→∞

M( f z, f gum, K
−→
t ) ∗M(gz, gz, (I − K)

−→
t )

≥ lim
m→∞

M( f z, f gum, K
−→
t ),

for all
−→
t ∈ Rn

+,
−→
t >

−→
0 . From the above, using (3), for all

−→
t ∈ Rn

+,
−→
t >

−→
0 , we have

M( f z, gz,
−→
t ) ≥ lim

m→∞
M( f z, f gum, K

−→
t ) ≥ lim

m→∞
M(gz, ggum,

−→
t ) ≥ M(gz, gz,

−→
t ) = 1.

Therefore, gz = f z, i.e., f x = gx = z is also a coincidence point of f and g.

Theorem 4. Under the hypotheses of Theorem 3, f and g have a unique common fixed point (that
is, there is a unique z ∈ X such that f z = gz = z). In fact, if x ∈ X is any coincidence point of f
and g, then z = f x = gx is their only common fixed point.

Proof. Step 1. Existence. Let x be a coincidence point of f and g and z = gx is another one.
Next, we claim that gz = z. Indeed, fix ε > 0 and

−→
t ∈ Rn

+,
−→
t >

−→
0 arbitrary. We know

that lim−→s →−→∞ M(z, gz,−→s ) = lim−→s →−→∞ M(gx, gz,−→s ) = 1, so there exists
−→
t0 >

−→
0 such that

M(z, gz,
−→
t0 ) > 1− η.

We notice that

M(gz, z, K
−→
t ) = M( f z, f x, K

−→
t ) ≥ M(gz, gx,

−→
t ) = M(gz, z,

−→
t ).

Repeating this argument, it can be possible to prove, by induction, that

M(gz, z, Km−→t ) ≥ M(gz, z,
−→
t ) for all m ∈ N. (6)

As K → Θ, then {Km−→t } → 0. Additionally, as
−→
t >

−→
0 , there is m0 ∈ N such that

Km0
−→
t0 <

−→
t . It follows from (6) and Lemma 3 that

M(gz, z,
−→
t ) ≥ M(gz, z, Km0

−→
t0 ) ≥ M(gz, z,

−→
t0 ) > 1− ε.

Taking into account that ε and
−→
t >

−→
0 are arbitrary, we deduce that M(gz, z,

−→
t ) = 1

for all
−→
t ∈ Rn

+,
−→
t >

−→
0 , i.e., gz = z. This proves that f z = gz = z, so z is a common fixed

point of f and g.
Step 2. Uniqueness. To prove the uniqueness, let y ∈ X be another common fixed

point of f and g, i.e., f y = gy = y. Fix ε > 0 and
−→
t >

−→
0 arbitrary. We know that

lim−→s →−→∞ M(z, y,−→s ) = 1, so there exists
−→
t0 >

−→
0 such that M(z, y,

−→
t0 ) > 1 − η. We

notice that

M(z, y, K
−→
t0 ) = M( f z, f y, K

−→
t0 ) ≥ M(gz, gy,

−→
t0 ) = M(z, y,

−→
t0 ).

Repeating this argument, it can also be possible to prove, by induction, that

M(z, y, Km−→t0 ) ≥ M(z, y,
−→
t0 ) for all m ∈ N.

As K → Θ, then {Km−→t0 } → 0. Additionally, as
−→
t >

−→
0 , there is m0 ∈ N such that

Km0
−→
t0 <

−→
t . It follows that

M(z, y,
−→
t ) ≥ M(z, y, Km0

−→
t0 ) ≥ M(z, y,

−→
t0 ) > 1− ε.
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Taking into account that ε > 0 and
−→
t >

−→
0 are arbitrary, we deduce that M(z, y,

−→
t ) =

1 for all
−→
t >

−→
0 , i.e., z = y. This proves that f and g have a unique common fixed point.

The following corollary is a fixed point result, particularizing Theorem 3 to the case in
which g is the identity mapping on X.

Corollary 2. Let (X, M, ∗) be a complete PFMS such that ∗ is a t-norm of H-type. Let f : X → X
be a mapping such that there exists a matrix K ∈ Mn,n(R+), K → Θ, with

M( f x, f y, K
−→
t ) ≥ M(x, y,

−→
t ) (7)

for all
−→
t ∈ Rn

+,
−→
t >

−→
0 and all x, y ∈ X. Then f has a unique fixed point.

4. The Case of Product of Perov Fuzzy Metric Spaces

One of the newest branches of fixed point theory is devoted to the study of coupled
fixed points, introduced by Guo and Lakshmikantham [17] in 1987. Thereafter, their results
were extended and generalized by several authors in the last few years; see [12,18] and the
references cited therein. Recently, Roldán et al. [18] introduced the notion of coincidence
point between mappings in any number of variables, and several special extended to
multidimensional case appeared in the literature; see, for example [19–23], respectively.
Many of the presented high-dimensional results become simple consequences of their
corresponding unidimensional versions (see [24]).

The following results are given to show how coupled/tripled notions and the compat-
ibility can be reduced to the unidimensional case using the following mappings. Given
N ∈ {2, 3} and F : XN → X and g : X → X, let denote by TN

F , GN : XN → XN the
mappings {

N = 2, T2
F(x, y) = (F(x, y), F(y, x)),

N = 3, T3
F(x, y, z) = (F(x, y, z), F(y, x, y), F(z, y, x)),

(8){
N = 2, G2(x, y) = (gx, gy),
N = 3, G3(x, y, z) = (gx, gy, gz),

(9)

For instance, the following lemma guarantees that multidimensional notions of com-
mon/fixed/coincidence points can be interpreted in terms of TN

F and GN .

Lemma 5. Given N ∈ {2, 3}, F : XN → X and g : X → X, a point (x1, x2, . . . , xN) ∈ XN is:

1. a coupled/tripled fixed point of F if, and only if, it is a fixed point of TN
F ;

2. a coupled/tripled coincidence point of F and g if, and only if, it is a coincidence point of TN
F

and GN ;
3. a coupled/tripled common fixed point of F and g if, and only if, it is a common fixed point of

TN
F and GN .

Definition 11. Let (X, M, ∗) be a PFMS. Two mappings F : Xn → X and g : X → X are said to
be Φ-compatible if, for all sequences {x1

m}m≥0,{x2
m}m≥0,. . . ,{xn

m}m≥0 ⊂ X such that

∃ lim
m→∞

F(x1
m, x2

m, . . . , xn
m) = lim

m→∞
gxi

m ∈ X for all i,

we have that

lim
m→∞

M(gF(x1
m, x2

m, . . . , xn
m), F(gx1

m, gx2
m, . . . , gxn

m),
−→
t ) = 1

for all
−→
t >

−→
0 , t ∈ Rn

+ and all i.



Mathematics 2021, 9, 1290 11 of 14

Lemma 6. Given N ∈ {2, 3}, two mappings F : XN → X and g : X → X are compatible if, and
only if, TN

F and GN are compatible.

Next, we show how to use Theorem 3 in order to deduce coupled and tripled common
fixed point results. We only have to particularize our main result to the case XN , where
N ∈ {2, 3}. We can deduce a multidimensional result similarly.

Corollary 3. Let (X, M, ∗) be a complete PFMS such that ∗ is a t-norm of H-type. Let F : X2 → X
and g : X → X be compatible mappings. Assume that g is continuous and there exists a matrix
K ∈ Mn,n(R+), K → Θ, such that

M(F(x, y), F(u, v), K
−→
t ) ≥ M(gx, gu,

−→
t ) ∗M(gy, gv,

−→
t ) (10)

for all x, y, u, v ∈ X and all
−→
t ∈ Rn

+,
−→
t >

−→
0 .

Then F and g have a unique coupled common fixed point ω of the form ω = (z, z), where
z ∈ X.

Scheme of the proof. Check that (X2, M2, ∗) is a complete PFMS. By Lemma 6, T2
F and G2

are compatible. Contractivity condition (10) yields contractivity condition in Theorem 3.

For 3-case, we can deduce also

Corollary 4. Let (X, M, ∗) be a complete PFMS such that ∗ is a t-norm of H-type. Let F : X3 → X
and g : X → X be compatible mappings. Assume that g is continuous and there exists a matrix
K ∈ Mn,n(R+), K → Θ, such that

M(F(x, y, z), F(u, v, w), K
−→
t ) ≥ M(gx, gu, t) ∗M(gy, gv,

−→
t ) ∗M(gz, gw,

−→
t )

for all x, y, z, u, v, w ∈ X and all
−→
t ∈ Rn

+,
−→
t >

−→
t . Assume also that there exist x0, y0, z0 ∈ X

such that lim−→t →−→∞ M(gx0, F(x0, y0, z0),
−→
t ) = lim−→t →−→∞ M(gy0, F(y0, x0, y0),

−→
t ) =

lim−→t →−→∞ M(gz0, F(z0, y0, x0),
−→
t ) = 1. Then F and g have a tripled fixed point.

Furthermore, assume that for all pairs of tripled fixed points, (x, y, z) and (u, v, w),
lim−→t →−→∞ M(gx, gu,

−→
t ) = lim−→t →−→∞ M(gy, gv,

−→
t ) = lim−→t →−→∞ M(gz, gw,

−→
t ) = 1, then

F and g have a unique tripled common fixed point ω of the form ω = (z, z, z), where z ∈ X.

5. The Case of Product of Fuzzy Metric Spaces

As we have pointed out before, many of the high-dimensional results become simple
consequences of their corresponding unidimensional versions. In this section, with a similar
approach, we obtain new high-dimensional results, but in fuzzy metric spaces context.

We begin showing some basic results that we will need in the main section. We start
this section introducing a generalized fuzzy structure on the product space XN .

Lemma 7. Let (X, M, ∗) be a FMS and let N ∈ N. Consider the product space XN = X× X×
N. . .× X of N identical copies of X. Let define MN : XN × XN × [0, ∞)N → I given by:

MN(A, B,
−→
t ) =

N∗
i=1

M(ai, bi, ti) (11)

for all A = (a1, a2, . . . , aN), B = (b1, b2, . . . , bN) ∈ XN and all
−→
t = (t1, . . . , tN) ≥

−→
0 . Then

the following properties hold.

1. (XN , MN , ∗) is also a PFMS.
2. Let {An = (a1

n, a2
n, . . . , aN

n )} be a sequence on XN and let A = (a1, a2, . . . , aN) ∈ XN .

Then {An}
MN
−→ A if, and only if, {ai

n}
M−→ ai for all i ∈ {1, 2, . . . , N}.
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3. If {An = (a1
n, a2

n, . . . , aN
n )} is a sequence on XN , then {An} is MN-Cauchy if, and only if,

{ai
n} is M-Cauchy for all i ∈ {1, 2, . . . , N}.

4. (X, M, ∗) is complete if, and only if, (XN , MN , ∗) is complete.

Proof. (1) All properties are trivial taking into account that ∗ is a continuous mapping.
(2) Notice that for all n ∈ N and all j ∈ {1, 2, . . . , N},

MN(An, A,
−→
t ) =

N∗
i=1

M(ai
n, ai, ti) ≤ 1 ∗ . . . ∗ 1 ∗M(aj

n, aj, tj) ∗ 1 ∗ . . . ∗ 1 = M(aj
n, aj, tj) ≤ 1

Therefore, if {An}
MN
−→ A, then {aj

n}
M−→ aj for all j ∈ {1, 2, . . . , N}. Conversely,

assume that {ai
n}

M−→ ai for all i ∈ {1, 2, . . . , N}. As ∗ is a continuous mapping, then, for
all
−→
t >

−→
0 ,

lim
n→∞

MN(An, A,
−→
t ) = lim

n→∞

(
N∗

i=1
M(ai

n, ai, ti)

)
=

N∗
i=1

(
lim

n→∞
M(ai

n, ai, ti)
)
= ∗N1 = 1,

which means that {An}
MN
−→ A.

(3) Similarly, it can be proved that for all n, k ∈ N, all j ∈ {1, 2, . . . , N} and all
−→
t >

−→
0 ,

MN(An, Ak,
−→
t ) ≤ M(aj

n, aj
k, tj) ≤ 1.

Therefore, if {An} is a MN-Cauchy sequence, then {aj
n} is a M-Cauchy sequences for

all j ∈ {1, 2, . . . , N}. The converse is similar.
(4) It follows from the last two items.

Trivially, we can prove

Lemma 8. Given N ∈ {2, 3}, two mappings F : XN → X and g : X → X are compatible (in the
PFMS’s sense) if, and only if, TN

F and GN are compatible (in FMS’s sense).

We particularize the main result to the coupled and tripled cases and obtain new kind
of results (compare with Theorem 3.2. in [25], Theorem 1 in [26]).

Corollary 5. Let (X, M, ∗) be a complete FMS such that ∗ is a t-norm of H-type. Let F : X2 → X
and g : X → X be compatible mappings. Assume that g is continuous and there exists a matrix

K =

(
k1,1 k1,2
k2,1 k2,2

)
∈ M2,2(R+), K → Θ =

(
0 0
0 0

)
, such that

M(F(x, y), F(u, v), k1,1t1 + k1,2t2) ≥ M(gx, gu, t1) (12)

M(F(y, x), F(v, u), k2,1t1 + k2,2t2) ≥ M(gy, gv, t2) (13)

for all x, y, u, v ∈ X and all t1, t2 > 0.
Assume also that there exist x0, y0 ∈ X such that

lim
t→∞

M(gx0, F(x0, y0), t) = lim
t→∞

M(gy0, F(y0, x0), t) = 1.

Then F and g have a coupled fixed point.
Furthermore, assume that for all pairs of coupled fixed points, (x, y) and (u, v),

lim
t→∞

M(gx, gu, t) = lim
t→∞

M(gy, gv, t) = 1,

then F and g have a unique coupled common fixed point ω of the form ω = (z, z), where z ∈ X.

Proof. By items 1 and 4 of Lemma 7, (X2, M2, ∗) is a complete PFMS. By Lemma 8, T2
F and
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G2 are compatible. Finally, contractivity conditions (12) and (13) yield, for
−→
t = (t1, t2):

M2(T2
F(x, y), T2

F(u, v), K
−→
t ) = M2((F(x, y), F(y, x)), (F(u, v), F(v, u)), K

−→
t )

= M(F(x, y), F(u, v), k1,1t1 + k1,2t2) ∗M(F(y, x), F(v, u), k2,1t1 + k2,2t2)

≥ M(gx, gu, t1) ∗M(gy, gv, t2)

= M2((gx, gy), (gu, gv),
−→
t ) = M2(G2(x, y), G2(u, v),

−→
t ).

Applying Theorem 3, T2
F and G2 have a unique common fixed point, i.e., a point

ω = (ω1, ω2) ∈ X2 such that T2
Fω = G2ω = ω. ω is the unique coupled common fixed

point of F and g. Following point by point the arguments of the proof of Theorem 3, it is
possible to prove that M(ω1, ω2, t) > 1− ε for all ε, t > 0, so ω1 = ω2 and ω is of the form
(z, z).

In the previous result, we have new kind of contractivity conditions and moreover the
condition lim

t→∞
M(x, y, t) = 1 usually used is weakened here. Similarly, we can deduce the

tripled one.

Corollary 6. Let (X, M, ∗) be a complete FMS such that ∗ is a t-norm of H-type. Let F : X3 → X
and g : X → X be compatible mappings. Assume that g is continuous and there exists a matrix

K =

 k1,1 k1,2 k1,3
k2,1 k2,2 k2,3
k3,1 k3,2 k3,3

 ∈ M3,3(R+), K → Θ =

 0 0 0
0 0 0
0 0 0

, such that

M(F(x, y, z), F(u, v, w), k1,1t1 + k1,2t2 + k1,3t3) ≥ M(gx, gu, t1) (14)

M(F(y, x, y), F(v, u, v), k2,1t1 + k2,2t2 + k2,3t3) ≥ M(gy, gv, t2) (15)

M(F(z, y, x), F(w, v, u), k3,1t1 + k3,2t2 + k3,3t3) ≥ M(gz, gw, t3) (16)

for all x, y, z, u, v, w ∈ X and all t1, t2, t3 > 0.
Assume also that there exist x0, y0, z0 ∈ X such that

lim
t→∞

M(gx0, F(x0, y0, z0), t) = 1

lim
t→∞

M(gy0, F(y0, x0, y0), t) = 1

lim
t→∞

M(gz0, F(z0, y0, x0), t) = 1.

Then F and g have a tripled fixed point.
Furthermore, assume that for all pairs of coupled fixed points, (x, y, z) and (u, v, w),

lim
t→∞

M(gx, gu, t) = lim
t→∞

M(gy, gv, t) = lim
t→∞

M(gz, gw, t) = 1, then F and g have a unique

tripled common fixed point ω of the form ω = (z, z, z), where z ∈ X.

6. Discussion

The new concept of Perov fuzzy metric space, which is a generalization of fuzzy metric
space has been introduced. Moreover, some properties of this concept have been discussed.
In addition, we obtained several new common fixed point results. Ultimately, to illustrate
the usability of the main theorem, the existence of a new results in fuzzy metrics is proved.
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